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As inflammation in the brain contributes to several neurological and psychiatric
diseases, the cause of neuroinflammation is being widely studied. The causes of
neuroinflammation can be roughly divided into the following domains: viral infection,
autoimmune disease, inflammation from peripheral organs, mental stress, metabolic
disorders, and lifestyle. In particular, the effects of neuroinflammation caused by
inflammation of peripheral organs have yet unclear mechanisms. Many diseases, such
as gastrointestinal inflammation, chronic obstructive pulmonary disease, rheumatoid
arthritis, dermatitis, chronic fatigue syndrome, or myalgic encephalomyelitis (CFS/ME),
trigger neuroinflammation through several pathways. The mechanisms of action for
peripheral inflammation-induced neuroinflammation include disruption of the blood-brain
barrier, activation of glial cells associated with systemic immune activation, and effects
on autonomic nerves via the organ-brain axis. In this review, we consider previous
studies on the relationship between systemic inflammation and neuroinflammation,
focusing on the brain regions susceptible to inflammation.

Keywords: neuroinflammation, systemic inflammation, organ-brain axis, peripheral organs, cytokines, microcyte

INTRODUCTION

Inflammation in the brain has drawn widespread attention due to its implication in several
diseases at multiple stages of life. For instance, some studies have suggested a relationship between
neuroinflammation and several types of dementia (Bevan-Jones et al., 2020). Maternal infection is
shown to cause neuroinflammation in the fetal brain, leading to schizophrenia (Brown et al., 2004)
and neurodevelopmental issues such as autism spectrum disorder (ASD) (Slawinski et al., 2018).
In addition, research on major depressive disorder (MDD) revealed that C-reactive protein (CRP)
could serve as a marker of neuroinflammation and peripheral inflammation and is well-suited for
guiding immunotherapy targeting inflammatory cytokines such as TNF-α and IL-6 in the patient
with MDD (Felger et al., 2020). Therefore, neuroinflammation significantly affects psychological
symptoms, and we need to control neuroinflammation.

Several insults can cause neuroinflammation, such as viral infection in the central nervous
system (Klein et al., 2019), peripheral inflammation [chronic joint pain (Schrepf et al., 2018), gut
inflammation (Do and Woo, 2018)], and autoimmune issues. For autoimmune issues, a famous
example would be paraneoplastic limbic encephalitis (PLE). In patients with specific types of
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cancer, such as small cell lung cancer, the immune system
cross-reacts with distinct onconeural antigens would cause
a damage to neural tissue and trigger neuroinflammation
(Bien et al., 2012; Zhang et al., 2013). Taken together,
persistent systemic inflammation increases the likelihood of
neuroinflammation. Meanwhile, factors such as lifestyle also
contribute to neuroinflammation. Unhealthy eating habits have
been shown to influence the balance of intestinal microbiota,
change the blood-brain barrier (BBB) permeability, and cause
neuroinflammation (Dutheil et al., 2016; Spielman et al.,
2018). Obesity, metabolic syndrome, and diabetes can accelerate
the metabolism of neuronal cells, which produced reactive
oxygen species (ROS) causing oxidative stress and consequently
neuroinflammation (de Heredia et al., 2012; Van Dyken and
Lacoste, 2018). Moreover, mental stress has been shown
to increase the levels of several cytokines, such as tumor
necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1) to trigger
neuroinflammation and induce depression or anxiety. Sleep loss
is also suggested to be a potential cause of neuroinflammation
(Curcio et al., 2006; Hurtado-Alvarado et al., 2016). Thus,
anyone can be at risk of neuroinflammation, with or without
pathology. Therefore, it is essential to elucidate the mechanism
of neuroinflammation onset.

Among the known causes of neuroinflammation, the
influence of systemic inflammation on neuroinflammation has
scarcely been explored. Recent evidence suggests that chronic
peripheral inflammation causes systemic inflammation which
may enhance the synthesis of pro-inflammatory cytokines
and other inflammation-promoting mediators, activating
neuroinflammation in the diseased brain (Perry, 2004; Aktas
et al., 2007). Some studies have pointed out the relationship
between systemic inflammation and microglial activation via
multiple neurotoxic factors, including TNF-α, IL-1, and ROS
(Hoogland et al., 2015). Microglia activation is the principal
driver of inflammation in the brain. It has been suggested that
chronic inflammation breaks down the BBB, degrading the
separation of central and peripheral circulation system, leaving
the central nerves system (CNS) vulnerable (Abbott et al., 2010).
The close bidirectional relationship of the gut-brain axis, which
includes neural, hormonal, and immune communication also
plays a vital role in neuroinflammation caused by systemic
inflammation (Abautret-Daly et al., 2018). Thus, the persistence
of peripheral inflammation causes systemic inflammation and
the enhancement of pro-inflammatory factors and disruption of
the brain tissue protection, all lead to neuroinflammation.

Another interesting point is that the lesion sites are often
limited in the case of neuroinflammation caused by systemic
inflammation. Taking PLE as an example, though antigens are
expressed throughout the brain, neuroinflammation is limited
to the limbic system (Bien et al., 2012; Zhang et al., 2013). In
addition, the previous study also pointed out that inflammatory
bowel disease (IBD) could lead to neuroinflammation in a
bottom-up manner, and this effect depended on the brain region:
the upregulation of cyclooxygenase-2 (COX-2) mRNA, glial
fibrillary acidic protein (GFAP) mRNA, and GFAP expression
during exposure to dextran sulfate sodium salt (DSS) in the
hippocampus; upregulation of COX-2 mRNA only 3 days after

DSS treatment in the hypothalamus; downregulation of brain-
derived neurotrophic factor (BDNF) and COX-2 mRNAs in the
amygdala (Do and Woo, 2018). Among those previous studies,
the affected regions in the brain are limited such as the cortex,
striatum, thalamus, hippocampus, the amygdala. Therefore, it
is essential to clarify the differences in pathophysiology of
neuroinflammation in the different affected regions.

Having a deep understanding of the mechanism does
favor the development of new medicines for diseases caused
by neuroinflammation. A meta-analysis suggested that anti-
inflammatory add-on treatment affects psychotic disorders,
though no superiority was found in primarily anti-inflammatory
medicines (Jeppesen et al., 2020). After administration of anti-
inflammatory medicines, they mainly stay in the peripheral blood
circulation. Plasma protein binding limits brain Non-Steroidal
Anti-Inflammatory Drug (NSAID) uptake by reducing the free
fraction of NSAID in the circulation. As only the unbinding small
molecular could pass through the BBB, it is extremely difficult for
therapeutics molecules enter the CNS (Rhea and Banks, 2019). As
a result, even though the dose of an anti-inflammatory medicine
administered via intraperitoneal or intravenous injection is
significantly increased, few anti-inflammatory substances enter
the brain. Given the safety of medicine administration, dose
beyond the permissible range of the peripheral immune system is
not recommended. To deal with this problem, a research team has
recently developed a new route of administration for drugs - trans
spinal delivery by transdermal patch over the neck and cervical
spine (Lehrer and Rheinstein, 2019). The medicines prescribed
by the above-mentioned administration method diffuse through
the intervertebral spaces and enter the cerebrospinal fluid, which
is not influenced by BBB.

In this review, we summarize previous studies on
the relationship between systemic inflammation and
neuroinflammation in detail, focusing on the brain regions
susceptible to inflammation. This discussion could be an
overview of the neuroinflammation induced by systematic
inflammation. By figuring out essential factors or pathway in this
process, we could provide ideas for further research on this topic.
If the mechanism could be discovered in the future, it will also be
easier to prevent the occurrence of neuroinflammation, reduce
the suffering of patients, medical expenses, and social burden.

PREVIOUS STUDIES ON THE
INFLUENCE OF SYSTEMIC
INFLAMMATION ON THE BRAIN

Previous studies have shown that inflammation in several
peripheral organs leads to inflammation in the brain. Colitis may
be the most discussed disease that causes neuroinflammation. In
the colitis animal model (Abautret-Daly et al., 2018; Ticinesi et al.,
2018; Peppas et al., 2021; Craig et al., 2022), neuropsychiatric
symptoms such as impaired spatial and recognition memory
(Peppas et al., 2021), depression (Riazi et al., 2015; Abautret-Daly
et al., 2018; Do and Woo, 2018; Peppas et al., 2021), cognitive
dysfunction (Riazi et al., 2015; Do and Woo, 2018; Ticinesi et al.,
2018), altered stress-associated behavior (Reichmann et al., 2015),

Frontiers in Aging Neuroscience | www.frontiersin.org 2 June 2022 | Volume 14 | Article 903455

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-903455 June 10, 2022 Time: 15:6 # 3

Sun et al. Neuroinflammation Induced by the Systemic Inflammation

and anxiety (Riazi et al., 2015; Abautret-Daly et al., 2018; Peppas
et al., 2021) are observed in behavioral experiments. The affected
regions in the brain are the hippocampus (Reichmann et al., 2015;
Riazi et al., 2015; Zonis et al., 2015; Do and Woo, 2018; Han
et al., 2018; Han et al., 2020; Peppas et al., 2021), cortex (Han
et al., 2018; Peppas et al., 2021), amygdala (Reichmann et al.,
2015; Do and Woo, 2018), and the hypothalamus (Reichmann
et al., 2015; Do and Woo, 2018). Imaging studies in patients also
corroborate this relationship between colitis and brain lesions
(Table 1) (Dolapcioglu and Dolapcioglu, 2015).

Other animal models have been used to illustrate
the relationship between inflammatory diseases and
neuroinflammation, such as periodontal disease (PD), gastritis,
pancreatitis, arthritis, cystitis, and atopic dermatitis (Lin et al.,
2018; Albaret et al., 2020; Ding et al., 2020; Furutama et al., 2020;
Matsushita et al., 2021; Shin et al., 2021). The inflammation
regions in the brain and neuropsychiatric symptoms for
these studies are listed in Table 2. In addition, some clinical
experiments also provided preliminary evidence that primary
biliary cholangitis (PBC) (Zenouzi et al., 2018), chronic fatigue
syndrome/myalgia encephalomyelitis (CFS/ME) (Nakatomi
et al., 2014), and chronic obstructive pulmonary diseases
(COPD) (Pelgrim et al., 2019) have some relationship with
neuroinflammation.

THE WELL-STUDIED MECHANISM OF
SYSTEMATIC INFLAMMATION INDUCED
NEUROINFLAMMATION:
IMMUNE-RELATED FACTORS

When it comes to neuroinflammation, immune-related factors
and disruption of the BBB is widely being receipted as the most
fundamental causes. The systematic inflammation leads to an
increase in the circulating levels of pro-inflammatory cytokines
such as IL-6, IL-18, TNF-α, and growth-related oncogene-α
(GRO-α)/chemokine ligand 1(CXCL1) (Reichmann et al., 2015).
Those cytokines enter CNS and trigger a series of subsequent
inflammation reaction.

Pathway for Cytokines to Enter Central
Nerves System
Pro-inflammatory cytokines could enter the central nervures
system by breaking down the BBB, or via several other pathways
which will be discussed in detail later (Craig et al., 2022)
(Figure 1 right side).

Circulating Inflammatory Mediators Induced
Blood-Brain Barrier Leakage
The BBB consists of endothelial cells of the capillary wall,
pericytes, and astrocytes. If any of the components of the BBB
are missing, the barrier will collapse, and neuroinflammation
will occur (Obermeier et al., 2013). Circulating inflammatory
mediators (e.g., IL-6, TNF-α, and IL-1β) observed in systematic
inflammation model animals may impede tight junction (TJ)
regulation in brain endothelial cells, ultimately leading to a

dysfunctional BBB marked by enhanced permeability (Banks,
2005; Zhou et al., 2006; McKim et al., 2018; Han et al.,
2020). Also, previous studies demonstrated that microglia play
a dual role in maintaining BBB integrity during sustained
inflammation. Microglia phagocytose astrocytic end-feet and
impair BBB function, leading to BBB leakage (Haruwaka et al.,
2019). Further, vascular endothelial growth factor-A (VEGF-
A) production in astrocytes is upregulated in response to IL-
1β, inducing the endothelial nitric oxide synthase (eNOS)-
dependent downregulation of tight-junction proteins claudin-
5 (Cldn5) and occludin (Ocln) in endothelial cells, disrupting
TJ and BBB integrity (Linnerbauer et al., 2020). BBB leakage
accelerates a range of toxic circulating molecules, such as
inflammatory cytokines, ions, and immune cells to access the
brain microenvironment. These mediators further harm the
BBB integrity (Uwe-Karsten Hanisch, 2007). The ROS and
NO produced through cell respiration during inflammation
also harms the BBB.

Other Pathways for Circulating Inflammatory
Mediators to Enter Central Nerves System
Other pathways for circulating inflammatory mediators to enter
CNS are: (i) through “leaky regions” in circumventricular organs
which are found within the ependymal junctional region (Gotow
and Hashimoto, 1982); (ii) through the utilization of endothelial
transporter protein channels (Banks, 2005); (iii) via activating
and inducing the release of local inflammatory mediators by
endothelial cells and perivascular macrophages in the cerebral
vasculature (Dantzer et al., 2008); (iv) via the activation
and diapedesis of peripheral monocytes/macrophages and
T-lymphocytes into the brain parenchyma (Shaftel et al., 2007).

Inflammatory Mediators Trigger
Neuroinflammation
Several animal studies have identified inflammatory markers,
including IL-1, TNF-α, and IL-6 mRNA, in the hippocampal
and cortical brain regions (Zonis et al., 2015; Heydarpour et al.,
2016; Haj-Mirzaian et al., 2017; Han et al., 2018; He et al.,
2021). After entering CNS, those inflammatory mediators also
lead to additional cytokine production within the brain. These
newly produced cytokines together with serological cytokines
trigger neuroinflammation through following processes
(Figure 1 left side).

Microglia Ctivation
Microglia are the resident immune cells in the CNS and occupy
either a resting or activated state. Danger signals, including
circulating inflammatory mediators, trigger resting microglia
to transform to activated states (M1 and M2 phenotypes).
M1 activated microglia produce pro-inflammatory mediators
and are assumed to act as neurotoxic cells (Uwe-Karsten
Hanisch, 2007; Hoogland et al., 2015), increasing indoleamine
2,3-dioxygenase (IDO), and inducing tryptophan [a precursor
of serotonin (5-HT)] to a kynurenine pathway, leading to
neuronal death (Douet et al., 2016). In addition, microglia
interact with astrocytes during neuroinflammation. IL-1α, TNF-
α, and complement 1q (C1q) secreted by microglia induce
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TABLE 1 | Animal experiments on the relationship between colitis and inflammation in the brain.

Research Disease model & Method Animal Neuropsychiatric
symptoms

Affected regions

He et al. (2021) 1% (wt./vol) DSS C57BL/6J, NLRP3 knockout (KO)
&WT mice (M and F 16-month-old)

Impaired spatial and
recognition memory

cortexhippocampus

Do and Woo
(2018)

3% (wt./vol) DSS for 3 or 7 days. C57BL/6J mice (Male, 7-8 week) Depression, cognitive
dysfunction

hippocampus
amygdalahypothalamus

Reichmann
et al. (2015)

2% (wt./vol) DSS for 7 days C57BL/6N mice (Male, 10 week) Altered stress-associated
behavior

hippocampus
amygdalahypothalamus

Han et al.
(2018)

5% (wt./vol) DSS for 7 days C57BL/6 mice (Male, 7–8 week) No cortexhippocampus

Zonis et al.
(2015)

3%(wt./vol) DSS for 7 days C57Bl/6 (Female, 8 week) Not mentioned hippocampus

Han et al.
(2020)

3% DSS for five days with exposure
to hypoxic conditions for 2 days

C57BL/6 mice(Male, 7-8 week) not mentioned hippocampus

Riazi et al.
(2015)

Intracolonic administration of TNBS
(0.5 ml, 50 mg/ml, in 50%

ethanol/saline mixture)

Sprague Dawley rats
(Adult male)

anxiety, depression, and
cognitive dysfunction

hippocampus

Dss, dextran sodium sulfate; TNBS, 2,4,6-trinitrobenzenesulfonic acid.

TABLE 2 | Animal experiments on the relationship between inflammation in peripheral organs and in the brain.

Research Disease model and Mehod Animal Neuropsychiatric
symptoms

Affected regions

Furutama et al.
(2020)

Periodontal disease (PD) C57BL/6J mice (8- to 12-week-old
females)

Neurodegenerative disorder Hippocampus

Albaret et al.
(2020)

Gastritis C57BL/6 mice (6-week-old
females)

Alzheimer’s disease (AD) Not mentioned

Lin et al. (2018) pancreatitis Adult male Sprague Dawley rats Not mentioned Not mentioned

Matsushita
et al. (2021)

Arthritis DBA/1J mice (Male) Fatigue, depression,
hyperalgesia

Area postrema (AP)

Ding et al.
(2020)

Cystitis Adult female Sprague Dawley rats Pathological pain Not mentioned

Han et al.
(2020)

Cystitis Adult female Sprague Dawley rats Mechanical allodynia,
depressive-like behaviors,

and memory deficits

Hippocampus

Shin et al.
(2021)

Atopic dermatitis BALB/CJ mice (9-week-old
pregnant female)

Autism Not mentioned

astrocytes to produce neurotoxic factors, decreasing phagocytic
activity and expression of neurotrophic factors. These exacerbate
level of neuroinflammation (Lull and Block, 2010; Linnerbauer
et al., 2020). TNF-α also increases reactive oxygen species (ROS)
secretion through cell respiration, leading to oxidative stress that
aggravates inflammation.

Astroglia Activation
Astroglia play an essential role in neuroinflammation. Astrocytes
respond to pro-inflammatory cytokines secreted by CNS-
resident and CNS-recruited peripheral immune cells, thereby
modulating the responses of neighboring cells throughout
the CNS (Rothhammer and Quintana, 2015). Also, astrocytes
respond to systematic inflammation through a COX2-dependent
production of proteinoids. The coordinated down-regulation of
COX-1 facilitates prostaglandin E2 (PGE2) production after Toll-
like receptor 4 activation. These effects may increase cerebral
blood flow responses to neuroinflammation (Font-Nieves et al.,
2012). In systematic inflammation animal models, increased

plasma cytokines are companied with the increased expression
of Iba1 (a marker of activated microglia) and GFAP (a marker
for astroglia) (Hoogland et al., 2015; Yang and Wang, 2015; Zonis
et al., 2015). Nuclear translocation of NF-κB in astrocytes also
elevates nitric oxide (NO) levels and accelerates inflammation
progression through the nitric oxide pathway (Linnerbauer
et al., 2020). Previous studies proved a significant increase in
hippocampal TNF-α, iNOS expression, and nitrite content in
colitis mice model (Heydarpour et al., 2016).

NACHT, LRR, and PYD Domain-Containing Protein 3
Inflammasome Activation
When peripheral organs get infected with bacteria, virus,
and fugus, or exposure to environmental irritants, the
peripheral inflammation or cellular stress will then activate
NLRP3 inflammasome (Swanson et al., 2019). The NLRP3
inflammasome consists of a sensor (NLRP3), an adaptor
(ASC) and an effector (caspase 1) (Swanson et al., 2019).
During the inflammation process, the activated caspase 1
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FIGURE 1 | The real root of peripheral inflammation induced neuroinflammation. Right side: In the case of systematic inflammation, peripheral inflammation cytokines
are produced. Those cytokines could flow into CNS directly or cause BBB leakage, finally cause pro-inflammation cytokine in the brain increasing. Left side: Those
cytokines in CNS triggers inflammation by activating glial cells, causing glymphatic clearance dysfunction etc. Brown part: These factors may cause region-specific
neuroinflammation. AQP4, Aquaporin 4; BBB, Blood-brain Barrier; C1q, Compliment 1q; CNS, Central nervous system; COX-2, Cyclooxygenase; Glu, Glutamate;
HPA axis, Hypothalamic–pituitary–adrenal axis; IDO, Indoleaminepyrrole 2,3-dioxygenase; IL-1α, Interleukin-1α; NLRP-3, NACHT-LRR and pyrin (PYD)
domain-containing protein-3; NO, Nitric oxide; NOS, Nitric oxide synthase; PGE-2, Prostaglandin E2; PNS, Peripheral nervous system; PSNS, parasympathetic
nervous system; PVN, Perivascular macrophages; QA, Quinolinic acid; ROS, Reactive oxygen species; SNS, Sympathetic nervous system; TJ, Tight junction;
TNF-α, Tumor necrosis factor-α; TRP, Tryptophan; 5-HT, 5-hydroxytryptamine.

part of NLRP3 inflammasome in microglia and astrocytes
triggers the maturation of cytokines including IL-1β, IL-18,
etc. Furthermore, mature IL-1β binding to IL-1 receptors was
reported to upregulate the expression of pro-IL-1β (Yazdi and
Ghoreschi, 2016). Even though the detailed mechanism is still
unclear, NLRP3 inflammasome is proved to associate with the
pathogenesis of several inflammatory diseases including chronic
colitis induced neuroinflammation and Cognitive impairment,
and explains the different inflammation degree by age as reactive
A1 astrocytes in the aging brain produces an exaggerated
response to IL-1β (Pellegrini et al., 2020; He et al., 2021).

WHY IS PERIPHERAL
ORGANS-INDUCED
NEUROINFLAMMATION LIMITED TO
SPECIFIC BRAIN REGIONS?

In the case of neuroinflammation caused by inflammation of
peripheral organs, brain regions are specifically affected. Even
though previous studies have already proved several evidence
that the fundamental mechanisms of peripheral inflammation-
induced neuroinflammation is disruption of the BBB and
immune-related factors (cytokine production, activation of glial
cells, etc.), it fails to explain why neuroinflammation limits in

special brain regions. To figure out the behind reason, some
factors would be discussed as follow (Figure 1 left brown part).

Immune-Related Factors: Distribution of
Cytokines and Immune Cells
Cytokines are of crucial importance in the inflammation process.
As discussed previously, cytokines originate not only from
peripheral organs via the BBB, but are also locally produced
in the CNS by glial cells (Albaret et al., 2020). Resultantly,
the distribution of glial cells and region-dependent cytokine-
production may be considered a potential explanation for region-
specific neuroinflammation.

For cytokines, previous studies have shown that in the animal
model of LPS induced systemic inflammation, the expression
of IL-6, IL-1β, and cyclin-dependent kinase inhibitor p21Cip1
(p21) occurred in the hippocampus related to neuroinflammation
caused by peripheral inflammation (Zonis et al., 2015). In
the same animal model, p21 expression in the hippocampus
contributes to restraining neuronal progenitor proliferation and
protects these cells from inflammation-induced apoptosis (Zonis
et al., 2013). Another study that examined mRNA expression of
COX-2 (an enzyme related to production and release of PGE2)
and GFAP (a marker for astrogliosis) in different brain regions
(hypothalamus, amygdala, and hippocampus) concluded that
IBD can lead to neuroinflammation in a bottom-up manner,
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and has region specific effects (Do and Woo, 2018). The higher
expression of COX-2 (Font-Nieves et al., 2012) and GFAP (Yang
and Wang, 2015) contributes to neuroinflammation.

For glial cells, astrocytes play a key role in neuroinflammation,
and have a region-specific distribution of different subtypes
in the brain (Christian Hochstim et al., 2008; Linnerbauer
et al., 2020). A single-cell sequencing approach in adult
mice tissues revealed that Astrocyte Sub Type 1 (AST1) was
found at high levels in the subpial layer and hippocampus;
AST2 and AST3, were found throughout cortex, AST4 was in
subangular zone of hippocampus, and AST5 was in the subpial
region, the stratum lacunosum-molecular and dentate gurus of
hippocampus (Batiuk et al., 2020). Though expression of core
genes are similar in different subtypes, still some differentially
expressed genes are observed, which includs formation and/or
maintence of the BBB (Mfsd2a), inmmune functions (Tril
and Tlr3), glutamate uptake(Slc1a3), and other genes related
to inflammation (Batiuk et al., 2020). Though details of the
different functions of different astrocyte subtypes and differently
distribution of astrocyte besides of cortex and hippocampus
remain unclear, the region specific distribution of astrocyte could
be an important explanation.

Also, generaly, microglia distributes in all brain regions and
are 5 times more abundant in gray matter than in white matter.
There are more microglia in the hippocampus, olfactory lobe
and basal ganglia than in the thalamus and hypothalamus, and
the least in the brainstem and cerebellum. Besides, inflammation
progress is related to microglial remification or activation.
Previous studies show that several factors such as chronic stress,
and a combination of astrocyte-released cytokines, transforming
growth factor-β (TGF-β), macrophage-colony stimulating factor
(M-CSF) and granulocyte macrophage-colony stimulating factor
(GM-CSF) is essential to microglial ramification (Walker et al.,
2014). As a result, the different distribution of astrocyte
would also induce region specific inflammation by influencing
microglial ramfication.

Glymphatic Clearance Disfunction
Glymphatic clearance was defined for the first time as a
brain-wide anatomical pathway that facilitates the exchange of
cerebrospinal fluid (CSF) and interstitial fluid (ISF), thereby
promoting the clearance of various toxic waste products from
the CNS (Iliff and Nedergaard, 2013). As a lymphatic-like
system in the brain, glymphatic clearance drains protein waste
into the cervical lymphatic system in humans and mice.
This process depends on AQP4 channels expressed at high
density on the astrocytic end feet abutting cerebral capillaries
(Harrison et al., 2020). However, maturation of IL-1β, which
binds to cognate receptors on astrocytes in response to
active astrogliosis and produces inflammatory astrocyte (A1
astrocyte) which reduces AQP4 polarization and induces the
dysfunction of glymphatic clearance (Iliff et al., 2014; Kress
et al., 2014). As a result, an inflammatory environment would
trigger glymphatic clearance dysfunction and lead the toxic
products, cytokines or inflammation-related chemokines, to
reach the CNS much more readily. Such state produces a
vicious cycle that enhances neuroinflammation. A previous

study also demonstrates that DSS treatment impaired glymphatic
clearance and aggravated amyloid plaque accumulation and
induced neuronal loss in the cortex and hippocampus (He
et al., 2021). Furthermore, as the decreases of regional cerebral
blood flow (rCBF) in the cerebral cortex and glucose uptake
in all neocortical regions also observed in sepsis patients
(Semmler et al., 2008). Even though in sepsis model, blood
flow is influenced by blood pressure, heart rate and cardiac
function, the CSF factor, besides of blood flow factors must
be considered as an important factor that leads to region
specific inflammation.

The Immune Response of the Peripheral
Nervous System
Immune cells express receptors for neuropeptides and
neurotransmitters, and sense information from neurons,
while neurons also accept stimuli from immune cells. Therefore,
immune cells and neurons mutually influence each other in
inflammatory diseases. This interaction in the peripheral immune
system leads to inflammation in the brain via several pathways.

First, during peripheral inflammation, sensory neurons
drive thermal and mechanical pain sensitivity and contribute
to the febrile response which is considered a catalyst for
neuroinflammation (Steinman, 2010; Udit et al., 2022). Some
hypothesize of febrile response could be the pyrogenic cytokines
IL-1, IL-6, and TNF-α get access to the hypothalamus through
BBB or active transport mechanisms mediated by the cells
surrounding the hypothalamus, then activate the febrile response
indirectly by inducing local endothelial cells or microglial cells
to secrete prostaglandin E2 (PGE2) to initiate a neuronal
response that regulates the body temperature. Also, peripheral
C5a stimulates PGE2 production in the liver and then trigger
hypothalamus reaction by a neural pathway mediated by the
vagus nerve and the nucleus tractus solitaries (Steinman, 2010).
According to previous studies, several cytokines (e.g., IL-1β, IL-6,
IL-10) are observed at elevated levels in the CNS and in peripheral
circulation in heatstroke models (Leon et al., 2006; Biedenkapp
and Leon, 2013), which gives evidences that febrile response
leads to a systematic inflammation status and also relates with
neuroinflammation.

Second, since sensory neurons are afferents, excessive sensory
stimulation may cause overactivation and cytokine production.
A previous study employed a chronic constriction nerve injury
pain model to demonstrate the interactive role of presynaptic
sensitivity to TNF-α and the adrenergic auto receptor. This study
suggested that an important role that TNF-α plays in adrenergic
neuroplastic changes in a region of the brain such as locus
coeruleus and hippocampus, and implicated in the pathogenesis
of neuropathic pain (Covey et al., 2000). However, the same
peripheral nervous system (PNS) pathway can exert differential
and even opposing effects on immune cells depending on the
specific disease, tissue, and timing contexts. As neurons with the
same or similar functions are grouped together, one mechanism
that is likely to underlie this heterogeneous response is the
presence of distinct subsets of neurons within the various PNS
pathways (Udit et al., 2022).
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The Hypothalamic–Pituitary–Adrenal Axis
Activation
Stress is a crucial factor during chronic visceral inflammation
(Furutama et al., 2020). Activation of peripheral vagal nerve
afferents that relay cytokine signals to the nucleus of the
solitary tract and hypothalamus are referred to as the HPA axis
(Ghia et al., 2006; Chavan et al., 2017). Activated HPA axis
regulates the neuroinflammation condition in an interactional
way (O’Callaghan and Miller, 2019). Acute and chronic
stress activate the HPA axis to produce a variety of stress
hormones (Sudo, 2014). Binding to receptors on microglia,
corticotropin-releasing hormone (CRH) activates microglia.
adrenocorticotropic hormone (ACTH) can inhibit the activity
of immune cells and produce anti-inflammatory effects
through the central melanocortin receptor. Glucocorticoids
(GC) and mineralocorticoid (MC) can bind to glucocorticoid
receptors (GR) and mineralocorticoid receptors (MR), thereby
playing an important role in the central inflammatory
response. Depending on the distribution of these receptors,
inflammation is triggered differently in different brain regions.
For instance, mineralocorticoid receptor (MR) is prevalent
in the hippocampus, amygdala, and paraventricular nucleus
of hypothalamus (PVN) neurons – potentially leaving them
more susceptible to stress induced neuroinflammation. Also,
the stress process is associated with brain region-dependent
alterations of neuropeptide Y (NPY), NPY receptor Y1, CRH,
CRH receptor 1, BDNF, and glucocorticoid receptor expression
(Herman et al., 2012; Reichmann et al., 2015). BDNF is a factor
related to neurogenesis, neural plasticity, and activation of
astrocytes and microglia (Ding et al., 2020), has been proved
to have a suppression expression pattern in hippocampus,
prefrontal cortex and striatum response to stress depending
on the brain region (Bath et al., 2013). As BDNF is mainly
expressed in the cortex and hippocampus, inflammation may
easily affect these regions.

DISCUSSION

According to previous animal and clinical studies,
neuroinflammation may be caused by inflammation of several
peripheral organs such as colitis, PD, gastritis, pancreatitis,
arthritis, cystitis, atopic dermatitis, PBC, CFS/ME, and COPD
(Lin et al., 2018; Albaret et al., 2020; Ding et al., 2020; Furutama
et al., 2020; Matsushita et al., 2021; Shin et al., 2021). Given
the neuropsychiatric symptoms and the results of biochemical
experiments, research has identified that the hippocampus,
cortex, amygdala, and hypothalamus are most affected by
peripheral-induced neuroinflammation (Reichmann et al., 2015;
Riazi et al., 2015; Zonis et al., 2015; Do and Woo, 2018; Han et al.,
2018; Peppas et al., 2021).

Besides the mechanism we have discussed before, other
factors including gut-brain axis (Pellegrini et al., 2020; Peppas
et al., 2021), joint-brain axis (Suss et al., 2020), and liver-
brain axis (Matsubara et al., 2022), as well as a multiorgan
network also lead to neuroinflammation. Additionally, hypoxia
has been shown to worsen brain inflammation in DSS-induced

colitis models and induce the development of cerebral edema in
mice at high altitudes by activating microglia, producing pro-
inflammatory mediators and down-regulating TJs (Han et al.,
2020). Neuroinflammation in COPD patients is also related to
hypoxia (Pelgrim et al., 2019).

Though the most basic trigger of neuroinflammation is
immune-related factors including leakage of the BBB, there is
no evidence that the distribution of BBB has region specificity.
However other factors trigger neuroinflammation such as
region dependent crucial gene expression (cytokines, receptors,
and other proteins) (Reichmann et al., 2015), dysfunction of
glymphatic clearance (Iliff and Nedergaard, 2013; Iliff et al.,
2014), PNS regulation (Udit et al., 2022), febrile response
(Steinman, 2010; Udit et al., 2022) could give explanation to the
region specificity of neuroinflammation. Especially, diversity of
neuronal and glial cells in different regions may be considered a
possible explanation for regionalized neuroinflammation.

We have already discussed the region-specific distribution of
astrocyte before. As for neuron diversity, according to previous
research, mammalian brain cells show remarkable diversity in
gene expression, anatomy, and function. A previous study has
described the DNA methylation patterns of excitatory neurons
in the cortex and hippocampus, which both varied continuously
across spatial gradients (Liu et al., 2021). Another study has
identified the single-cell morphological diversity of neurons,
which revealed 11 major projection neuron types with distinct
morphological features and transcriptomic identities, though the
specific distribution and functional differences of different types
of neurons are unclear (Peng et al., 2021).

STRENGTHS AND LIMITATIONS

Strengths
In clinical practice, it is difficult to treat peripheral inflammatory
disease because of the neuroinflammation caused by peripheral
inflammation. A range of psychological symptoms such as
depression, anxiety, and cognitive dysfunction induced by
neuroinflammation can not only physically afflict the It is very
important to find an effective treatment for neuroinflammation
to completely cure peripheral inflammation. However, it is
very difficult to find an efficient treatment for each systemic
inflammatory disease. We commented on the mechanisms by
which peripheral inflammation induces neuroinflammation
and the causes of region-specific neuroinflammation. In
particular, region-specific neuroinflammation can occur in
any inflammatory disease, so elucidation of region-specificity
will lead to smooth treatment and complete cure of various
inflammatory diseases. Our review may provide guidance for
further research on neuroinflammation and the development of
new neuroinflammation therapies.

Limitations
Although much research on peripheral inflammation-induced
neuroinflammation has been done in recent years, there
are some unresolved limitations. First, the assessment of
inflammation in previous studies is different for each disease.
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Since there are various evaluations such as increased
expression of inflammation-promoting factors, increased
inflammatory cytokines, activation of microglia and disruption
of the blood-brain barrier, it is difficult to compare the
degree of neuroinflammation between diseases. Second, no
studies have been found that analyze neuroinflammation
in all brain regions. The neuroinflammation vulnerability
in the area remains unknown because there are no results.
Third, the degree of systemic inflammation induced by
peripheral inflammation varies depend on research, so mutual
comparison may not make sense. In peripheral inflammatory
diseases, the degree of neuroinflammation and the area
of inflammation may change between severe and mild,
acute and chronic phases. Third, the degree of systemic
inflammation due to peripheral inflammation varies from
study control to control, so mutual comparison may not be
meaningful. In peripheral inflammatory diseases, the degree
of neuroinflammation and the area of inflammation may
change between severe and mild, acute and chronic phases.
To elucidate the mechanism of systemic inflammation-induced
neuroinflammation, it is necessary to conduct morphological
studies with the same inflammatory criteria in various

peripheral inflammatory diseases (colitis, pneumonia, hepatitis,
dermatitis, etc.).
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