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Abstract: In this study, a graphene sample (EGr) was synthesized by electrochemical exfoliation of
graphite rods in electrolyte solution containing 0.1 M ammonia and 0.1 M ammonium thiocyanate.
The morphology of the powder deposited onto a solid substrate was investigated by the scanning
electron microscopy (SEM) technique. The SEM micrographs evidenced large and smooth areas
corresponding to the basal plane of graphene as well as white lines (edges) where graphene layers
fold-up. The high porosity of the material brings a major advantage, such as the increase of the
active area of the modified electrode (EGr/GC) in comparison with that of bare glassy carbon (GC).
The graphene modified electrode was successfully tested for L-tyrosine detection and the results
were compared with those of bare GC. For EGr/GC, the oxidation peak of L-tyrosine had high
intensity (1.69 × 10−5 A) and appeared at lower potential (+0.64 V) comparing with that of bare
GC (+0.84 V). In addition, the graphene-modified electrode had a considerably larger sensitivity
(0.0124 A/M) and lower detection limit (1.81 × 10−6 M), proving the advantages of employing
graphene in electrochemical sensing.

Keywords: L-tyrosine; electrochemical exfoliation; graphene-modified electrode

1. Introduction

Tyrosine (Tyr) is a small, electroactive, and aromatic amino acid used to regulate the
signal transduction process in proteins [1]. In humans, tyrosine is an important precursor of
thyroid hormones, dopamine, adrenaline, and is used to establish and maintain a balanced
nutrition [2,3]. It has been reported that a variation in the concentration of tyrosine can lead
to severe chronic diseases such as tyrosinemia [4], and Parkinson’s disease [5]. Therefore,
the detection of Tyr is very important for health assessment.

Several methods have been developed for the detection of L-tyrosine including surface-
enhanced Raman scattering [6], high-performance liquid chromatography [7], and lumi-
nescence [8] methods. Even though these methods could achieve good determination
results, many disadvantages have appeared in practical applications. For example, SERS
measurement requires complex sample-making and sampling processes. HPLC involves
high-cost columns and wastes of organic solvents. Luminescence detection is generally
time-consuming and requires annealing and recalibration after each use, for accuracy. Also,
most of these analytical methods need some special training for their operation, and the
instruments for these procedures are relatively expensive. In this respect, electrochemical
methods are good alternatives due to their sensitivity, accuracy, simplicity, and lower cost.
A survey of the literature points out that there are some electrochemical methods devel-
oped for determining L-tyrosine. The larger part of these electrochemical methods involves
the application of modified electrodes. Some examples of materials used to modify the
electrodes includes copper oxide nanoparticles [9], gold nanoparticles [10], polymers [11],
and tyrosinase multi-walled carbon nanotube polysulfone [12]. Recently, graphene-based
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materials have been widely used for electrode modification [13] due to their remarkable
electro-catalytic properties.

Graphene, consisting of a monolayer of carbon atoms exhibits excellent mechanical,
thermal, electrical, and optical properties [14,15]. Its large surface area may promote the
adsorption of the target analyte, which is useful in various applications [16,17]. In elec-
trochemistry, graphene and graphene-based materials deposited on top of a conductive
substrate may substantially decrease the oxidation potential and thus enhance the electro-
chemical performance [18]. The direct exfoliation of graphite (rods or powder) in solution,
such as electrochemical [19,20], sonochemical [21,22], or liquid-phase exfoliation [23,24]
enable the fabrication of high-quality graphene via a low-temperature process. By em-
ploying different methods, the properties of graphene sample can be adjusted including
the defect density, number of layers, and yield [25]. The electrochemical exfoliation of
graphite rods is one of the most efficient methods for bulk production of graphene. The
applied voltage transports the ionic species in the electrolyte to intercalate into the graphite
layers and increase the inter-layer distance. According to the power supply applied on
graphite electrodes, there are cathodic (employing a negative bias) and anodic (working
with a positive bias) exfoliation methods [20]. Anodic exfoliation is the most common elec-
trochemical method as a result of its high exfoliation efficiency which produces graphene
in a relatively small period of time. Graphene based electrodes have been used for detec-
tion of different kinds of molecules [26]. For example, Wei et al. [27] used a graphene/Pt
nanoparticles NPs modified glassy carbon electrode as a sensitive and simple sensor for
simultaneous measurement of tryptophan and tyrosine in the presence of 5 hydroxytryp-
tophan. A cost-effective reduced graphene oxide–copper hybrid nano thin-film modified
pencil graphite electrode with excellent performance, good stability, and reproducibility has
been employed to detect the L-tyrosine enantiomer [28]. Another electrochemical sensor
developed for determination of tyrosine was based on graphene and gold nanoparticles
modified glassy carbon electrode [29].

In this work, a simple approach was used for manufacturing a modified glassy carbon
electrode employing electrochemically exfoliated graphene. The electrochemical properties
of the modified electrode were investigated at electro-catalytic oxidation of Tyr. The electro-
chemically exfoliated graphene exhibits good electro-catalytic activity to the oxidation of
Tyr, since it enhances the peak current and lowers the peak potential. In order to demon-
strate the possible application of this electrochemical sensor, we used the standard addition
method for the determination of Tyr in spiked samples, demonstrating excellent results.

2. Materials and Methods
2.1. Instruments

In order to investigate the morphological characteristics of graphene sample, a SEM/
TEM Hitachi HD2700 instrument (Hitachi, Japan) equipped with a cold field emission gun
(CSEG), operated at 200 kV and coupled with a double cut windowless 100 EDX detector
acted by AZtec Software (Oxford Instruments) was used.

The X-ray powder diffraction (XRD) pattern was obtained with a Bruker D8 Advance
Diffractometer using CuKα1 radiation (λ = 1.5406 Å). The background corrected pattern
was used for the calculation of graphene structural parameters (inter-layer distance—d;
crystallite size—D; number of layers—n)

The FTIR spectrum of graphene sample (mixed with KBr) was recorded with a JASCO
6100 FTIR spectrometer (4000–400 cm−1 spectral domain; 4 cm−1 resolution).

The UV-Vis spectrum of graphene powder was obtained with a SPECORD 250 PLUS
instrument (Analytikjena). The sample was dispersed by ultrasound in double-distilled
water for 3 min, to form a homogeneous suspension. Next, the spectrum was recorded
within 200–800 nm range.

For electrochemical measurements (Cyclic Voltammetry—CV, Linear Sweep Voltamm
etry—LSV and Electrochemical Impedance Spectroscopy—EIS) a three-electrode cell cou-
pled with a Potentiostat/Galvanostat Instrument (PGSTAT-302N, Metrohm-Autolab B.V.,
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The Netherlands) was used. The CVs and LSVs measurements were generally run from 0.0
to +1 V vs. Ag/AgCl, at 10 mV/s scanning rate. EIS measurements were recorded between
0.1 and 105 Hz, in solution containing 10−3 M potassium ferrocyanide and 0.2 M KCl.

For standard addition method, the following procedure was applied. A stock solution
of 5 × 10−4 M Tyr was prepared in pH 7 PBS. Next, 0.1 mL of the stock was mixed with
4.9 mL pH 7 PBS which gave a final concentration of 1 × 10−5 M Tyr. This was denoted the
unknown concentration (Cx). Next, three volumes (e.g., 100, 200, and 300 µL) of the stock
solution (5 × 10−4 M) were added to three beakers, each also containing the unknown
concentration Cx (the final volume in all beakers was 5 mL).

2.2. Chemicals

All chemicals, including: ammonia (Reactivul Bucuresti, Romania), ammonium thio-
cyanate (Sigma-Aldrich, Sternheim, Germany), potassium chloride (Reactivul Bucuresti, Ro-
mania), potassium ferrocyanide (Sigma-Aldrich, Sternheim, Germany), L-Tyrosine (Sigma-
Aldrich, Sternheim, Germany) and Dimethylformamide (DMF) (JTBaker, HPLC grade,
Sternheim, Germany) were used without further purification. The electrolyte solutions
were prepared with double-distilled water produced with Fistreem Cyclon equipment.

2.3. Electrochemical Exfoliation of Graphite Rods for Graphene Synthesis (EGr)

Two electrochemical cells each containing two graphite rods and filled with 100 mL
solution of electrolyte (0.1 M ammonia + 0.1 M ammonium thiocyanate) were connected
to the exfoliation system (home-made system). A constant voltage of 11 V was applied
between the graphite rods (anode and cathode) for about 4 h. In order to avoid the over-
heating of the electrolyte, short pulses of current were applied for 0.8 s, followed by short
pauses (0.2 s). The black powder deposited after exfoliation at the bottom of each cell was
collected, washed with distilled water (10 L) and finally dispersed by ultrasound for 30 min
in 125 mL water. Next, the black suspension was filtered on white-ribbon paper to remove
the large particles and finally dried by lyophilization. The obtained sample was following
denoted EGr.

2.4. Preparation of Graphene-Modified Electrode (EGr/GC)

In 2 mL solution of N,N-dimethylformamide (DMF) were dispersed by sonication
2 mg of graphene powder (3 min with a finger device; SONICS Vibra-Cell). Next, a volume
of 10 µL from the dispersion was deposited by drop-casting onto the clean surface of
a glassy carbon (GC) electrode and dried at room temperature for 24 h. After that, the
modified electrode (EGr/GC) was employed for the electrochemical detection of Tyr.

3. Results and Discussion
3.1. Morphological and Structural Characterization of EGr Sample

The morphology of graphene powder deposited onto a solid substrate was investi-
gated by scanning electron microscopy technique. Two representative micrographs are
presented in Figure 1a,b, showing the porous appearance of the material. The high porosity
brings a major advantage, such as the increase of the active area of the modified electrode
and consequently of the electrochemical current. The micrograph with the higher resolution
(Figure 1b) shows large and smooth areas corresponding to the basal plane of graphene as
well as white lines (edges) where graphene layers fold-up.

The structure of graphene sample was next investigated by X-ray powder diffrac-
tion technique. In Figure 2 is presented the recorded pattern of the sample, evidencing
three main peaks: the first one (at 9.47◦) is small and broad and corresponds to the reflec-
tions of graphene oxide (GO) layers; the second one (at 21.24◦) is also broad but of higher
intensity and corresponds to the reflections of few-layer graphene (FLG); the third peak
(at 26.29◦) is due to the presence of multi-layer graphene (MLG) within the synthesized
material. Using the experimental data, we determined the average number of graphene
layers within the graphene crystallites (n), the inter-layer spacing (d), the mean crystallite
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size of graphene (D) and the amount of GO, FLG and MLG (expressed as %) present within
the sample [30–32]. The results are presented in the inset of Figure 2.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 1. Representative SEM micrographs of EGr sample; scale bar: 30 µm (a); 5 µm (b). 

The structure of graphene sample was next investigated by X-ray powder diffraction 

technique. In Figure 2 is presented the recorded pattern of the sample, evidencing three 

main peaks: the first one (at 9.47°) is small and broad and corresponds to the reflections 

of graphene oxide (GO) layers; the second one (at 21.24°) is also broad but of higher in-

tensity and corresponds to the reflections of few-layer graphene (FLG); the third peak (at 

26.29°) is due to the presence of multi-layer graphene (MLG) within the synthesized 

material. Using the experimental data, we determined the average number of graphene 

layers within the graphene crystallites (n), the inter-layer spacing (d), the mean crystallite 

size of graphene (D) and the amount of GO, FLG and MLG (expressed as %) present 

within the sample [30–32]. The results are presented in the inset of Figure 2. 

Figure 1. Representative SEM micrographs of EGr sample; scale bar: 30 µm (a); 5 µm (b).

Sensors 2022, 22, x FOR PEER REVIEW 5 of 14 
 

 

 

Figure 2. The XRD pattern of EGr sample, showing the presence of GO, FLG, and MLG. 

Next, the vibration characteristics of the synthesized sample were evidenced by 

FTIR spectroscopy. The corresponding spectrum is illustrated in Figure 3a. The presence 

of some oxygen-containing functional groups can be observed, in good agreement with 

the literature [33]. The main adsorption band, at 3429 cm−1 is assigned to the O-H 

stretching vibrations from the adsorbed water molecules, while the two adsorption peaks 

at 1383 and 1057 cm−1 are assigned to the C-O stretching vibrations. Their weak intensity 

is in excellent agreement with the XRD pattern of the sample where a small GO peak is 

evidenced. The peaks at 1577 cm−1 and 1638 cm−1 represents the vibration modes of 

sp2-hybridized C=C. Complementary to this, the UV-Vis spectrum of the sample (Figure 

3b) reveals a broad peak at 270 nm, due to π-π* transitions of electrons within C=C 

bonds. The lack of a well-defined peak at 320 nm (due to n-π* transitions of electrons 

within C-O bonds) indicates that the sp2 configuration of carbon atoms is predominant 

within the synthesized material. 

 

0 10 20 30 40

0

150

300

450

600

750
 Experimental

 GO

 FLG

 MLG

 Fit

In
te

n
s

it
y

 (
a

.u
.)

2 (degrees)

GO

FLG

MLG

Sample 2theta (deg) D (nm) d (nm) n Amount (%)

EGr 9.47 (GO) 2.44 1.04 2 7

21.24 (FLG) 1.18 0.46 3 74

26.29 (MLG) 23.73 0.38 63 19

4000 3500 3000 2500 2000 1500 1000 500

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

(2934)

(1057)C-O

(1383)C-O

C=C

(1577)

C=C

(1638)

T
ra

n
s

m
it

a
n

c
e

 %

Wavenumber (cm
-1

)

C-H

OH (3429)

EGr a.

Figure 2. The XRD pattern of EGr sample, showing the presence of GO, FLG, and MLG.

Next, the vibration characteristics of the synthesized sample were evidenced by FTIR
spectroscopy. The corresponding spectrum is illustrated in Figure 3a. The presence of
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some oxygen-containing functional groups can be observed, in good agreement with the
literature [33]. The main adsorption band, at 3429 cm−1 is assigned to the O-H stretching
vibrations from the adsorbed water molecules, while the two adsorption peaks at 1383 and
1057 cm−1 are assigned to the C-O stretching vibrations. Their weak intensity is in excellent
agreement with the XRD pattern of the sample where a small GO peak is evidenced. The
peaks at 1577 cm−1 and 1638 cm−1 represents the vibration modes of sp2-hybridized C=C.
Complementary to this, the UV-Vis spectrum of the sample (Figure 3b) reveals a broad peak
at 270 nm, due to π-π* transitions of electrons within C=C bonds. The lack of a well-defined
peak at 320 nm (due to n-π* transitions of electrons within C-O bonds) indicates that the
sp2 configuration of carbon atoms is predominant within the synthesized material.
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3.2. Electrochemical Studies

In order to fully characterize the bare and graphene-modified electrodes, the EIS spec-
tra were recorded and the experimental data were represented as Nyquist plots (Figure S1).
The charge-transfer resistance (Rct) values were determined after fitting the Nyquist plots
with the appropriate equivalent electrical circuit. The first circuit characterizes the bare GC
electrode and contains the following elements: the solution resistance (Rs) which depends
on the concentration of supporting electrolyte, the Warburg impedance (ZW) that appears
due to the diffusion of ions within the double-layer at low frequency, the charge-transfer
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resistance (Rct) that reflects the easiness of electron transfer across electrode-solution in-
terface and a constant phase element (CPE) that replaces the double-layer capacitance
(Cdl). For graphene-modified electrode, due to the high porosity of graphene layer the
circuit additionally contains a transmission line (T) [34]. After fitting the data, the Rct
values were determined to be: 75.5 kΩ for bare GC and 1.16 kΩ for EGr/GC, indicating
that the graphene layer highly favors the transfer of electrons when deposited on top of a
conductive substrate.

Next, the electrochemical oxidation of Tyr (10−4 M) was investigated in buffer solu-
tions of various pH (3.6–8), using the LSV technique (Figure 4a–c). The signal correlates
well with the pKa of this amino-acid (pKa1= 2.20 for α-carboxyl group; pKa2 = 9.11 for
α-ammonium ion). In highly acidic solution (pH 3.6) a clear oxidation peak appears at
around +0.85 V which shifts towards lower potentials, in neutral and basic solutions. The
linear regression equation that describes the variation of peak potential, Ep, versus pH is
given by: y = 1.019 − 0.053 × pH. In this case, the slope value is 0.053 V/pH being close
to that obtained from a Nernstian plot (0.059 V/pH) and indicating an equal number of
protons and electrons involved in the electrochemical reaction. The maximum peak current,
Ip, was observed in pH 7 PBS, so all of the experiments were next performed at this pH
(Figure 4b,c).

In order to evidence the electro-catalytic properties of the synthesized material towards
L-tyrosine oxidation, the comparison between the graphene-modified electrode and the
bare GC electrode is shown (Figure 5). The LSVs were recorded in pH 7 PBS containing
10−3 M Tyr, revealing marked differences between the two electrodes. Hence, in the case
of bare GC, the oxidation peak is broad and of low intensity (2.73 × 10−6 A) and appears
at higher potential (+0.84 V) in comparison with that of graphene-modified electrode
(+0.64 V). The increased sensitivity of EGr/GC towards Tyr oxidation may be due to the
enhanced electron transfer rate at the edges of graphene sheets. In addition, the π–π
stacking interaction between the aromatic ring of Tyr and graphene may help with the
orientation of OH group towards graphene, favoring its oxidation.

Next, Tyr was quantitatively analyzed by LSV and the corresponding recordings at var-
ious concentrations are plotted in Figure 6a,b. There are significant differences between the
two electrodes which are worth mentioning. In the case of EGr/GC electrode, the oxidation
potential (+0.64 V) does not change with Tyr concentration, indicating a weak adsorption
of the oxidation products on its surface. In contrast, for GC electrode, the peak potential is
highly dependent on concentration, varying from +0.77 to +0.84 V. In addition, the lowest
signal recorded with EGr/GC electrode was obtained in solution of 6 × 10−6 M Tyr, while
with bare GC the lowest signal was obtained at a higher concentration, of 3 × 10−5 M Tyr.
This indicates an increased sensitivity of the graphene-modified electrode, in comparison
with bare GC.

By representing the peak current (Ip) versus Tyr concentration, the corresponding
calibration plots were obtained and represented in Figure 7. The linear regression equa-
tion for EGr/GC electrode is: Ip = 1.88 × 10−7 + 0.0124 × C, R2 = 0.988, while for
bare GC is Ip = 8.8 × 10−8 + 0.00265 × C, R2 = 0.968. As can be seen in this figure, the
EGr/GC electrode has a considerably higher sensitivity (0.0124 A/M) and lower detection
limit (1.81 × 10−6 M), in comparison with those of bare GC: 0.00264 A/M sensitivity and
9 × 10−6 M detection limit. The detection limit was obtained by dividing the limit of
determination (LOD) by 3.3.
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The selectivity of EGr/GC electrode towards Tyr oxidation was evaluated in the
presence of other biomolecules, such as ascorbic acid (AA), dopamine (DOP) and uric
acid (UA). In Figure 8 are presented the LSV curves recorded for a single analyte and for
their mixture (10−4 M each). In the case of a single analyte (ascorbic acid) the oxidation
signal appears as a very broad peak, at low potential (+0.16 V; red curve). The dopamine
peak is well defined and appears at higher potential (+0.22 V; blue curve) while uric acid
appears at +0.35 V (pink curve). When Tyr is mixed with all of these analytes (10−4 M
each), an increase of the capacitive current is observed but no changes are noticed for
the peak potential (see the olive curve in comparison with the brown curve). For the Tyr
peak intensity, a slight increase is observed, from 1.042 × 10−6 A (TYR- single analyte) to
1.129 × 10−6 A (mixture of TYR + AA + DOP + UA), indicating a weak influence of the
interfering species.
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Figure 8. LSVs recorded with EGr/GC electrode in pH7 PBS containing single analyte: 10−4 M
ascorbic acid (red curve); 10−4 M dopamine (blue curve); 10−4 M uric acid (pink curve); 10−4 M Tyr
(brown curve); and a mixture of all (AA + DOP + UA + TYR), 10−4 M each (olive curve); 10 mV/s
scanning rate.
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The EGr/GC electrode was also tested for Tyr detection using the standard addition
method (Figure 9). The peak current obtained from the LSV recordings was plotted versus
Tyr concentration, as can be seen in Figure 9, allowing us to determine Cx. In this case Cx
was found to be 0.985 × 10−5 M, giving an excellent recovery (98.5 %). In order to confirm
the results five standard addition measurements were performed and the recovery range
was between 98.5% and 103.1%, proving the efficiency of the EGr/GC electrode.
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Figure 9. The standard addition plot obtained for Tyr detection.

Several advantages of the employed electrode can be mentioned such as the simple
approach used for manufacturing the graphene-modified electrode, the very wide linear
range of L-Tyrosine with good sensitivity and detection limit, and the excellent recovery
results obtained with the standard addition method in spiked samples (Table 1).

Table 1. Comparison of EGr/GC with other modified electrodes employed for the determination of
Tyr.

Sensing
Material/Electrode Linear Range (M) DL (M) Sensitivity

A/M
Recovery

% Ref.

Nano-Au-/CA/GCE 10−7 M−3 × 10−4 4 × 10−8 - 99.9–102.4 [10]

GR/Au NPs/GCE 0.1–100 × 10−6 47 × 10−9 0.918 - [29]

GR/ZnO/SPE 10−6–8 × 10−4 3.4 × 10−7 0.016 97.5–103 [35]

ERGO/GCE 0.5–80 × 10−6 0.2 × −10−6 0.026 - [36]

PPy/FeCN-SPCE

0.5–27 × 10−6

8.20 × 10−8 1.46

99.92–103.97 [37]PPy/NP-SPCE 4.30 × 10−7 0.278

PPy/SDS-SPCE 3.51 × 10−7 0.341

Al-CuSe-NPs/SPCE 0.15–10 × 10−6 0.04 × 10−6 0.053 97.6–101 [38]

EGr/GC 6 × 10−6–10−3 1.81 × 10−6 0.0124 98.5–103.1 This work

In addition, it is important to mention that the graphene sample employed as electro-
catalyst has an excellent time stability. If stored in a closed recipient it can be used in
electrochemistry for over a year. As concerned the modified electrode, it shows an excellent
working sensitivity. More than 20 measurements were recorded with the same electrode
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and the signal was >95% of its original value. Between the measurements, the electrode was
kept in distilled water for 15 min to desorb the surface contaminants. The longtime stability
was also investigated over a 10 days period, indicating that the analytical performance of
the modified electrode has not significantly changed (signal > 95%), Figure S2.

4. Conclusions

A graphene sample was prepared by electrochemical exfoliation of graphite rods
in solution containing 0.1 M ammonia + 0.1 M ammonium thiocyanate. The porous
morphology of the sample was revealed by SEM technique while the structural param-
eters were determined from the XRD pattern. Hence, the average number (n) of layers
within the graphene crystallites, the inter-layer spacing (d), the mean crystallite size (D) of
graphene and the amount of GO, FLG, and MLG (expressed as %) were determined. In
addition, FTIR and UV-Vis complementarily characterized the sample indicating that the
sp2 configuration of carbon atoms is predominant within the synthesized material. The
graphene sample was used for glassy carbon surface modification (EGr/GC) and next
tested towards Tyr detection. By representing the peak current (Ip) versus Tyr concentra-
tion, the corresponding calibration plots were obtained. The linear regression equation for
EGr/GC electrode was: Ip = 1.88 × 10−7 + 0.0124 × C, R2 = 0.988, while for bare GC was
Ip = 8.8 × 10−8 + 0.00265 × C, R2 = 0.968. As expected, the EGr/GC electrode had higher
sensitivity (0.0124 A/M) and lower detection limit (1.81 × 10−6 M), in comparison with
those of bare GC: 0.00264 A/M sensitivity and 9 × 10−6 M detection limit.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22103606/s1, Figure S1. Equivalent electrical circuits employed
to fit the experimental results obtained with bare GC and graphene-modified electrode (a); Nyquist
plots obtained for bare GC (blue) and EGr/GC (red) electrodes in solution containing 1.0 mM
K4[Fe(CN)6] + 0.2 M KCl; applied potential: +0.25 V (b).; Figure S2. The longtime stability investigated
over a 10 days period with EGr/GC electrode (5 × 10−4 M Tyr in pH 7 PBS).
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