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Phasing analysis of lung cancer genomes using a
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Chromosomal backgrounds of cancerous mutations still remain elusive. Here, we conduct the

phasing analysis of non-small cell lung cancer specimens of 20 Japanese patients. By the

combinatory use of short and long read sequencing data, we obtain long phased blocks of

834 kb in N50 length with >99% concordance rate. By analyzing the obtained phasing

information, we reveal that several cancer genomes harbor regions in which mutations are

unevenly distributed to either of two haplotypes. Large-scale chromosomal rearrangement

events, which resemble chromothripsis events but have smaller scales, occur on only one

chromosome, and these events account for the observed biased distributions. Interestingly,

the events are characteristic of EGFR mutation-positive lung adenocarcinomas. Further

integration of long read epigenomic and transcriptomic data reveal that haploid chromo-

somes are not always at equivalent transcriptomic/epigenomic conditions. Distinct chro-

mosomal backgrounds are responsible for later cancerous aberrations in a haplotype-specific

manner.
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Large-scale cancer genome studies have revealed numerous
cancer-related mutations and identified key driver genes1.
Several relevant drug targets and biomarkers have been

identified, such as EGFR and BRAF 2–5. So far, most studies have
been conducted using short read sequencers. Therefore, our
current knowledge has been limited mainly to mutations that
occur in small-scale regions of genomes; the so-called single
nucleotide variants (SNVs) and short insertions and deletions
(indels).

Recently, larger genomic structural variants (SVs) have been
identified in the genomes of various cancer types. These SVs are
expected to have no less biological and clinical relevance. For
example, both the chromosomal inversion and translocation
generate oncogenic fusion genes, such as BCR-ABL6,
EML4-ALK 7, and KIF5B-RET 8. In tumor-suppressor genes, such
as TP53, RB1, and PTEN, large deletions frequently occur, thereby
inactivating the expression and functions of these genes9. The
Pan-Cancer Analysis of Whole Genomes Consortium has also
focused on large-scale genomic aberrations in addition to SNVs.
The consortium reported the SV signatures of 38 cancer
subtypes10. Despite the potential relevance of SVs, conventional
detection methods are based on short read sequencing data11 and
have limited validity toward the precise detection of SVs. In fact,
the conventional analytical methodology may infer the presence
of SVs but can only partially reveal their complete structures. To
achieve a more direct and precise detection of SVs, long read
sequencing should be employed for interrogating of various
aspects of cancer genomes.

For this purpose, experimental and bioinformatics procedures
for long read sequencing have recently recorded substantial
progress. Although the fidelity of existing long read sequencing
technologies remains ~90% for a single-pass read, several efforts
have been collectively made to improve sequence accuracy12. For
example, circular consensus sequencing has been developed as a
means to construct more accurate sequences with 99% identity in
the PacBio platform13. Recently, Oxford Nanopore Technologies
(ONT) have announced the release of Q20 chemistry and base-
calling system that enables single-pass sequencing with more than
99% accuracy. It is now realistic to use long read sequencers to
systematically analyze a wider range of cancerous mutations, such
as SNVs, relatively large-scale SVs and chromosomal-level rear-
rangements. In fact, several reports on the cancer genome long
read analysis have recently revealed that, occasionally, newly
discovered SVs demonstrate complex patterns of genomic
aberrations14–16.

Another unique advantage of employing long read sequencing
for cancer genome analysis lies in its potential to reveal chro-
mosomal contexts in which cancerous mutations are harbored16.
Long read sequences should directly represent a mutual rela-
tionship between two mutations detected in the same read at a
single-molecule level. This so-called “haplotype phasing analysis”
would shed more light on a particular event occurring in a cancer
type on either of the chromosomes of diploid genomes at a single
molecule and haplotype resolution17. Each haplotype may reside
in a distinct condition, which might be due to their differential
DNA methylation or other epigenomic statuses possibly caused
by the original lineage-specific regulations or other cancerous
aberrant regulations at later steps18. Therefore, the con-
sequentially occurring mutation patterns might serve as the
footprints of the cancer genome evolution and could contain
essential information for elucidating the causes and effects of
mutations in the same cancer genomes. It is possible that a better
understanding of such chromosomal contexts of cancerous
mutations will shed new light on cancerous events for patient
cases whose molecular etiology remains unknown from previous
short read sequencing and provide a novel therapeutic insight.

In this study, we conduct a phasing analysis of cancer genomes
combining short and long read sequencing technologies. We use
whole-genome sequencing (WGS) data obtained from Japanese
non-small cell lung cancer patients, where we identify a series of
complex SVs14. We have further enriched sequencing depths for
accurate phasing analysis and performed epigenome and tran-
scriptome analyses. As such, we reveal the cancerous mutations
from their chromosomal backgrounds’ perspective. Here, we
demonstrate that the obtained phasing results provide essential
information for understanding the history of mutations and their
possible causes.

Results
Phasing analysis of a lung cancer genome. We performed our
phasing analysis using the long and short read WGS data
obtained from 20 non-small cell lung cancer specimens of Japa-
nese patients. We constructed phased blocks using WhatsHap
(version 1.0), which assumes the number of haplotypes as two.
We used these data to elucidate the chromosomal backgrounds of
the somatic SVs and SNVs at a single-haplotype level (Fig. 1a). In
this section, we consider case S21 (having an L858R mutation in
the EGFR as a driver mutation) as an example. For analyzing
cancerous mutations, we first constructed the base phasing
information for their matched-normal counterpart genome as a
reference. We analyzed the whole-genome sequences of the
PromethION data (57 Gb; 19×) of “case S21 normal (S21-N).” A
bioinformatics scheme of the undertaken phasing analysis is
provided in Supplementary Fig. S1. A total of 8816 phased blocks
were generated with a median of 110-kb length; a length that is in
agreement with previous reports19,20. We subsequently examined
and found that the phased blocks harbored 1,880,725 hetero-
zygous single nucleotide polymorphisms (SNPs) (Fig. 1b and
Table 1). In total, 56% of the SNPs detected in this normal
genome were assigned to the obtained phase blocks.

Then, we performed a similar phasing analysis of the tumor
genome of “case S21 (S21-T).” The PromethION WGS data
(105 Gb; 35×) were similarly phased using the germline SNPs
detected in its normal genome. In total, 4300 phased blocks were
successfully constructed. The median and maximum lengths were
268 kb and 8.5 Mb, respectively (Fig. 1c). An example of the
performed tumor phasing analysis is presented in Fig. 1d.
Afterward, somatic mutations were associated with the con-
structed haplotype blocks.

Briefly, the tumor blocks were somewhat longer in cancer
genomes than in normal genomes. We considered that this
difference might be because the sequencing depth was greater in
the cancer genomes (35× and 19× for cancer and normal
genomes, respectively). To examine this possibility, we examined
the sequencing depth and phasing analysis results. Particularly,
we examined the degree of the successful haplotype phasing at
several sequencing depths (5×, 10×, 15×, 20×, 25×, 30×) and all
reads by random sampling of the sequence reads (Fig. 1e). We
found that the block length was unsaturated when using more
than a 25× depth of the sequencing data. Moreover, the number
of constructed blocks appeared to be saturated to around 5000
at a sequence depth of 20×–30×. Therefore, we considered that
a depth of at least 20× for the sequencing data may not be
perfect but should still be reasonable to start the tumor phasing
analysis.

To investigate whether the obtained phasing results were
sufficiently accurate, we evaluated the mutual relationship of the
obtained haplotype blocks of the two given SNPs. We first
compared the phased information on the tumor genome with
that on the normal counterpart, which was separately con-
structed. We assumed that most germline SNPs should yield the
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same association. The calculated discrepancy rates of the two
SNPs between the tumor and normal genomes, including their
switch and flip errors, appeared to be only 0.59%, which is a
reasonable value considering a previous report21 (Fig. 1f). We
further compared our phasing results with those obtained from
another study of a healthy Japanese cohort (Todai/Tokyo Health
Control: THC). We considered haplotype information on 836

haplotypes obtained from 418 healthy individuals, as identified
from the short read WGS data. The comparison showed that
98.7% of the SNP–SNP associations were consistent (Fig. 1g).
These results indicate that the obtained phasing information from
both tumor and normal genomes are reasonably precise and can
be used as references for performing further analyses of the
genomic mutations at the haplotype level.
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Phasing analysis of 20 cancer genomes. As shown for case S21,
we similarly analyzed the normal and tumor genomes for 20 non-
small cell lung cancers. An average of 9027 and 6536 phased
blocks were generated in the normal and tumor genomes,
respectively (Fig. 2a, b); the median N50 lengths of the phased
blocks were 665,168 and 1,002,105 bp, containing 1,848,079 and
1,850,441 heterozygous SNPs on average, respectively (Supple-
mentary Tables S1 and S2). Occasionally, short blocks, which
were supposed to derive from the lower sequencing depth, the
shorter read length, or both, were detected. To further inspect
these features, we assessed the association between the obtained
block lengths and sequencing depths or read lengths (Fig. 2c).
The sequencing depth roughly showed a positive correlation with
the phased block length (0.31 R2 value from the linear regression),
suggesting once again that sufficient sequencing depth is a crucial
factor for obtaining long phased blocks. However, we also noticed
that there were some cases for which the phased block lengths
were shorter despite their superior sequencing depth (indicated
by arrows in Fig. 2c). For example, the N50 read lengths of cases
S11-T, S14-T, and S16-T were, respectively, 6865, 11,385, and
5957 bp, which are shorter than the average (16,556 bp) despite
their sequencing depths being 39×, 38× and 34×, respectively,
which are deeper than the average (32×) (Supplementary
Tables S1 and S2). We further analyzed the association between
the lengths of individual reads and those of the constructed
phased blocks. A strong correlation was detected between them
(Fig. 2d; 0.55 R2 value from linear regression). We also confirmed
that copy number (CN) aberrations, which were supposed to
shorten blocks, did not affect block lengths (Supplementary
Fig. S2). These results indicated that the length of individual reads
should contribute more significantly to the resulting phasing
block than the sequencing depth.

Similar to case S21, we evaluated the precise generation of the
phased blocks for the other 19 cases. As shown in Supplementary
Table S3, we found that the discrepancy rates among the normal
and tumor genomes were very low (0.5–1.1%; 0.76% on average).
Compared with the THC dataset, 98.7% of the SNP–SNP

association was consistent in the 20 cases, on average (Supple-
mentary Table S4). Notably, the discrepant cases should include
the true haplotype diversities or the cancerous rearrangements of
the SNPs; thus, the real false rates should be even lower. Further,
we investigated whether the phased blocks of the tumor
specimens could comprehensively cover the genomic regions
(including the repetitive or “SNP-poor” regions). We found that
an average of 78% of the genomic regions contributed to the
phased blocks in all 20 cases. The remaining 22%, which could
not be covered by the phased blocks (low coverage regions), were
mostly from regions characterized by low heterozygous SNPs
(Fig. 2e).

To further validate the obtained phased blocks, we employed
the newly available PromethION Q20 platform, through which
the long read sequencing is expected to achieve an accuracy of
99% for a single read. We first confirmed that the sequence
fidelity reached 96% when using the Q20 platform via our
reference template analysis, “Human DNA HG002” (Supplemen-
tary Fig. S3 and Supplementary Table S5). Having observed the
initial successful sequencing analysis, we subsequently performed
the WGS analysis using the Q20 platform for S20-T. We
identified only 0.35–1.8% of inconsistent cases (Fig. 2f). We also
found that, although the sequence fidelity improved significantly,
this analysis had only a limited effect on the constructed phased
block lengths. An example of the obtained phasing results
comparing the current version and that of Q20 is presented in
Fig. 2g. Considering these results, the generated phase informa-
tion was sufficiently precise, although it started from sequencing
data with ~90% sequence identity to the current PromethION
platform.

Characterization of cancerous mutations. Before the biological
interpretation of data, we further minutely inspected the identi-
fied cancerous mutations. In each specimen, mutations of various
categories, such as SNVs and SVs, larger chromosomal rearran-
gements and CN aberrations, were identified. The constructed
catalog of these mutations from each specimen is summarized in
Supplementary Fig. S4. Overall, the results showed no obvious
discrepancy with those identified from the short read analysis (see
our previous study14 for details).

Overall, we could find that 43% of the point mutations were
mapped to either haplotype #1 (HP1) or haplotype #2 (HP2)
(38% on average; pale blue circles; Fig. 3a, see also Supplementary
Fig. S5). For four particular cases (S1, S15, S17, and S18),
the haplotype assignment was successful for less than 15% of
the mutations. These were also cases in which the average variant
allele frequencies (VAFs) were generally lower, suggesting
originally low cancer genome contents (Supplementary Fig. S5b).
The mutations of low VAFs were occasionally not covered
by sufficient read depth by the PromethION; thus, the
precise separation of their haplotypes may have been inhibited.
The tumor purity and heterogeneity of the tumor specimens

Fig. 1 Phasing results of the representative case, case S21. a An overview of the haplotype phasing analysis is as follows. Step 1: The SNP information was
obtained from the analysis using short read sequences of normal specimens. Step 2: This step was performed for normal and tumor specimens; long reads
were mapped to the reference genome, and phasing analysis was subsequently performed using the SNP information obtained in Step 1. Step 3: For tumor
specimens, cancer-specific mutations were detected and annotated with the haplotype information obtained in Step 2. The distributions of the number of
phased blocks in each block length (left panel) and the association of the number of heterozygous SNPs included in the blocks and block lengths (right
panel) of the normal (b) and tumor (c) genomes. d An example of tumor genome phasing in the CTNNB1 gene of case S21 bearing a somatic SNV. HP1 and
HP2 indicate haplotypes #1 and #2, respectively. e Association between the sequencing depths and the construction of phased blocks (N50 block length
and the number of blocks). f The number of discrepancies and discrepancy rates of phase information between the normal and tumor genomes in case S21.
The discrepancies include flip and switch errors. A flip error means that a SNP is assigned to the other haplotype. A switch error means a haplotype is
switched to the other haplotype at a SNP in the middle of a haplotype block. g Comparison of phase information with THC (upper panel: S21 normal, lower
panel: S21 tumor). Detailed descriptions of the mismatch sites are described in the provided tables.

Table 1 A summary of the phasing analysis performed on
case S21.

Normal Tumor

Sequencing
(PromethION)

Total yields (Gb) 57 105
Depth (×) 19 35
N50 read length (bp) 16,812 20,092

Phasing Number of blocks 8816 4300
N50 block
length (bp)

634,053 1,336,363

Number of
phased SNP

1,880,725 1,882,776

Coverage 0.79 0.86
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should also be considered crucial factors in ensuring
sufficient sequencing depth; the latter is particularly crucial
for assigning the cancerous mutations to the phased blocks. In
fact, when we considered the mutations having VAFs of 0.2 or
more, the total and average success rates of the assignment
improved to 71% and 50%, respectively (dark blue circles;
Fig. 3a).

We also validated the correct assignments of SVs. As a result,
up to 70% of SVs, except for the inversion type, were successfully
assigned to a single haplotype on phased blocks (Fig. 3b, also see
Supplementary Figs. S4 and S5). As for the inversions, only up to
30% were phased. However, most unphased inversions (1669 of
2241) originated from case S16 (a large cell neuroendocrine
carcinoma). The difficulty in phasing these inversions may lie in
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the block length’s shortness of case S16 (Fig. 2b), which has
probably harbored numerous inversion SVs.

Biological and clinical inferences of the haplotype context of
cancerous mutations. After a series of technical validations, we
attempted to elucidate the potential biological or clinical rele-
vance of the detected cancerous mutations against their haplotype
backgrounds. We just classified the somatic mutations into either
of the two maternal/paternal haplotypes using haplotype-tagged
reads. The relationship between somatic mutations with a dis-
tance longer than the reads were not analyzed (Supplementary
Fig. S6). We first focused on mutations detected by the repre-
sentative oncogenes and tumor-suppressor genes. Based on pre-
vious reports on non-small cell lung cancers, we selected eleven
oncogenes, nine tumor-suppressor genes, and seven chromatin-
remodeling and splicing-associated genes known to be frequently
mutated in lung cancers3. The mutation patterns and their phased
block information are illustrated in Fig. 3c.

In particular, the haplotype information about the mutations in
the EGFR gene could be almost completely resolved (except for
two indel cases) for all SNVs in all detected cases. For example, in
case S21, two mutations were detected (L858R and R776S of
EGFR), and both of them were mapped on the same haplotype in
the same phased block (Fig. 3d). Precisely, 12 reads covered both
mutations. All these reads represented either the wild-type or
double mutants (except for two error reads; Supplementary
Fig. S7a). Two possibilities were raised: either (i) these mutations
have been acquired almost simultaneously or (ii) the double-
mutant clones had somehow become more dominant than single
mutants during cancer evolution. The EGFR L858R mutation is
well-known as the most robust driver mutation, a reason it is
well-known as a target for the EGFR tyrosine kinase inhibitor
therapy. Moreover, there are a few reports describing the R776S
mutation22. The R776S mutation may be the first to be
introduced to the EGFR gene, and by providing a favorable
backdrop or gaining some time, the L858R mutation was acquired
as a result, leading to the strongest driver being those cells
carrying both mutations. Future analyses of a larger number of
cases could provide a relevant clue from the “predisposition” or
“accessory” mutations’ viewpoint, and might further elucidate the
history of cancer genomes as to how the most robust cancer
driver mutations may eventually prevail.

As an example of the phased SVs, case S14 harbored a large
deletion in the PTEN gene. When one haplotype harboring an SV
breakpoint in the PTEN gene (chr10:87,880,311) was designated
as HP2, essentially almost no reads were mapped on HP1 in this
same block (block#87809597). At the other end of the SV, the
breakpoint (chr10:87,916,683) was connected to the HP1 of a
different block (block#87913812) (Fig. 3e). We could detect three
independent reads that spanned both ends of this SV, thereby
connecting HP2 (block#87809597) to HP1 (block#87913812; see
Supplementary Fig. S7b for more details). These results suggested
that this gene region is a region of the loss of heterozygosity
(LOH); one being the deletion between HP2 and HP1, and the

other being the deletion of a wider region. In a wider view of
chromosome 10, the VAFs of the SNPs, which were heterozygous
in its normal genome, were confirmed to retain almost 100% of
the entire region (Supplementary Fig. S7c). These findings
indicate that the LOH occurred in the region having the PTEN
gene in the core, and the resultant mutant allele became
dominant. Biologically, PTEN has a tumor-suppressor function,
and its loss leads to the constant activation of the oncogenic
signaling in the PI3K/AKT pathway. Interestingly, in case S14,
another mutation, the PIK3CA E545K (which is a reported gain-
of-function type mutation for the PI3K/AKT pathway), was
detected (Supplementary Fig. S7d). Gene expression profiles,
which characterized each case and were associated with the PI3K/
AKT pathway, were confirmed by RNA-seq in case S14 for
validation (Supplementary Fig. S8). The VAFs of this mutation
were 18%, whereas the frequency of the PTEN loss was nearly
100%. Collectively, as for case S14, the genomic aberration of
PTEN and the occurrence of LOH may have initially driven its
carcinogenic process. During tumor progression, a yet additional
PIK3CAmutation might have been acquired, thereby realizing the
full activation of the PI3K/AKT pathway. The clonal structure of
this case was also verified using PyClone-VI (Supplementary
Fig. S9).

Moreover, for some cases, we could identify the occurrence
order of multiple mutations occurring in different genes located
in neighboring regions. In 20 cases, an average of 69 (0–649)
mutation pairs could be ordered, for which their presence or
absence was represented directly by individual long reads
(Supplementary Fig. S9a). As exemplified in Fig. 3f, the sequence
reads represented the presence or absence of the two mutations
C > A in the NKAIN4 3’UTR (chr20:63,240,923, VAF: 0.42) and
T > A in the BIRC7 exon 6 (chr20:63,239,424, VAF: 0.25), in this
order. We also validated the occurrence order of mutations by
performing clonal structure inference using short read data and
found that 44 mutation pairs were successfully assigned to
different clones (Supplementary Table S6). Association between
two mutations in the PDGFD intron of case S20 was shown as a
successful example (Supplementary Fig. S9, single-cell DNA
sequencing (scDNA-seq) was performed in two representative
cases to further validate the inferred clonal structures; Supple-
mentary Fig. S10 and Supplementary Table S7). However, a large
fraction of the mutation pairs were still mapped to the same
clones because the sequencing depths of the short read data were
insufficient to resolve minor clones with low VAFs. Long read
sequencing can more sensitively detect the occurrence of
mutations adjacent to each other. By further extending the
phased block length, we would eventually detect the order of
cancerous mutations, although most of them are merely
passenger mutations, and we would reconstruct the diverse
evolutional histories of individual cancers.

Characterization of transcriptional aberrations at a haplotype
level. We next tried identifying the potential regulatory muta-
tions, which, when present, should affect the aberrant

Fig. 2 Phasing results of the 20 cases. The number of phased blocks in the normal (a) and tumor (b) genomes of the examined 20 cases. Red lines
indicate the average numbers of phased blocks. Asterisks indicate the marked specimens in c and d. c Association between block lengths and depths.
Cases S3 normal, S11 tumor, S14 tumor, and S16 tumor are identified far from the regression line. The shaded area indicates 0.95 confidence interval.　
d Association between the block length and read length. The shaded area indicates 0.95 confidence interval. e Genome-wide distribution of the SNP
density with high (>0.75; upper panel) and low (<0.25; lower panel) coverage sites in a 1-Mb window in autosomal chromosomes. Red lines represent the
averages of the SNP density. f Representation of the number of discrepancies and the discrepancy rates of phase information on case S20 tumor between
the current R9.4 and Q20 PromethION platforms. g An example of phase information and an IGV image of the R9.4 and Q20 platforms of case S20,
including a somatic mutation in the ZBTB8A gene. Q20 reads have fewer sequence errors than the R9.4 reads, and represent the SNPs and somatic SNVs
precisely.
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transcriptions in cancers18. At the genomic level, 33,820 reg-
ulatory mutation candidates were located in either the promoter
or enhancer regions according to previous studies23, and they
were covered by the phased blocks in this study. Overall, an
average of 32% and 37% of such regulatory mutation candidates
resided in the promoter and enhancer regions, respectively, and
were assigned to either of the haplotypes (Supplementary

Fig. S11a). To examine the transcriptional consequences of the
mutations in each haplotype, we performed long read RNA
sequencing for six representative cancer specimens together with
their normal counterparts (cases S1, S3, S6, S8, S10, and S20), for
which high-quality RNA samples were available.

Based on the SNPs represented on the RNA-seq reads, the
haplotype origin of their transcripts was identified. When an
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RNA-seq read harbored multiple SNPs, they were also used for
comparison with the genomic haplotypes. The results of the
comparison showed that the phasing was consistent, thereby
confirming that the precise haplotype blocking is essentially
evident in all examined cases (see Supplementary Fig. S11b for
details). To assess the impact of A-to-I RNA editing for the
haplotype misassignment of RNA sequences, we counted overlaps
between the possible A-to-I RNA editing sites and A/G SNPs in
the haplotype-resolved regions by RNA-seq (Supplementary
Table S8). As a result, 0.22%–0.55% of A > G SNPs overlapped.
The result indicates that the impact of RNA editing is
insignificant.

From the RNA-seq data, an average of 718 genes (1185 SNPs)
were differentially expressed among the haplotypes (Supplemen-
tary Fig. S11c). Among these, 133 tumor-specific haplotype-
biased expressed genes (22 genes on average) were found to bare
regulatory mutations in the promoter or enhancer regions in four
cases; 115, 10, 7, and 1 genes with regulatory mutations were
identified from cases S3 (a so-called “hypermutator” case), S8,
S10, and S20, respectively (Supplementary Table S9). For the
detected genes, their gene expressions may have appeared to be
changed due to the detected regulatory mutations in each
haplotype. In an example of the CLN5 gene in case S10, a
promoter mutation was found in HP2 (Fig. 4a). This mutation
could strengthen binding potentials of the transcription factor
(TF), such as SNAI2, which is known to be one of the master
regulators of epithelial-mesenchymal transition (EMT)24, by
changing TF binding sites (TFBSs) (Supplementary Fig. S12
and Supplementary Table S10), which indicated that EMT-related
factors might regulate the CLN5 transcription instead of original
TF components in the mutant promoter. Moreover, uneven gene
expression was detected between HP1 and HP2 only in the tumor
specimens (Fig. 4b). Precisely, six phased SNPs in the exonic
region of this gene in the HP2 demonstrated substantially higher
transcription levels than HP1 in the same tumor specimen
(Supplementary Fig. S11d).

In an attempt to examine the epigenome statuses of these
genes, we performed a DNA methylation analysis for all 20 cases.
We used a bioinformatics program, Nanopolish, which is
frequently employed for this purpose25. DNA methylation
patterns were directly called from the raw electrograms of the
PromethION WGS reads. Each read was assigned to either of the
haplotypes using its harboring SNPs. An average of 32 haplotype-
biased expressed genes were found with differentially methylated
regions (DMRs) between HP1 and HP2 (Supplementary
Table S9). We refocused on the CLN5 gene of case S10 and
identified a DMR among haplotypes in the 12-kb upstream of the
gene (Fig. 4c). In HP2, where the promoter mutation was
detected and the mRNA was strongly transcribed when compared
with that of HP1, focal DNA hypomethylation was observed
(right panel, Fig. 4c). In this region, various TFBSs, such as EMT-
related factors, including SNAI2, could be bound so that the
hypomethylation of this region might cooperate with the

promoter mutation and upregulate the downstream CLN5 gene,
accompanied by the EMT factors (Supplementary Fig. S12 and
Supplementary Table S10). Collectively, these results demonstrate
that the integrative analysis of the phased genomic, epigenomic
and transcriptomic aberrations in cancer is possible and
could provide essential information on the regulatory mutations
that may exert inherently distinct effects on their residing
haplotypes.

While identifying and characterizing the potential regulatory
mutations, we noticed that the transcriptional aberrations
occurring in a haplotype-biased manner did not always contain
any obvious regulatory mutations. Obviously, the haplotype-
biased expressions are not only caused by the genomic point
mutations but also by other factors. We inspected the
differentially transcribed SNPs between the haplotypes and found
that 19% of the cases may be accounted for differences in the CN
aberrations (haplotype-specific CN gains or loss) between
haplotypes (Supplementary Figs. S11e and S11f). Nevertheless,
for a substantial fraction of the remaining cases, each haplotype
appeared to have significantly different epigenetic and transcrip-
tomic landscapes. We could detect an average of 68 phase blocks
differentially enriched with hypermethylated or hypomethylated
regions between the haplotypes (Fig. 4d). In an example, a phased
block (block#114040122) was identified baring five DMRs in case
S10 while the HP2 of this block was broadly hypomethylated
(Fig. 4e). Moreover, the transcription of the downstream CDC16
gene was upregulated in HP2 (Supplementary Fig. S11g). Such
aberrant methylation regions might have formed in a cancer
genome inherently, where the consequential transcription also
occurs. Each haploid genome may have a distinctive local context,
which may have been developed due to unique molecular events
in the past, and might provide unique molecular environments
for the occurrence of further aberrant events leading to lung
cancer in the future.

Chromosomal features of the phased mutations and inferring
the history of the lung cancer genomes. Assuming a potentially
haplotype-unique chromosomal background for each mutation,
we wondered whether the mutations distribute truly randomly
across the haplotypes. To address this issue, we tentatively
focused on the genomic regions in which these mutations are
particularly enriched and compared them to the overall mutation
rate of the corresponding cancer genome (100-kb windows;
Supplementary Fig. S13a). Among them, we further selected the
genomic regions in which the mutations were statistically sig-
nificantly biased to one of the haplotypes. We analyzed 834 of
such mutation-enriched regions from the phased block regions of
15 cases. No mutation-enriched block was detected in the other
five cases. The correlation between the number of mutation-
enriched blocks and the tumor mutation burden (TMB) was
evaluated (Spearman’s r= 0.78, p= 4.4e−5, Supplementary
Fig. S13b). The mutation-enriched blocks were undetected
probably due to the small number of mutations. However, the

Fig. 3 Information on the chromosomal background of somatic mutations. a Point mutations along with their haplotype information. The number of
SNVs, multiple nucleotide variants and indels that are assigned to either of the haplotypes is shown for all examined 20 cases. The proportion of haplotype-
resolved mutations is also represented in the graph. b The total number of SVs (left panel) and the ratio of SVs (right panel) are presented along with the
corresponding haplotype information. c Cancer-related genes with phasing status. Point mutations and SVs in the 27 representative cancer-related genes
are presented along with their corresponding phase information and block length. The legend and color key are provided in the margin. d Phasing of EGFR
mutations in case S21. The IGV visualization of the PromethION reads (upper panel) and phase information (lower panel) are provided for two somatic
mutations (R776S and L858R). Information on HP1 and HP2 are shown in red and blue, respectively. e Alignment patterns of long reads for each haplotype
around a PTEN deletion in case S14 (upper panel). The sequencing depths of each haplotype around the PTEN deletion (lower panel). HP1: haplotype #1,
HP2: haplotype #2, HPunk: haplotype unknown. f An example of multiple mutations of which the order of occurrence could be resolved by long read
sequencing. Source data are provided as a Source Data file for a and b.
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chromosomal events accompanying the mutation-enriched
blocks may have caused further mutational events, increasing
TMB. Among them, 190 regions (1–75 region(s) per case) were
identified to harbor more than 80% of the mutations pre-
ferentially in one of the haplotypes (designated as “haplotype-
biased” regions; Fig. 5a).

Interestingly, the ratio of the haplotype-biased regions was
found to be characteristically dependent on the cancer type or
histological subtype (Fig. 5b). For example, mutations in these
regions tended to be concentrated in one haplotype in typical
lung adenocarcinomas. Moreover, they were randomly distrib-
uted to both haplotypes in other types of non-small cell lung
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cancers. This feature was particularly significant for the so-called
“hypermutator phenotypes.”

We further speculated on the local mutation patterns;
particularly for the most relevant case S2, where 20 SNVs
demonstrated significant local enrichment (adjusted p= 5.0e−26;
Supplementary Fig. S13a). All 14 haplotype-resolved SNVs were
assigned to HP1 (block#116042803, 2.8 Mb in length; Fig. 5c).
These mutations had a predominant mutation pattern of a G > A
substitution, which corresponded to the APOBEC mutational
signature (SBS02; cosine similarity= 0.946; Fig. 5c)26. Moreover,
the overall mutation signature of this case demonstrated a mixed
pattern, which was distinct from the above local pattern (Fig. 5c).
This observation indicated that this genomic region was exposed
to a distinct mutational pressure from other regions. More
generally, we examined whether similar base substitution patterns
could be found in other regions. We found that the C > T/G > A
and C > G/G > C substitutions tend to be the dominant mutation
patterns in the mutation-enriched regions in a haplotype-biased
manner (Fig. 5d). We also found that such a characteristic is
unique to lung adenocarcinomas. In the other cancer types, the
mutation patterns were rather similar to the overall genomic
mutation patterns (Fig. 5d).

We similarly counted the SVs on the phased blocks and found
six cases in which blocks contained over five SVs (Supplementary
Fig. S13c). In these SV-concentrated phased blocks, most SVs
were unevenly distributed to one haplotype (Fig. 5e, f). The six
cases with the SV-concentrated phased blocks harbored a larger
number of inversions and duplications (p= 0.026 and 0.0016,
respectively; Wilcoxon rank-sum test, Supplementary Table S11).
The mechanisms of SV occurrence might differ among SV
types10,27,28, and inversion and duplication types would tend to
occur in a haplotype-specific manner compared with other SV
types. These results also indicate that the difference in the
characteristics between haplotypes is the reason for the
occurrence of different mutational events between haplotypes.

Chromothripsis-like event as a possible cause of haplotype-
biased SNV/SV. We further attempted to reveal the possible
cause of the observed biased mutation distributions. We focused
on case S20 in which both the mutations and SVs were particu-
larly enriched in one haplotype. In this case, all SVs and SNVs in
a large phased block (length: 3,746,985 bp) in chromosome 5 were
detected in HP1 (Fig. 6a). We further inspected this haplotype
block’s structure and identified a cluster of interleaved SVs and
CN oscillations (Fig. 6b). Both of these features are characteristics
of a phenomenon called “chromothripsis”29. In chromothripsis, a
large chromosomal region is damaged during an improper
chromosome separation during the cell division. To repair the
segmented chromosome, repair machinery is recruited to recover
the chromosome but does so after leaving some “errors.” The
interleaved SVs are caused by the random joining of fragments
after the chromosome shattering, and these fragments are
detected as overlapping regions bridged by their breakpoints29.

CN oscillation states indicate the regions with interspersed loss
and retention of heterozygosity during chromothripsis30.

Consistent with the previous knowledge of chromothripsis, the
expected accumulation of C > T and C > G mutations, which is
similar to that of the APOBEC signature, was observed at the
same region of the SV clusters in case S20 (Fig. 6c, d and
Supplementary Fig. S14). No other significant mutational
signature (cosine similarity >0.7) was detected. Importantly, the
APOBEC signature was reported to be frequently accompanied
by chromothripsis. APOBEC3B has been suggested to access the
single-stranded DNA in the intermediate process of chromo-
thripsis and cause a phenomenon called “kataegis”31,32. In this
case, we may be seeing traces of a chromosome-level genomic
crush event, which has only happened once during the cancer
history, rather than the accumulation of a series of individual
mutational events.

To further clarify the characteristic features of these regions, we
analyzed the DNA methylation status. We found that the HP1
region in which both SVs and SNVs were accumulated was left to
a significantly hypomethylated status compared to both the same
region of the HP2 and that of its matched-normal specimen
(Fig. 6e and Supplementary Fig. S15a). To further investigate the
transcriptional consequence of this hypomethylation, a phasing
analysis similar to the aforementioned one was performed. The
genes in the corresponding regions were generally transcribed
evenly from both alleles in the matched-normal control genome,
whereas almost all genes were transcribed solely from the HP1 of
the tumor specimens (Fig. 6f and Supplementary Fig. S15). We
could not further examine whether these hypomethylations and
active gene expressions are either the cause or consequence of
chromothripsis. However, at least, in this case, the other
chromosome was never found to be at a similar condition.

Characterization of the specimens having chromothripsis-like
events. Finally, to further investigate the possible large-scale
chromosomal events, we analyzed all examined cases. We could
detect similar traces of possible chromothripsis events from at
least five specimens, although the affected sizes of the genomic
regions varied. Interestingly, four of these cases were lung ade-
nocarcinoma cases, and all of them bared EGFR mutations
(L858R missense mutations and in-frame indels) as the driver
mutation (Fig. 7a). Except for the lung adenocarcinoma cases, one
particular case (case S16) was from a large cell neuroendocrine
carcinoma. Although specimens of lung squamous cell carcino-
mas generally demonstrated a larger number of SVs than those of
lung adenocarcinomas (Supplementary Fig. S4b), no obvious
trace of a possible chromothripsis event was detected. A rela-
tionship between chromothripsis and the EGFR driver mutation
in lung cancers has not been well-characterized. However, chro-
mothripsis events have frequently been detected in EGFR-
amplified glioblastoma specimens33. For lung cancers, lung ade-
nocarcinomas baring mutations in EGFR, KRAS, ERBB2, and
MET are reported to also host a higher number of
“rearrangements”34. Particularly for lung adenocarcinomas, a

Fig. 4 Haplotype-resolved transcriptional regulatory aberrations. a An example of the haplotype-resolved regulatory aberrations of the CLN5 gene in
case S10. A promoter SNV was detected in the promoter region of CLN5, and this mutation was located on HP2. The visualization of long read (phase
information) and short read (VAF of the mutation) sequencing is shown in IGV. b The expression pattern of CLN5 in long read RNA-seq is demonstrated by
IGV for tumor and normal datasets on the upper and lower panels, respectively. The reads were separated by each haplotype of block#76811331 where the
promoter SNV (shown in a) was located. c DNA methylation statuses of the upstream region of the CLN5 gene in case S10. A DMR between the haplotypes
was observed (black arrow, left). The promoter mutation (shown in a) is represented by a purple arrow. A zoom-in visualization of the DMR is also
presented (right). d The number of phased blocks with DMRs that were biasedly observed among the haplotypes. e An example of haplotype-resolved
differential DNA methylation. DMRs between haplotypes and DNA methylation patterns on long reads are provided in IGV for both tumor and normal
specimens for case S10. Source data are provided as a Source Data file for d.
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previous report showed that specimens with an EGFR driver
mutation tend to have CN alterations and genomic instability,
including whole-genome doubling, more frequently than other
lung cancer species35. To further characterize chromothripsis-
positive cases, we compared gene expression patterns with and
without chromothripsis events in the EGFR mutation-positive
cases. We found that pathways associated with inflammatory and

immune responses were upregulated in chromothripsis-negative
cases (Supplementary Fig. S16). We suggested that this immune
response might not be activated in chromothripsis-positive cases,
and tumor cells with chromothripsis-like events would not be
excluded. Immune escape ability in addition to the EGFR sig-
naling activation would be a crucial factor for the progression of
chromothriptic lung cancers.
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To further elaborate on the relevance of chromothripsis, we
examined the telomere length of each specimen. The telomere
shortening in the tumor cells is reported to cause dysfunctional
and unprotected telomeres, referred to as “telomere crisis.”
Telomere crisis yields end-to-end fused dicentric chromosomes
and cause genome instability and chromothripsis36. We estimated
the telomere length for each specimen using short read
sequencing data. We found that all identified possible chromo-
thripsis cases were presented with significant shortening of their
telomere lengths (Fig. 7b). These results further support the idea
that chromothripsis-like events occurred in our lung cancer
specimens. Because the aberrant activation of the EGFR pathway
might stimulate the telomerase activity37, the relationship
between chromothripsis and EGFR mutations in our specimens
might be further elucidated by future analyses in this direction.

Discussion
In this study, we demonstrated the phasing analysis of lung
cancer genomes by the combinatory use of short and long read
sequencing data. We generated a catalog of cancerous mutations
of various types (such as SNVs and SVs) at a haplotype level. We
found that the chromosomal backgrounds of the cancerous
mutations are a rich resource toward the understanding of the
biology of cancer genomes from various viewpoints. The tran-
scriptomic or epigenomic features of cancer genomes could be
better explained by also considering the chromosomal context of
the genes of interest. We illustrated that, in some cases, the cancer
genomes must have experienced large-scale aberrant events,
which might have shaped the current form of cancer genomes. It
is tempting to speculate that the large epigenomic and tran-
scriptomic disordered regions identified in Fig. 4d, e may cause
imperfect chromosomal aggregation or pairing at the cell division
phase, and they may serve as a repertoire for future catastrophic
events as indicated by Figs. 5–7.

Despite the initial success, we are aware that substantial tech-
nical developments are required to complete the long read cancer
genome analysis. To facilitate the resolution of aberrant genomic
events at a haplotype level, we reanalyzed our PromethON
sequences using WhatsHap, which is one of the mapping-based
phasing tools, assuming diploid genomes. We assigned somatic
mutations into two haplotypes according to the haplotype-tagged
PromethION reads. As cancer cells were heterogeneous because
the mutations had been accumulating in tumor tissues during
cancer evolution, an association between the mutations at a dis-
tance longer than reads by phasing analysis could not be guar-
anteed as actual phased events occurring in the same molecules.
To actually “phase” multiple mutations at a distance longer than
reads, which can be useful for analyzing cancer genomes, a single-
cell analysis will be needed. We performed scDNA-seq for only
two cases and were convinced that this combination analysis of
long read phasing analysis and single-cell analysis would open
further advanced fields for characterizing cancer genome evolu-
tions. Further, we occasionally need to employ manual inspec-
tions to remove remaining errors and avoid considering

questionable regions. It is well-established that a considerable
number of relevant events may occur in the aneuploidy regions of
cancer genomes. The development of better algorithms that can
systematically dissolve those regions should become a pressing
issue. To this end, a de novo assembly-based method might be
useful.

In experimental terms, technological developments have made
rapid progress. For example, we obtained the much-needed SNP
information using the Illumina short read data to complement
the error-prone reads obtained from ONT sequencers. However,
in the near future, we would perform a similar analysis solely
based on long read data, once more accurate long read sequen-
cing becomes possible. Easier and more cost-effective methods
that would overwhelm even the upcoming PromethION Q20
platform will be developed.

In this study, we focused on characterizing the kataegis and
chromothripsis regions in which SNVs and SVs were found to
aberrantly accumulate in a haplotype. Chromothripsis has
recently been highlighted as a critical event for tumorigenesis.
Extrachromosomal DNAs deriving from lost segments due to
chromothripsis can be unevenly distributed to daughter cells and
cause amplification38,39. This amplification contributes to
expressing drug resistance and developing tumor
malignancy40–42. Further, several driver fusion oncogenes of lung
adenocarcinoma are thought to be generated from
chromothripsis34. These reports indicate that the understanding
of the mechanisms and characteristics of chromothripsis could
clarify potential targets for cancer therapy.

When combining our data with the allele-specific methylation
status, we detected hypomethylation in a chromothripsis region.
The relationship between hypomethylation and genomic
instability has been suggested in previous studies43–45 but has not
been fully explored due to experimental limitations. Nanopore
sequencing technology can detect nucleotides and the methyla-
tion status on each read simultaneously. In addition, longer
haplotype information enables us to trace allele-specific events in
the tumor. These advantages of the technology will provide us
with in-depth insight into the tumor’s genomic alterations. At
this point, a novel challenge is emerging, eventually to reconstruct
the cancer genome at chromosome levels46. We believe that the
haplotype-resolved cancer genome sequencing will drive forward
a new field of cancer genomics and be of invaluable assistance to
researchers who use newer long read sequencing platforms.

Methods
Clinical specimens. This study was approved by the Institutional Review Board of
National Cancer Center, Japan and the Institutional Review Board of the University
of Tokyo, Japan. Frozen surgical specimens from 20 patients were utilized14. All
clinical specimens were obtained with the appropriate informed consent from the
patients in National Cancer Center, Japan. The patient consent was obtained in a
written form.

WGS using PromethION. The sequencing data used in this study were obtained
from the previous report JGAS000065 (JGAD000252 and JGAD000253)14. We also
obtained additional sequencing data of DNA samples to achieve sufficient

Fig. 5 Haplotype-biased mutation occurrences of lung cancer genomes. a The number of phased blocks with an imbalance of point mutation occurrences
between two haplotypes. The cases are ordered according to the proportion of the haplotype-biased regions of mutation occurrence. LUAD lung
adenocarcinoma. b Comparison of the ratio of the haplotype-biased regions between LUAD and others. The p value was calculated by Wilcoxon rank sum
test (two-sided, no multiple comparison adjustments). c A phased block with biased SNV occurrence as identified in case S2 (upper panel) and the
mutational pattern of both the enriched and haplotype-biased mutations (lower panel). The mutation-enriched window is highlighted with a green-dashed
line. d The mutational patterns of the enriched and haplotype-biased mutations compared with those of all mutations in LUAD and other hypermutator and
non-LUAD cases. The number of mutations in each dataset is provided in the inset. e Association between the number of phased blocks containing three or
more SVs and the maximum proportion of SVs occurring on one haplotype. f A phased block with biased SV occurrence in case S2. SV-supporting reads on
this phased block were unevenly distributed to HP1. Source data are provided as a Source Data file for a–e.
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sequencing depths, obtain appropriate phase information and conduct saturation
analysis. Library preparation was conducted for 1D sequencing (SQK-LSK109 and
SQK-LSK110, ONT), and sequencing analysis was performed according to the
manufacturer’s instructions.

For data acquisition using the PromethION Q20 platform, high molecular DNA
samples of lung cancers obtained in the previous study were employed for the
library preparation using the Q20 Early Access Kit (SQK-Q20EA, ONT) according
to the manufacturer’s instructions. Sequencing was performed by using
PromethION with FLO-PRO111 flow cells (R10.3 version, ONT). Healthy human
DNA sample HG002 (NA24385, Coriell Institute) was also sequenced for quality
control.

RNA-seq. Total RNA was extracted from the frozen tissues using the TRIzol
Reagent (Invitrogen). The RNA samples that yielded an RNA integrity number
(RIN) > 6 in both tumor and normal specimens were used for constructing long
and short read RNA-seq libraries. The RNA samples with RIN > 6 in only tumor
samples were additionally used for short read RNA-seq analysis. The RIN values
were measured by a Bioanalyzer (Agilent Technologies). Using the obtained RNA
samples, full-length cDNA (FL-cDNA) amplicons were generated using the
SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing (634897, Takara Bio)47.

For long read RNA-seq analysis, 1D sequencing libraries were prepared from
FL-cDNA amplicons using the Ligation Sequencing Kit (SQK-LSK109, ONT).
Sequencing was performed using PromethION (FLO-PRO002, ONT) according to
the manufacturer’s instructions.

For generating short read RNA-seq data, the library preparation was performed
using a Nextera XT DNA Library Preparation Kit (FC-131-1096, Illumina) from
the generated FL-cDNA amplicons. Sequencing with 150-bp paired ends was
conducted using the NovaSeq 6000 (Illumina).

scDNA-seq. Individual single nuclei were extracted from frozen tumor tissues of
cases S8 and S20 according to the manufacturer’s demonstrated protocol “Isolation
of Nuclei for Single Cell DNA Sequencing” (CG000167, Rev A, 10× Genomics).
Library preparation of scDNA-seq was performed using Chromium Single Cell
DNA Reagent Kits (10× Genomics) according to the instruction (CG000153, Rev
C, 10× Genomics). The target cell recovery was set to 500 cells for each sample.
Sequencing was conducted using NovaSeq 6000 with 150-bp paired-end reads
(Illumina).

Phasing analysis. Phasing information on tumor and normal genomes was
obtained in four steps: (1) short read WGS data (151 bp paired-end reads) of
normal specimens were trimmed of their adapters and filtered using fastp (version
0.21.0)48; subsequently, their reads were mapped to the human reference genome
hg38 using BWA-MEM (version 0.7.17)49; following their mapping, reads were
sorted and PCR duplicates were marked using SAMtools (version 1.9)50,51. (2) The
Genome Analysis Toolkit (GATK) HaplotypeCaller (version 4.1.7.0)52,53 was used
for detecting germline variants with a base quality and a variant quality score
recalibration; after variant calling, variation sites with a “PASS” filter flag were
extracted using BCFtools (version 1.9)54, whereas SNPs were only used for further
phasing analysis, (3) PromethION long read sequencing data from both tumor and
normal genomes were mapped to hg38 using Minimap2 (version 2.17) with the
“-ax map-ont” option55; the mapped reads were sorted and merged using SAM-
tools. (4) Phasing analysis was performed using the generated SNP Variant Call
Format (VCF) files and the long read Binary Alignment Map (BAM) files of each
sample by WhatsHap phase with the “--ignore-read-groups” option (version 1.0)21,
then SNP VCF files with phasing information were created; for visualization, a long
read BAM file with tagged reads by haplotype was generated using the WhatsHap
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haplotag. The detailed procedures of the cancer genome phasing are described
in Supplementary Methods.

Switch/flip errors between the two datasets (tumor versus normal, current
version versus Q20 version) were calculated using WhatsHap compare. The
calculation was performed on each chromosome.

Comparison of haplotype information with THC data. Specimens of the THC
dataset were collected from 418 healthy donors. WGS was conducted using the
HiSeq X platform. Subsequently, sequenced data were mapped to the human
reference genome hg38 using BWA-MEM (version 0.7.17). SNPs and short indels
were called by GATK HaplotypeCaller (version 5.1), followed by joint calling. Joint
calling was performed by the gVCFtyper program of the Sentieon package. Variant
filtering was conducted using Variant Quality Score Recalibration by GATK. After
filtering and quality control, the haplotype phasing was performed by BEAGLE
(version 4.1)56,57. All singleton variants were omitted from the phasing.

Then, we compared the THC dataset with the phasing results obtained from our
lung cancer datasets. We considered the two continuous phased heterozygous SNPs
because the THC dataset provided one phased block by each chromosome, whereas
our long read sequencing datasets provided several phased blocks in each
chromosome. The latter is because, in the long read sequencing datasets, the
assigned allele numbers were not meaningful when phase blocks differed.
Considering this, we calculated the concordance between the THC dataset and our
lung cancer datasets by focusing on the continuous phased heterozygous SNPs.

Identification of somatic point mutations and their haplotype information.
Short read WGS data were mapped onto the human reference genome hg38 using
BWA-MEM (version 0.7.17). Mapped reads were sorted and indexed by SAMtools
(version 1.9), and duplicates were removed using Picard MarkDuplicates. Somatic
SNVs and short indels were detected using GATK Mutect2 and FilterMutectCalls
(version 4.1.3.0). The detected mutations were annotated using ANNOVAR (ver-
sion 2018Apr16)58. For the regulatory mutation analysis, point mutations located
on the promoters (±1.5 kb from RefSeq transcriptional start sites) and enhancers
(H3K27ac/H3K4me1-marked regions defined in the previous studies9,23) were
extracted. Mutations with the annotations of “exonic,” “5UTR,” or “3UTR” were
excluded from the regulatory mutations.

For assigning haplotype information to somatic mutations, the SAMtools
(version 1.12) mpileup function was used to extract base information from the
haplotype-tagged PromethION reads in each mutation position. A haplotype tag
(HP1 or HP2) was, respectively, assigned to each mutation when three or more
mutant reads were assigned to the one haplotype and zero or one mutant read was
assigned to the other.

Identification of somatic SVs and their haplotype information. Somatic SVs
were detected from long read WGS data of tumor and normal genomes using
Nanomonsv (version 0.1.2)59 with default parameters. We filtered and classified the
detected SVs using scripts provided on the Github page (https://github.com/
friend1ws/nanomonsv). For the SV phasing, we selected and used SVs on chr1-22.
Supporting reads for each SV were extracted and annotated using the haplotype tag
in the WhatsHap results. Because WhatsHap calculates haplotypes only for pri-
mary alignment, the phased SNPs on the supplementary alignment reads sup-
porting these SV were manually counted using the SAMtools (version 1.7) mpileup
function. Then, we extracted the reads with ≥2 SNPs and a ratio of the number of
SNPs for HP1 and HP2 ≥ 0.7 as a “phased read.” We defined those that were
supported with ≥3 phased reads and the ratio of the number of reads for HP1 and
HP2 ≥ 0.7 as “phased SVs.” Detailed information on the haplotype assignment of
somatic SVs is described in Supplementary Methods and Supplementary Fig. S17.

Estimation of clonal structures using short read WGS data. PyClone-VI
(version 0.1.1)60 was used to estimate the number of clones and clonal architectures
based on VAFs of somatic mutations from the results of GATK Mutect2. As
recommended by the previous report61, CN profiles and tumor purity were cal-
culated by FACETS (version 0.6.2)62 with the parameter cval= 400 of the proc-
Sample function as input of PyClone-VI. For male specimens, minor CNs of
chromosome X were set to zero. When the NA value was calculated as tumor
purity, half of the average of VAFs was set instead. Clone structures were inferred
from the results of PyClone-IV using ClonEvol (version 0.99.11)63.

Clustering analysis and visualization of scDNA-seq data. scDNA-seq data were
analyzed using Cell Ranger DNA (v1.1, 10× Genomics) and Loupe scDNA Browser
(v1.1, 10× Genomics). Noisy cells, which were defined by Cell Ranger DNA, were
discarded before further analyses. The CN profiles of 20-kb windows were
extracted from the results of Cell Ranger DNA. Clustering analysis of cells was
performed using the Manhattan distance via the complete linkage method. Heat-
map visualization was performed using the R package pheatmap (version 1.0.12).

Reads with the point mutations were extracted from the BAM file of Cell
Ranger DNA using SAMtools mpileup with the parameters as follows: the
minimum base quality value was set to 20; the minimum mapping quality value
was set to 60; the secondary, supplementary, and duplicate reads were discarded.

To extract scDNA-seq reads covering the SV junctions, primary soft-clipped
reads and their supplementary alignments, which covered positions within ±100 bp
of both junctions, were extracted from the BAM file of Cell Ranger DNA using
SAMtools. For extracting junction reads of deletion, duplication and inversion
types, we also checked strand information. Mutant cells were defined according to
the cell barcode tag of the SV junction reads.

DNA methylation analysis. CpG methylation sites were called from fast5 data,
and we calculated their methylation frequency using nanopolish (version
0.13.2)25,64 under the settings as shown in Supplementary Methods. Using the
haplotype-tagged PromethION reads from “WhatsHap haplotag,” we classified the
reads into two haplotypes and calculated the methylation frequencies in each
haplotype category using the given script in nanopolish. We converted the BAM
file by nanopore-methylation-utilities65 for visualization in the Integrative Geno-
mics Viewer (IGV)66 (version 2.8.9 and 2.11.9) via the bisulfite mode using
nanopolish results. The methylation frequency for the region covered with ≥3 reads
was visualized as a heatmap in IGV. DMRs between the haplotypes were detected
by metilene (v.0.2-8)67. We defined the blocks satisfying the following conditions as
“phase blocks with DMR bias.” (i) The maximum number of DMRs in the same
direction being ≥3. (ii) The ratio of (i) for total DMRs being ≥0.7. (iii) The number
of (i) per megabase (Mb) being ≥3. To accurately count (i), we excluded the DMRs
that overlapped with other DMRs in the matched-normal specimen over 20% of
the region. Detailed information on the haplotype-specific methylation analysis is
presented in Supplementary Methods and Supplementary Fig. S17.

Transcriptome analysis. For long read RNA-seq analysis, FL-cDNA-seq data (1D
reads) from PromethION were aligned to the human reference genome hg38 using
Minimap2 (version 2.2.17) with the “-ax splice” option. Filtering for low-quality
reads and eliminating pseudogene mapping68 were performed using the parameters
as described the Supplementary Methods. Similar to the SV phasing procedure, we
counted the phased SNPs on the reads using the SAMtools (version 1.7) mpileup
function. The reads with ≥2 SNPs and a ratio of the number of SNPs for HP1 and
HP2 ≥ 0.7 were defined as “phased reads.”

For short read RNA-seq analysis, paired-end reads obtained from the NovaSeq
6000 (Illumina) were aligned to the human reference genome hg38 using STAR
(version 2.7.5c). Sequencing depths and tag densities (PPM, parts per million
reads) of each haplotype were extracted using SAMtools (version 1.12) mpileup for
haplotype-tagged SNP positions of exonic regions.

For gene expression analysis, short read RNA-seq data were mapped to the
reference genome hg38 using STAR (version 2.7.5c) after conducting adapter
trimming by fastp (version 0.23.2)48 and removing ribosomal RNA sequences by
Bowtie 2 (version 2.3.4.3)69. Gene expression levels (count and RPKM, reads per
kilobase of exon per million mapped reads) were calculated using featureCounts
(version 2.0.2)70. Differentially expressed genes (DEGs) were extracted using
DESeq2 (version 1.32.0)71. Each parameter of DESeq2 analyses was provided in the
corresponding figure legend. Gene enrichment analysis of the DEGs was conducted
using Metascape (release 3.5)72.

Identification of potential TFBSs in regulatory regions. To identify TFBS can-
didates potentially bound to mutant/wild-type sequences of the CLN5 promoter,
we scanned TFBSs registered at the JASPAR database (JASPAR2020, version
0.99.10)73 at ±10-bp regions from the mutation (chr13:76990951, G > C) using the
searchSeq function (min.score= 80%) of TFBSTools (version 1.30.0)74. The
parameter of JASPAR2020 was set as follows—“species”: 9606, “all_versions”:
TRUE, “collection”: CORE, “tax_group”: vertebrates, and “matrixtype”: PWM. The
candidates were further extracted with a p value (sampling) < 0.001 on either
mutant or wild-type sequences.

For the DMR upstream of the CLN5 gene (chr13:76979577-76979862), putative
TFBSs were also searched similarly. We also checked “JASPAR Transcription
Factors” at the UCSC Genome Browser (GRCh38/hg38)75 to represent the
distribution of TFBSs.

Detection of chromothripsis. Somatic CN variants (CNVs) were detected using
short read WGS datasets through Control-FREEC (version 11.6)76,77 with the fol-
lowing parameters: ploidy= 2, window= 5000, and minimalSubclonePresence= 20.
We clustered the interleaved SVs using bedtools (version 2.27.1) and counted the
number of oscillating CN states in the cluster.

After considering the previous reports29,78, we defined those satisfying the
following conditions as “chromothripsis” regions. (i) The number of SVs in the
cluster being ≥10. (ii) The number of oscillating CN segments in the cluster
between two CN states being ≥4 or among three CN states being ≥6. (iii) The
number of SVs per Mb in the cluster being ≥0.2. (iv) The number of CNV states
per Mb in the cluster being ≥0.2. SV cluster and CN states in the chromothripsis
region were visualized using ShatterSeek (version 0.4)29.

Estimation of telomere length. We used short read WGS data for estimating the
telomere length using Telomerecat (version 3.4.0) with default parameters79.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data of clinical specimens including long read WGS, scDNA-seq and RNA-seq data
generated in this study have been deposited in the Japanese Genotype-Phenotype
Archive (JGA, http://trace.ddbj.nig.ac.jp/jga), which is hosted by the National Bioscience
Database Center (NBDC) and the DDBJ under the accession number JGAS000349. These
data are available under restricted access due to ethical restriction. Details of the
procedure and the restriction for the data access are described in the home page of the
JGA database [https://humandbs.biosciencedbc.jp/en/data-use]. The sequencing data of
HG002 was deposited to DDBJ under the accession number DRA012759. The
sequencing data including short and long read WGS obtained in the previous study of
ours JGAS000065 (JGAD000252 and JGAD000253)14 was also used in this study, which
are available under restricted access due to ethical restriction. The human reference
genome hg38 was downloaded from the UCSC Genome Browser (https://hgdownload.
soe.ucsc.edu/downloads.html). Source data of the figures are provided with this paper.
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