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Abstract

Longitudinal data is commonly analysed to inform prevention policies for diseases that may

develop throughout life. Commonly methods interpret the longitudinal data as a series of dis-

crete measurements or as continuous patterns. Some of the latter methods condition on the

outcome, aiming to capture ‘average’ patterns within outcome groups, while others capture

individual-level pattern features before relating these to the outcome. Conditioning on the

outcome may prevent meaningful interpretation. Repeated measurements of a longitudinal

exposure (weight) and later outcome (glycated haemoglobin levels) were simulated to

match three scenarios: one with no causal relationship between growth rate and glycated

haemoglobin; two with a positive causal effect of growth rate on glycated haemoglobin. Two

methods that condition on the outcome and one that did not were applied to the data in 1000

simulations. The interpretation of the two-step method matched the simulation in all causal

scenarios, but that of the methods conditioning on the outcome did not. Methods that condi-

tion on the outcome do not accurately represent a causal relationship between a longitudinal

pattern and outcome. Researchers considering longitudinal data should carefully determine

if they wish to analyse longitudinal data as a series of discrete time points or by extracting

pattern features.

Introduction

Lifecourse data comprise longitudinal data (repeated measurements) that span some or all of

life. Analyses of lifecourse data are popular for informing preventative policies to improve

population health and wellbeing [1]. For example, temporal patterns of growth (recorded in

repeated measures of weight) throughout childhood might be related to risk of type-2 diabetes

by age 40 years to target preventative measures at those with certain ‘high risk patterns’. To do

this effectively, results from analyses must truly reflect a relationship between patterns of

growth and diabetes. This may not be the case for some commonly used lifecourse methods.
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Repeated measurements of a longitudinal exposure, such as weight throughout infancy, are

usually correlated with each other, a phenomenon known as autocorrelation [2]. Therefore,

they do not satisfy the requirement for independence of observations needed for many com-

mon statistical analyses [3]. Methods for capturing and analysing longitudinal exposures typi-

cally aim to describe how different patterns of the exposure (e.g. rate of adolescent weight

growth) relate to the outcome. Alternatively, some methods aim to identify specific times or

‘critical periods’ during which the (causal) effect of the exposure is especially strong, or esti-

mate the cumulative effect over multiple exposure times [4, 5].

Generalised methods (g-methods), such as marginal structural models, and methods that

explicitly examine “lifecourse hypotheses” offer the most obvious solution to achieving these

objectives, given their theoretical foundation within an explicit causal framework [4, 5]. G-

methods are however very rarely utilised in applied research, perhaps due to perceived com-

plexity [6]. Simpler and more common methods are less likely to incorporate causal thinking;

focussing instead on estimating non-causal associations that are consequently less useful for

informing policies and interventions [7, 8].

With the aid of simulations, this paper explains how lack of causal thinking in analyses of

longitudinal exposures in relation with later-life outcomes can lead to interpretational biases.

Methods that can lead to these biases are compared to an alternative approach that avoids

them. This alternative method, however, is not suitable for all situations; other methods, such

as g-methods, would be necessary in the presence of time-varying confounding, which is not

examined in this paper.

Methods

Data were simulated to represent the illustrative example of weight measured yearly from birth

until age 2 years (the exposure) and diabetes diagnosed at age 40 years (the outcome) from per-

centage glycated haemoglobin (HbA1c) [9]. This is analogous to routinely-collected health

data or data from birth cohorts. Three illustrative scenarios with different causal structures

were simulated matching the directed acyclic graphs in Fig 1. Each arrow specifies a direct

causal relationship between variables. The absence of an arrow means there is no direct causal

relationship, but there may still be a correlation. In Scenario A, birthweight causes HbA1c and

there is no causal effect of growth rate on HbA1c. In Scenario B weight1 directly causes HbA1c

and growth rate indirectly causes HbA1c through weight1. In Scenario C weight2 directly

causes HbA1c and growth rate indirectly causes HbA1c through weight2. For ease of illustra-

tion, confounding (by e.g. genetics or in utero nutrition) was represented by a single unmea-

sured common cause of birthweight and growth (U).

1000 datasets comprising 1000 observations were simulated using R 3.4.3; exceeding the

number required to achieve >99% accuracy for the parameters of interest [10]. Simulation

code is available in the S1 Appendix. Each directed acyclic graph was converted into a covari-

ance matrix of the weight and HbA1c variables using the parameters in Table 1 and standard-

ised path coefficients in Fig 1. Data were simulated with multivariate normal distributions.

Linear growth was simulated for ease of interpretation. HbA1c was dichotomised into a

binary variable at the National Institute for Health and Care Excellence threshold for diagnos-

ing type-2 diabetes (HbA1c > 6.5%) [11]. The mean and standard deviation (SD) of simulated

weight values, along with the correlation of each weight measure with HbA1c, were averaged

across all simulations with 2.5th and 97.5th centiles depicting empirical 95% confidence inter-

vals (CIs).

Data were analysed using three methods: Z-score plots, multilevel models (outcome as

covariate), and multilevel models (two-step). Z-score plots are a simple, graphical approach
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that aims to identify exposure patterns that lead to an outcome [9, 12]. Weight at each age was

standardised into z-scores using the time-specific sample mean and SD [11]. The mean z-

scores in those who did and did not develop diabetes were then plotted at each age and con-

nected. Z-score plots are often viewed and interpreted as ‘patterns’ of weight that ‘lead to’ the

outcome [13]. The plots presented show mean values from all simulations, with 2.5th and

97.5th centiles depicting empirical 95% CIs.

The multilevel model (outcome as covariate) analysis involved fitting multi-level models of

weight over time, with covariates for age, diabetes status, and an age-diabetes interaction term,

Fig 1. Directed acyclic graph showing the structure of causal relationships between variables in simulated

scenarios A, B and C. Growth represents the growth rate of an individual and is not simulated or measured in the

scenario. U is an unknown and unmeasured variable. The age in years at which known variables are measured is

shown in subscript. Arrows show the direction of causal relationships and numbers attached to these arrows show the

correlations induced by them.

https://doi.org/10.1371/journal.pone.0225217.g001

Table 1. Parameters of latent variables and error terms used to simulate data in section 3.

Variable Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c (%)

Mean 4 8 12 5.8

Standard deviation 2 2 2 1

The path diagram used to generate observed variables from these is shown in Fig 1.

https://doi.org/10.1371/journal.pone.0225217.t001
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defined by the following equations (where i indexes observations and j individuals):

weightij ¼ b0j þ b1timeij þ b2diabetesj þ b3timeij � diabetesj þ εij

b0 ¼ g0 þ u0j

b1 ¼ g1 þ u1j

var
u0j
u1j ¼

s2
u0

su01

su01 s2
u1

 !

ð1Þ

Intercept and age coefficients were free to vary randomly between individuals. Age was cen-

tred at one year [14, 15]. A first-order autocorrelated error structure was specified to account

for the effect of each weight measure on the subsequent. Multilevel models like this are typi-

cally interpreted from the coefficient of the interaction term; for example, a positive interac-

tion between diabetes and time would be interpreted as meaning that an increased growth rate

leads to diabetes. Coefficients for these interaction terms were recorded over the 1000 simula-

tions to obtain a median and empirical 95% CIs.

The multilevel model (two-step) approach involved fitting two models, defined by the fol-

lowing equations (where i indexes observations and j individuals):

weightij ¼ b0j þ b1timeij þ εij

b0 ¼ g0 þ u0j

b1 ¼ g1 þ u1j

var
u0j

u1j

 !

¼
s2
u0

su01

su01 s2
u1

 !

ð2:1Þ

log
PðdiabetesÞ

1 � PðdiabetesÞ

� �

¼ b3b1 þ ε

ε � Nð0; s2

εÞ ð2:2Þ

The first (Eq 2.1) was a multilevel model of weight by age, with a first order autocorrelated

error structure, to estimate growth as depicted in each directed acyclic graph in Fig 1. The

intercept and age coefficients were permitted to vary randomly across individuals and age was

centred. The individual-level age coefficients were recorded, representing individuals’ growth

rates. In the second step (Eq 2.2), a logistic regression model was fitted with diabetes as the out-

come, the age coefficient (growth rate) as the exposure, and a birthweight covariate to condi-

tion for its confounding influence [16]. The exponentiated model coefficients represent the

change in odds of developing diabetes for each increase of 0.1kg/year (selected due to the small

growth rate). Coefficients greater than one suggest that higher growth rates lead to diabetes.

Coefficient point estimates for the growth rate exposure were recorded to obtain a median and

empirical 95% CI from the 2.5th and 97.5th centiles over the 1000 simulations. All multilevel

models were fitted using R package ‘nlme’ [17].
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Any errors from the multilevel model (outcome as covariate) and multilevel model (two-

step), such as failure to converge, were recorded, and the estimates from these datasets were

discarded.

Results

One dataset for each of scenarios A and B, and 20 datasets in scenario C were discarded due to

models failing to converge. The mean and SD of weight at each time, averaged across all

remaining simulations for each scenario are shown in Tables 2, 3 and 4, along with mean cor-

relations of each weight measure with HbA1c. In scenario A, there was a large positive correla-

tion at birth, decreasing to a small positive correlation at age 1, and a small negative

correlation at age 2. In scenario B, there was a near-zero correlation at birth, increasing to a

large positive correlation at age 1, and decreasing to a small positive correlation at age 2. In sce-

nario C, there is a small negative correlation at birth, increasing to a small positive correlation

at age 1, and a large positive correlation at age 2.

The z-score plots for each scenario are shown in Fig 2. In scenario A, the diabetic group has

a much higher weight at birth and the points on the graph are far apart, and far from the over-

all mean (zero). The points converge over time until they meet, cross and begin to diverge

between age 1 and 2 years. By age 2, the diabetic group have a lower mean weight z-score than

the non-diabetic group. In scenario B, the points are close to the overall mean at birth, diverg-

ing substantially at age 1, before converging back towards the mean at age 2; the diabetic

group always has a higher mean weight z-score than the non-diabetic group. In scenario C, the

diabetic group starts with a slightly lower birthweight than the non-diabetic group, but the z-

score increases over time, while the non-diabetic group decreases, leading to a large difference

at age 2.

Results from the multilevel models (outcome as covariate) are in Table 5 and Fig 3, which

show the model-fitted regression lines and true mean weight values for the diabetic and non-

diabetic groups at each time point. The model values do not always fit well with the mean val-

ues (see especially scenario B in Fig 3B) because the models were constrained to linearity

(because growth was simulated to be linear for simplicity), but the mean values in each

Table 2. Summary of simulated variables in scenario A.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 4.003 3.879, 4.129 8.003 7.889, 8.133 11.997 11.863, 12.117 5.800 5.737, 5.862

SD 2.000 1.910, 2.093 1.998 1.910, 2.090 2.000 1.911, 2.092 0.999 0.955, 1.043

Correlation with HbA1c 0.699 0.664, 0.729 0.029 -0.033, 0.091 -0.105 -0.167, -0.044 1

95%CI represents 95% empirical confidence intervals.

https://doi.org/10.1371/journal.pone.0225217.t002

Table 3. Summary of simulated variables in scenario B.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 4.001 3.870, 4.124 7.999 7.876, 8.127 11.997 11.885, 12.118 5.801 5.741, 5.859

SD 2.000 1.912, 2.088 2.000 1.917, 2.084 1.999 1.915, 2.09 1.000 0.956, 1.044

Correlation with HbA1c 0.027 -0.034, 0.088 0.699 0.666, 0.731 0.229 0.169, 0.283 1

95%CI represents 95% empirical confidence intervals.

https://doi.org/10.1371/journal.pone.0225217.t003
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outcome group change nonlinearly. In all scenarios, the coefficient of age is positive, confirm-

ing that weight increases from birth to age 2. For scenario A, the negative age-diabetes interac-

tion term and shallower slope of increasing weight in the diabetes group (Fig 3A) suggests that

those who developed diabetes grew slightly slower than those who did not develop diabetes. In

Table 4. Summary of simulated variables in scenario C.

Weight0 (kg) Weight1 (kg) Weight2 (kg) HbA1c40 (%)

Mean 95%CI Mean 95%CI Mean 95%CI Mean 95%CI

Mean 3.997 3.873, 4.113 8.003 7.882, 8.122 12.001 11.875, 12.122 5.801 5.738, 5.861

SD 2.001 1.919, 2.087 2.000 1.911, 2.087 2.003 1.915, 2.101 1.001 0.959, 1.047

Correlation with HbA1c -0.106 -0.166, -0.043 0.229 0.167, 0.288 0.700 0.666, 0.731 1

95%CI represents 95% empirical confidence intervals.

https://doi.org/10.1371/journal.pone.0225217.t004

Fig 2. Z-score plots of weight from birth to age 2 years for scenarios A, B and C. Dotted lines show the group

diagnosed with diabetes at age 40 and dashed those without a diagnosis. Error bars show empirical 95% confidence

intervals.

https://doi.org/10.1371/journal.pone.0225217.g002
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scenario B, the small positive age-diabetes interaction term and slightly steeper slope (Fig 3B)

suggests that those who developed diabetes grew slightly faster than those who did not develop

diabetes. In scenario C, the large positive diabetes-age interaction term and steeper slope (Fig

3C) suggests that those who developed diabetes grew substantially faster than those who did

not develop diabetes.

Results from the multilevel models (two-step) are shown in Table 6. In scenario A, the odds

ratio for growth rate was 1.000 (95% empirical CI: 0.943, 1.057), suggesting that the odds of

diabetes were unaffected by growth rate. In scenario B, the odds ratio was 1.194 (95% empirical

CI: 1.122, 1.316), suggesting that the odds of diabetes increased modestly with increasing

growth rate. In scenario C, the odds ratio was 1.679 (95% empirical CI: 1.477, 2.191), suggest-

ing the odds of diabetes increased substantially with increasing growth rate.

Discussion

In Scenario A, we simulated no causal effect of growth rate on the risk of developing diabetes;

Birthweight causes HbA1c, but any pattern of growth thereafter is irrelevant. Neither the z-

score plot nor the multilevel model (with the outcome as a covariate) reflect this and would be

erroneously ’interpreted’ as showing that slower growth leads to diabetes. Conversely, the coef-

ficient from the two-step multilevel model correctly implies no effect of growth rate on diabe-

tes risk.

In scenario B, we simulated that weight1 caused diabetes, which could be interpreted as

growth causing HbA1c through weight1. The z-score plot however suggests that faster growth

up to age 1 and slower growth thereafter leads to diabetes. This does not reflect the causal rela-

tionship simulated, where higher growth only increased the risk of diabetes by increasing

weight at age 1. Both the multilevel model (with the outcome as a covariate) and the two-step

multilevel model reflect this more closely, suggesting that higher growth rates caused diabetes.

In scenario C, we simulated that weight2 caused diabetes, which could again be interpreted

as growth causing HbA1c through weight2 (and indirectly through weight1). Here, the results

from all three methods correctly suggest that higher growth rate cause diabetes.

The z-score plots (and common interpretation thereof) only reflected the simulated truth in

one of the three scenarios, revealing this is not a reliable approach for examining the causal

effect of a longitudinal exposure on a distal outcome. This is because average weight z-scores

at each time point are explicitly calculated and presented within groups of the outcome. By

inappropriately conditioning on the outcome in an attempt to examine ‘average patterns’ of

weight associated with diabetes, the method actually examines cross-sectional associations

between weight and the outcome at each time point. This problem remains even if only one

Table 5. Average parameter estimates from multilevel models of weight (outcome as covariate).

Parameter Scenario A Scenario B Scenario C

Mean 95% CI Mean 95% CI Mean 95% CI

Diabetes 0.729 0.566, 0.900 1.070 0.899, 1.25 0.939 0.769, 1.111

Age 4.327 4.223, 4.430 3.914 3.807, 4.021 3.670 3.563, 3.767

Diabetes�Age -1.372 -1.572, -1.166 0.340 0.133, 0.573 1.375 1.166, 1.573

Intercept 7.823 7.737, 7.911 7.740 7.655, 7.821 7.770 7.690, 7.862

Intercept variance 0.481 0.348, 0.601 0.503 0.127, 0.816 0.099 0.000, 0.255

Age Variance 0.680 0.547, 0.799 0.897 0.714, 1.08 0.567 0.000, 0.711

Residual Variance 1.770 1.710, 1.836 1.727 1.54, 1.849 1.840 1.778, 1.908

Constant-Age Covariance 0.973 0.894, 0.988 0.268 0.02, 0.845 -0.729 -0.957, 0.579

Autocorrelation parameter 0.120 0.069, 0.169 0.042 -0.118, 0.134 0.160 0.119, 0.196

https://doi.org/10.1371/journal.pone.0225217.t005
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group (e.g. those with diabetes) is considered. The value of each mean z-score (e.g. weight) has

no obvious causal meaning; instead, it reflects the size of the cross-sectional correlation

between the exposure and the outcome at each time point. Because the standardisation process

fixes the scale, time points with the strongest cross-sectional correlations will always appear

most different, and those with the weakest correlations will always appear most similar. For

Fig 3. Fitted weight values from multilevel models (outcome as covariate) and average mean weight values for

scenarios A, B and C. Dotted lines (fitted values) and circular points (average mean weight values) represent fitted

values for the group with a diabetes diagnosis at age 40. Dashed lines (fitted values) and triangular points (average

mean weight values) represent those without a diagnosis. The grey ribbon represents an empirical 95% confidence

band around the fitted values.

https://doi.org/10.1371/journal.pone.0225217.g003
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example, in Scenario A, there was a strong positive correlation between birthweight and diabe-

tes due to the causal effect of birthweight, and weaker correlations at ages 1 and 2 years as the

contribution of birthweight to weight decreased. This is reflected by the z-score plot in Fig 2;

the mean weight z-scores values are farthest apart at birth and coverage over time. In scenarios

B and C, the strongest correlations are at ages 1 and 2 years respectively; the corresponding z-

scores plots are likewise farthest apart at these time points. The absolute value of each time

point z-score should not therefore be joined or compared to the z-score values at other time

points because the ‘patterns’ that appear have no causal meaning and do not represent individ-

ual growth trajectories.
Inappropriate conditioning on the outcome also affects multilevel models where the out-

come is included as a model covariate. The consequences are not identical to the z-score plot

because the scale has not been fixed by standardisation and the correlation pattern is assumed

to follow a specific parametric shape. In our example, the linearity constraint introduced misfit

between the modelled regression lines and the mean weight values (Fig 3). In Scenario B this

meant the model failed to highlight that the largest cross-sectional correlation between weight

and diabetes occurred at age 1 year, and this explains the difference in interpretation with the

corresponding z-score plot. In scenarios A and C, models were similar enough to the average

weight values to provide similar interpretations. Had we simulated nonlinear growth, however,

the linearity constraint would likely have introduced further differences in interpretation com-

pared with the z-score plot.

The multilevel model (two-step) approach is more robust than the other approaches

because it does not involve conditioning on the outcome. Instead, exposure patterns are mod-

elled and only in the second step are these related to the outcome. This approach genuinely

treats the exposure as a longitudinal variable and should therefore be strongly favoured over

approaches that condition on the outcome whenever there is an interest in the causal interpre-

tation of a longitudinal exposure pattern. This method is not, however, without limitations.

First, because the second step of the multilevel model (two step) approach treats the unob-

served growth rate estimates as fully observed, it underestimates the standard errors (and con-

fidence intervals), even when attempts are made to address this [18]. Alternative latent

variable methods, like latent growth curve models, growth mixture models, and autoregressive

latent trajectory models, which retain the latent, or unobserved, nature of the pattern features

avoid this problem.

Second, two-step multilevel models and their constructed latent variable alternatives can

still present some interpretational challenges from a causal inference perspective. By summa-

rising the effect of multiple measurements that span a period into one or more average feature

(s), such as growth rate, the causal contributions of each individual measurement occasion is

lost, as too are any corresponding ’critical’ period effects [19]. This places such methods in

contrast to G-methods, where the focus is explicitly on estimating the causal effect of the expo-

sure as measured at each time point. Whether the underlying feature (e.g. growth) or the

Table 6. Average parameter estimates from the logistic regression model of diabetes status on weight growth rate.

Parameter Scenario A Scenario B Scenario C

Mean 95% CI Mean 95% CI Mean 95% CI

Growth rate 1.000 0.943, 1.057 1.194 1.122, 1.316 1.679 1.477, 2.191

Weight0 2.000 2.060, 2.745 1.000 1.149, 1.429 2.000 1.339, 2.265

Constant 6.030x10-03 3.654x10-04, 9.185x10-02 9.309x10-05 1.659x10-06, 1.291x10-03 2.221x10-11 2.552x10-16, 7.591x10-09

Growth rate was estimated using a multilevel model of weight over age (agnostic to the outcome, diabetes status)

https://doi.org/10.1371/journal.pone.0225217.t006
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individual measure (e.g. weight at age 1) are the ’true’ cause cannot be distinguished statisti-

cally because they are simply different ways of describing the same information. In scenarios B

and C, for instance, both ’growth rate’ and the individual measures of weight at ages 1 and 2

years respectively appear to cause diabetes. Changing either would therefore change the risk of

diabetes, and neither can be described as more or less responsible. The choice of whether to

analyse a longitudinal exposure as a series of discrete measures or a summary feature (e.g.

growth rate) may therefore be down to philosophical and/or contextual preferences regarding

the question(s) posed. That said, since many pattern features like ’growth rate’ span several

measurement intervals, they are susceptible to time-varying confounding by any variables that

are simultaneously caused by earlier measures while causing later measures, i.e. so-called inter-

mediate confounders. In such situations, there may be no alternative to g-methods, which are

currently unique for their compatibility with intermediate confounding [6].

It is important to note that, for illustrative purposes, this paper presents a simplified sce-

nario in which there are no competing events or loss to follow up, both of which would be

present in reality. Any differential loss to follow up or occurrence of competing events would

(further) bias the results from all three methods examined in this paper [20].

Recommendations

Methods that condition on the outcome are not appropriate for examining the causal relation-

ship between patterns of a longitudinal exposure and a later outcome, as they only describe the

cross-sectional correlations at each time point. The apparent ‘patterns’ that are observed have

no causal interpretation and should not be interpreted as individual exposure trajectories that

cause the outcome.

Alternative analytical strategies should seek to describe features of the exposure agnostic to

the outcome, whether explicitly in two separate models or implicitly using latent variable

methods. Researchers should however carefully consider whether pattern features or discrete

measures are more appropriate, useful and/or interpretable ways to capture a specific ’expo-

sure’ in a specific context. If interested in the effect of exposures at specific ’critical’ points in

time then alternative methods are recommended [4, 5].

If a pattern feature is truly of interest, researchers should think very carefully about which

pattern feature(s) are of interest before analysis. In the absence of a single, distinct and clearly

identifiable causal feature it is tempting to consider summarising the ‘average’ of exposure ‘tra-

jectories’ for individuals with different outcomes by conditioning on the outcome, but this

risks highly misleading results. A longitudinal exposure—or pattern thereof—that spans a long

period may be conflated with intermediate confounding and thus fail to describe the true

causal process of interest. Features that occur at specific time periods that have a tangible real-

world meaning may be best suited to the methods recommended, such as two-step multilevel

models.

Conclusion

This paper explains how longitudinal data analyses that inappropriately condition on the out-

come may lead to biased inferences about how exposure patterns affect later outcomes. Methods

such as z-score plots and multilevel models with the outcome as a covariate do not create caus-

ally meaningful exposure ’patterns’ and, as our simulations show, can be highly misleading.

In lifecourse research, or whenever interested in the causal relationship between a longitu-

dinal exposure and later outcome, we recommend avoiding methods that inappropriately con-

dition on the outcome in favour of methods that capture patterns a priori, although the

potential influence of intermediate confounding should be carefully considered.
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