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Abstract

The shapes of phylogenetic trees relating virus populations are determined by the adaptation of viruses within each host,
and by the transmission of viruses among hosts. Phylodynamic inference attempts to reverse this flow of information,
estimating parameters of these processes from the shape of a virus phylogeny reconstructed from a sample of genetic
sequences from the epidemic. A key challenge to phylodynamic inference is quantifying the similarity between two trees
in an efficient and comprehensive way. In this study, | demonstrate that a new distance measure, based on a subset tree
kernel function from computational linguistics, confers a significant improvement over previous measures of tree shape
for classifying trees generated under different epidemiological scenarios. Next, | incorporate this kernel-based distance
measure into an approximate Bayesian computation (ABC) framework for phylodynamic inference. ABC bypasses the
need for an analytical solution of model likelihood, as it only requires the ability to simulate data from the model. |
validate this “kernel-ABC” method for phylodynamic inference by estimating parameters from data simulated under a
simple epidemiological model. Results indicate that kernel-ABC attained greater accuracy for parameters associated with
virus transmission than leading software on the same data sets. Finally, | apply the kernel-ABC framework to study a
recent outbreak of a recombinant HIV subtype in China. Kernel-ABC provides a versatile framework for phylodynamic
inference because it can fit a broader range of models than methods that rely on the computation of exact likelihoods.
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Introduction

Phylodynamics is an emerging field in the study of RNA vi-
ruses with the central premise that the shape of a phyloge-
netic tree relating different infections is structured by the
immunological and epidemiological environments of the
virus (Grenfell et al. 2004). A phylogenetic tree is a hypothesis
about how populations are related by common ancestors.
Each branch in the tree represents the amount of evolution-
ary time that has passed since a population has diverged away
from its common ancestor with another sampled population.
Varying rates of lineage extinction driven in part by the host
environment experienced by each population, such as the
immune response, can determine which populations persist
long enough to be sampled. Furthermore, the birth of new
lineages is shaped by transmission of the virus between hosts,
although the virus phylogeny is not necessarily concordant
with its transmission history due to incomplete lineage sort-
ing (Pamilo and Nei 1988). Under the influence of these pro-
cesses that operate within and among hosts, phylogenetic
trees reconstructed from genetic sequences tend to exhibit
shapes characteristic of that virus species (Grenfell et al. 2004).
A canonical example is that trees relating avian influenza virus
hemagglutinin sequences from the same serotype strongly
tend toward a comb-like shape, with a high extinction rate

of lineages branching from a single trunk lineage that persists
between outbreaks. In contrast, trees relating human immu-
nodeficiency virus (HIV) sequences from the same subtype
are star-like in shape, due in part to an exponential accumu-
lation of lineages with a low rate of extinction (Sharp 2002).

A key challenge in viral phylodynamics is to use tree shapes
to infer the underlying characteristics of virus epidemics with
greater granularity. In response, the field of phylodynamics
has entered a period of explosive growth, driven in part by the
development of new models and computational methods for
fitting these models to viral sequence phylogenies (Volz et al.
2013). Often, these methods have been implemented in the
highly popular software package BEAST (Bayesian
Evolutionary Analysis by Sampling Trees; Drummond and
Rambaut 2007). In this framework, the posterior probability
of a tree is calculated from its prior probability—defined by
either Kingman’s coalescent (Kingman 1982) or, more re-
cently, a birth—-death process (Stadler et al. 2013)—and its
likelihood given a model of evolution and the observed se-
quence data. The inferred tree becomes a nuisance variable
over which one must integrate, given that the goal is to es-
timate the posterior distribution of critical parameters in an
epidemic model, such as the basic reproduction number (Ry).
Additionally, various smoothing strategies can be employed
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to reconstruct dynamics in these parameters over time
(Drummond et al. 2005; Stadler et al. 2013). The Bayesian
approach confers robustness to uncertainty in reconstructing
the tree relating observed sequences. As the number of se-
quences increases, however, the space of all possible trees
expands at a superexponential rate. In practice, attempting
to analyze several hundred sequences with conventional
computing hardware may require weeks to complete
(unless longitudinal sampling of sequences constrains the dis-
tribution of ancestral nodes). Conversely, genetic sequences
are rapidly accumulating for many RNA viruses, especially HIV
and hepatitis C virus. It is not unusual for an investigator to
have access to tens of thousands of sequences from a regional
epidemic. In addition, we need to be able to fit more biolog-
ically realistic models to the data (Frost et al. 2014), but such
models tend to involve nonlinear dynamics and become too
complex for the efficient computation of exact likelihoods; in
many cases there is no analytical solution for the exact like-
lihood. Such limitations are motivating interest in adapting
more recent techniques in model inference to phylody-
namics, such as approximate Bayesian computation (ABG
Ratmann et al. 2012) and particle Markov chain Monte
Carlo (MCMC) (Rasmussen et al. 2014).

The basic premise of ABC is that a model can be fit to the
observed data by using the model to simulate more data sets
under varying parameter values, and then finding combina-
tions of model parameters that minimize the discrepancy
between the observed and simulated data sets (Sunnaker et
al. 2013). Although it can be difficult to compute the exact
likelihood of a complex model, it is usually trivial to use the
model to generate data simulations. The discrepancy between
simulations and observations must be quantified with a dis-
tance measure. When the data are structured and complex,
the distance measure may be a composite of summary mea-
sures that map the data to a more convenient metric space.
For instance, the shape of a phylogenetic tree is a complex
and highly structured type of data that cannot easily be re-
duced down to a meaningful number. However, there are a
number of statistics that attempt to provide a reasonable
representation of tree shape. Tree imbalance statistics, for
example, quantify the degree that branching events are un-
evenly distributed among lineages (Mooers and Heard 1997).
These statistics are intuitive and easy to compute, but they
express a limited view of tree shape, do not incorporate
branch lengths, and do not readily scale with tree size (but
see Pompei et al. 2012). Another potential distance measure is
the Robinson—Foulds metric that enumerates the number of
operations required to convert one tree into another
(Robinson and Foulds 1981). This metric may be more com-
prehensive than the imbalance statistics, but it is restricted to
comparing alternative trees relating the same taxa; that is,
trees with the same labels.

Kernel methods are a technique from machine learning
that greatly simplify the task of comparing structured objects
(Aizerman et al. 1964). In a previous study, my colleagues and
| adapted a tree kernel from computational linguistics (Collins
and Duffy 2002) so that it provides a distance measure for
comparing phylogenetic tree shapes (Poon et al. 2013). This

2484

kernel method breaks each tree down to its constituent com-
ponents (subset trees; see supplementary fig. S1,
Supplementary Material online), counts the number of
times each component appears in both trees, and weights
this count by their concordance in branch lengths. It does not
require the trees to be the same size or even to relate the
same taxa. Here, | compare the performance of imbalance
statistics and the kernel method for classifying trees simulated
from an epidemiological model. Next, | employ the kernel
method as a distance measure within the ABC framework
to estimate the parameters of an epidemiological model by
comparing trees generated by simulation. This approach
therefore falls under the category of “kernel-ABC” methods,
which is a relatively new concept in statistical inference that
was first proposed in the context of population genetics
(Nakagome et al. 2013). Finally, | apply this kernel-ABC
method to a phylogeny generated from a recent HIV epi-
demic. The analyses presented here demonstrate that cou-
pling kernel methods to ABC can accurately estimate
parameters from tree shapes for a wide range of models.
This is a new approach to phylodynamic inference that is
highly versatile, as any model that simulates trees can poten-
tially be fit to an observed phylogeny.

New Approaches

To compare the shapes of different phylogenies, | have
adapted a kernel function from computational linguistics
that counts the number of labeled subset trees shared be-
tween two parse trees (Collins and Duffy 2002). A subset tree
is a contiguous set of branches that descend from a given
internal node in the tree; thus, it does not necessarily contain
all of the descendants of that node (supplementary fig. ST,
Supplementary Material online). To compute the kernel func-
tion, subset trees in two phylogenies are matched by topology
as defined by the configuration of internal and terminal
nodes. Phylogenies were “ladderized” to maximize their po-
tential for overlapping topologies. Matching subset trees were
penalized by their overall size and by their discordance in
branch lengths using a Gaussian radial basis function (Poon
et al. 2013). The resulting kernel function provides a compre-
hensive similarity measure for phylogenetic tree shapes. Thus,
it is a potentially useful measure to fit models to phylogenies
by ABC (Sunndker et al. 2013), where model parameter values
are evaluated by simulating data sets and comparing them to
the observed data through one or more similarity measures.
The best-fitting parameter values should yield simulations
that most closely resemble the observed data. | implemented
a class of ABC procedures known as ABC-MCMGC, in which
simulation-based inference is carried out within a MCMC
framework (Marjoram et al. 2003). Proposals were generated
by drawing a new parameter assignment from a multivariate
distribution centered at the current parameter values. Instead
of taking the conventional approach of rejecting proposals at
a distance from the observed data beyond some cutoff value, |
used an exponential weighting kernel with simulated anneal-
ing to improve convergence properties of the ABC—MCMC
process (Ratmann et al. 2012). To validate this phylodynamic
“kernel-ABC” approach, | evaluated its ability to recover
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parameter values from trees simulated under a simple epi-
demic model (birth—-death susceptible-infected-recovered
model, BDSIR; Kiithnert et al. 2014) and compared its perfor-
mance to a leading software package for phylodynamic infer-
ence (BEAST2; Bouckaert et al. 2014). Furthermore, | validated
the kernel-ABC approach on trees generated from a more
complex epidemic model of a risk-structured population
(Jacquez et al. 1988).

Results

Predicting Contact Rates

Tree imbalance statistics have been developed to detect var-
iation in branching rates along a phylogeny (Mooers and
Heard 1997). To provide the most favorable conditions for
imbalance statistics, | simulated trees using a coalescent pro-
cess defined by a “differential risk” epidemic model (Jacquez
et al. 1988), where the host population was structured by
groups with different transmission risks as determined by
group-specific contact rates. Preferential transmission
within groups was modeled by a mixing parameter p. Sets
of 100 replicate trees with 1,000 tips each were generated for
varying settings of the contact rate for individuals in one of
two risk groups (c;). Varying this parameter had a pro-
nounced effect on the shapes of the trees, as illustrated in
supplementary figure S2, Supplementary Material online.
Specifically, more discordant contact rates led to greater var-
iation in branching rates, resulting in more imbalanced trees.
First, | evaluated whether it was possible to differentiate
among trees simulated under different values of ¢; using
one of several imbalance statistics. Results from using
Sackin’s index (Is), which is based the average number of
internal nodes separating tips from the root, are shown in
figure 1A. Trees tended to have higher values of Is as c; de-
viated in either direction away from c,, which was fixed at 1.
This effect was more pronounced with preferential mixing
(p = 0.9) than when mixing was in proportion to group
size (0=0). As Is was elevated in both directions, it would
be effectively impossible to determine whether contact rates
in group 1 were greater or lesser than group 2. Similar out-
comes were obtained using the other six imbalance statistics
evaluated in this study (supplementary fig. S3, Supplementary
Material online). These results are consistent with a previous
numerical analysis by Frost and Volz (2013) of imbalance
statistics in the context of this differential risk model.

A kernel function provides an efficient method for com-
paring complex objects by breaking them down into their
constituent parts, and counting the number of times the
same parts appear in both objects (Aizerman et al. 1964).
For the tree shape kernel, these parts (features) are known
as subset trees, which are contiguous sets of branches that
descend from an internal node and do not necessarily include
the tips (supplementary fig. S1, Supplementary Material
online). Figure 1B displays a projection of the same simulated
trees (o = 0.9) onto the first two principal components of a
pairwise similarity matrix produced by the tree shape kernel
(egs. 2—4). Taken together, these two components explained
roughly 98% of the variation. This projection illustrates a clear
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Fic. 1. (A) Response of Sackin’s index (Is) to the varying heterogeneity in
contact rates. Each set of box-and-whisker plots summarizes the distri-
bution of I5 for 100 replicate trees simulated under different values of ¢,
(¢1 = ¢ = 1is shaded for reference). Varying c; away from ¢, = 1 had
a more pronounced effect under preferential (o = 0.9) than propor-
tional (o =0) mixing. (B) Projection of simulated trees to kernel space.
Sets of 100 replicate trees are each annotated in the plot with their
corresponding c; values. The proportion of variation explained by the
first two principal components, as estimated from the eigenvalues, is
reported by the respective axis labels.

separation of trees into distinct clusters by contact rate (c;).
Similar results were obtained for trees simulated with p=0
(supplementary fig. S4, Supplementary Material online).
Unlike the imbalance statistics, the kernel was able to differ-
entiate between trees generated under low and high values of
¢4 relative to c,.

To evaluate the ability of imbalance statistics to predict c,
from tree shape, simulations were restricted to trees gener-
ated with either ¢c; < 1 or ¢; > 1. Under these conditions,
the imbalance statistics were given an unfair advantage by
communicating a priori that the contact rate underlying a
given tree was either greater or less than 1. Under this con-
straint, samples of 400 trees were drawn at random and strat-
ified by ¢, to produce training sets, to which linear models
were fit using each one of the imbalance statistics as a pre-
dictor. Each model was then used to predict c; from the
remaining trees as validation sets. Results of this analysis are
summarized in table 1. There was no significant improvement
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Table 1. Predicting Contact Rates from Tree Shape.

Mixing Method ¢ <1 ¢ >1
Median R? 25% 75% Median R* 25% 75%
Proportional Kernel 69.5 69.4 69.7 69.5 69.4 69.7
(p=0) # cherries 1.6 0.33 22 1.2 0.1 15
Is 7.5 5.6 92 1.8 0.41 2.4
Ic 6.3 4.1 8 1.8 0.49 2.4
Shao-Sokal b, 1.4 0.43 2 0.94 0.17 1.5
Shao-Sokal b, 18 16 20 3.8 2.5 4.5
Zf 1.6 0.68 2 0.82 —0.16 1.2
f 13 0.32 15 0.62 —0.24 0.96
fro 27 12 34 23 0.97 3.
Preferential Kernel 68.5 68.4 68.7 68.5 68.4 68.7
(p=0.9) # cherries 1.7 0.74 23 —0.25 —0.76 0.01
Is 12 9.3 13 31 1.6 4.2
Ic 6.6 4.5 8.5 1.7 0.33 2.5
Shao-Sokal b, 3.2 1.7 4.2 0.38 —0.44 0.66
Shao-Sokal b, 65 63 68 25 21 27
i 35 2.3 4.1 0.5 —0.17 0.81
f 3.5 23 4.8 1 0.25 15
fo —0.34 —0.89 —0.03 —0.35 —1 —0.05

Note.—For each imbalance statistic, a linear model was fit to random subsets of the trees and used to predict c; (the contact rate of group 1) for the remaining trees. Each tree
related 1,000 tips. The training set of trees was truncated to ¢, greater or less than 1 (n=200), as none of the imbalance statistics was able to differentiate between these
scenarios (fig. 1A and supplementary fig. S3, Supplementary Material online). Similarly, random subsets of trees for all values of ¢; (n=350) were used to train a €-SVR. Model

performance was quantified using R’ reported here as a percentage. Note that the kernel method was applied to the entire range of c;.

in predictive accuracy from combining multiple imbalance
statistics as predictors (data not shown). Overall, the perfor-
mance of imbalance statistics for predicting ¢, tended to be
poor (R?> < 5%). Shao and Sokal's b, statistic was consis-
tently the best among the imbalance statistics. Like Sackin’s
index, b, is based on the sum of path lengths from the ith tip
to the root (I, measured in the number of nodes), but nor-
malizes these lengths by 2 (Shao and Sokal 1990). The highest
value of R? = 65% across imbalance statistics was obtained
by applying b, to trees with preferential mixing where c;
constrained to values less than or equal to 1. However, b,
was not robust to varying these conditions and the R” values
under different conditions were much lower (< 30%; table
1). If b, was used to train a linear model across the entire
range of ¢, the median R” value was negative (—0.12%), in-
dicating that the predictive value of the model was worse
than a naive model. In contrast, a kernel support vector re-
gression model with an e-insensitive loss function (e-SVR)
trained on these same data consistently obtained R” values
above 68% for the entire range of c;; that is, without benefit-
ing from any prior information about c;.

Approximate Bayesian Computation

One of the limitations of regression-based methods for infer-
ring epidemiological model parameters from tree shapes is
that it requires training data where these parameters are
known (supervised learning). In the case of infectious disease
epidemiology, it can be very difficult to obtain reliable esti-
mates of the epidemiological parameters such as the total size
of the infected population. It would be far more useful to be
able to infer such parameters directly from the shape of a
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phylogenetic tree without any prior information. Here, | eval-
uate the use of ABC to fit an epidemiological model to the
shape of a tree. ABC avoids having to calculate the exact
likelihood of a model; instead, the model is used to simulate
data sets, which are then compared with the observed data
(Sunnaker et al. 2013). This comparison requires a distance
measure that will map pairs of data sets to the real number
line. For example, imbalance statistics could potentially be
used for this purpose. Based on the poor performance of
these statistics as reported in the preceding section, however,
this analysis focuses specifically on using the tree shape kernel
as a distance measure for parameter estimation with ABC.

The kernel function was employed to sample parameters
from the posterior distribution in the framework of MCMC
for ABC (ABC-MCMG; Marjoram et al. 2003). To reduce
stochastic variation in kernel scores for a given model state,
the kernel score was averaged over replicate tree simulations
at each MCMC step. Otherwise an unusually high kernel score
could occur by chance, effectively trapping the chain sample
at that point of parameter space until the next extreme score,
resulting in less efficient convergence of chain samples to the
approximated posterior distribution. Although increasing the
number of tree replicates improves convergence (Sisson and
Fan 2011), it carries a linear computational cost and dimin-
ishing returns with the number of replicates. The results pre-
sented here were obtained from chains with n =10 replicate
simulations. Chain sampling was also improved by the use of
an exponential weighting kernel for calculating the accep-
tance probability of a proposal (Ratmann et al. 2012).

To evaluate the performance of ABC-MCMC, | generated
trees under the BDSIR model (Kihnert et al. 2014) with
varying numbers of dated tips under three scenarios
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(supplementary table S1, Supplementary Material online).
Parameter settings for the BDSIR simulations were derived
from previous work (Popinga A, Vaughan T, Stadler T,
Drummond A, unpublished data, http://arxiv.org/abs/1407.
1792v1, last accessed June 15, 2015) and examples in the
BEAST?2 distribution. The BDSIR model stipulates that virus
lineages are “born” upon the transmission of the virus be-
tween infected and susceptible individuals at a rate B.
Lineages die at a rate y corresponding to the removal of an
infected individual from the population because of recovery,
behavioral change, or mortality. In addition, lineages termi-
nate at tips of the tree when an infection is sampled from the
population at a rate ¢. Thus, the BDSIR model assumes that
no subsequent transmissions originate from sampled infec-
tions. Each tree was used to generate a sequence alignment by
simulation, which were then processed by two different
approaches. First, | used the phylodynamic kernel-ABC frame-
work to fit the BDSIR model to trees that were reconstructed
from these alignments by maximum likelihood and rooted
under a strict molecular clock. Second, | used the phylody-
namics module in BEAST2 (Bouckaert et al. 2014) to fit the
BDSIR model using Bayesian MCMC sampling with exact
likelihoods.

Figure 2 summarizes the posterior distributions of the
BDSIR model parameters obtained using kernel-ABC and
BEAST2 methods. Chain samples from BEAST2 consistently
overestimated the total population size N by roughly a factor
of 5. | verified that these posterior estimates from BEAST2
were substantially displaced from the prior distributions, in-
dicating that the simulated data were sufficiently informative.
In contrast, kernel-ABC was remarkably successful at recov-
ering the actual values of N across all three scenarios within
~20% of the actual value. Kernel-ABC was also able to re-
cover the actual values of the transmission rate () across
scenarios, whereas BEAST2 tended to underestimate S by a
factor of 10 (fig. 2). These parameters are associated with
lineage birth rates in the BDSIR model. Posterior samples of
N and B from kernel-ABC exhibited an inverse proportional
relationship, resulting in a significant negative correlation
(Spearman’s p < —0.6, P < 107 '2). Thus, the products of
B and N were more comparable between BEAST2 and kernel-
ABC. In contrast, BEAST2 provided more accurate estimates
of the lineage death parameters y and ¢ (mortality and sam-
pling rates) with smaller credible intervals (fig. 2). Both
approaches were successful in reconstructing the height of
the tree (T), which approximates the origin of the epidemic,
from sequence variation. In the case of kernel-ABC, a root-to-
tip method (Rambaut 2000) was applied to a maximum-
likelihood reconstruction of the phylogeny to estimate
T. Similar results were obtained by fixing the tree in
BEAST?2 to the maximume-likelihood phylogeny by disabling
all MCMC operators associated with modifying the tree
topology (results not shown).

A comparison of computing times from the kernel-ABC
and BEAST?2 experiments with the BDSIR model is provided in
supplementary table S2, Supplementary Material online.
Overall, the kernel-ABC algorithm ran about 3-4 orders of
magnitude slower than BEAST2. This is not surprising because

BEAST2 can reuse much of its likelihood calculations on trees
that are only slightly modified between steps in the chain
sample. In contrast, an ABC-MCMC must constantly regen-
erate trees by simulation and compute kernel scores de novo
at every step of the chain. Computing the normalized kernel
score required about 1.5 s for trees with 1,000 tips on a desk-
top computer running an Intel Xeon E5-1650v2 processor. As
predicted, this step had a time complexity of O(n?) where n
was the number of tips. Although kernel-ABC was at a clear
disadvantage with respect to computational speed, results in
supplementary table S2, Supplementary Material online sug-
gest that kernel-ABC may require far fewer steps to obtain
effective sample sizes comparable to long chains generated in
BEAST2.

Finally, | used the kernel-ABC method to fit the differential
risk model (Jacquez et al. 1988) to the shapes of phylogenies,
which were reconstructed from sequences that were gener-
ated with transmission trees simulated under this model (for
¢; = 0.5and ¢; = 2.0). This is the same model that was used
to generate the trees in our initial assessment of imbalance
statistics and the kernel method, as summarized in figure 1.
Figure 3 demonstrates that kernel-ABC was able to recover
the actual values of ¢;. Simultaneously, the model parameters
N, B and y were also estimated by kernel-ABC, which had the
actual values of 3,000, 0.01, and y = 1.92 x 10~3/week, re-
spectively. As ¢, is confounded for varying 8 and ¢ (eq. 1), this
parameter was fixed at 1.0. | observed a significant correlation
between values of N and y in the chain samples (Spearman’s
p=0.53, P=1.5x 107%). Even so, these analyses were
able to obtain reasonable estimates of these parameters.
The respective medians and interquartile ranges for N were
4,620 (3,446, 6,330) and 2,628 (1,735, 3,676) for the ¢; = 0.5
and ¢; = 2.0 scenarios, respectively. For §, these were 0.014
(0.012, 0.017) and 0.0092 (0.0074, 0.012); for y, these were 1.8
(0.9, 22)x 1073 and 1.7 (1.0, 2.1)x1073. These results dem-
onstrate the inherent versatility of the kernel-ABC method; to
date, there is no published software that can fit this differen-
tial risk model using conventional Bayesian methods based on
exact likelihoods.

Application to HIV Data

The preceding section demonstrated that combining ABC-
MCMC with a tree shape kernel provided accurate estimates
of “birth” parameters of the BDSIR model from data that were
simulated under the same model. The next step was to ob-
serve how this method responded to real-world data. Because
the BDSIR model assumes a constant rate of sampling from
an epidemic, it may be more appropriate to apply this model
to a recent epidemic that spans a period of time where con-
ventional genetic sequencing would have been readily avail-
able. For this reason, | selected the HIV CRF07_BC epidemic in
China to evaluate this model. First identified in 1997
(Piyasirisilp et al. 2000), this circulating recombinant form
(CRF) is the predominant HIV subtype among injection
drug users in northwestern China (Xinjiang). Using a coales-
cent molecular clock analysis, Tee et al. (2008) estimated the
origin of the CRF07_BC epidemic to be 1993.3 (95% highest
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log-transformed scale. The vertical span of boxes corresponds to the interquartile range and the whiskers extend to the empirical 95% credible intervals.
Population size corresponds to the total number of susceptible, infected and removed individuals. Detailed results are provided in supplementary table

S1, Supplementary Material online.

posterior density [HPD]: 1991.2-1995.2). | obtained a similar
estimate (1993.7) using a root-to-tip method (Rambaut 2000)
to analyze a larger sample of n =314 CRF07_BC sequences
from China. Using kernel-ABC to fit the BDSIR model to this
phylogeny, | obtained median estimates of N = 8,251 (95% Cl
2,381-23,511) and B = 3.86 (0.83-23.9) x 10~ Inferred tra-
jectories of the numbers of susceptible and infected individ-
uals over time based on the sampled parameter values are
summarized in figure 4. Using sampled tree heights to cali-
brate the simulation time units in MASTER to years, these
trajectories indicated that epidemic was near the midpoint of
its exponential growth phase by the most recent collection
date of these data (2010), with a predicted maximum prev-
alence of about 6,620 (interquartile range 4,301-10,982).

Results in the preceding section indicated that BEAST2
should provide more reliable estimates for “death” parame-
ters of the BDSIR model, namely the rates of removal (y) and
sampling (¢). The CRFO7_BC data were analyzed using the
serial BDSIR model implemented in the phylodynamics
module in BEAST2. A relaxed uncorrelated lognormal clock
model conferred a significantly improved fit to the data rel-
ative to a strict clock (log,, Bayes factor = 93.0). This model
obtained median estimates of y = 1.2 (95% HPD: 0.6-2.0)
and ¢ =7.1 (95% HPD: 1.5 —19) x 1073, respectively.
Consistent with the model validation results in the preceding
section, BEAST2 obtained a roughly 5-fold higher median
estimate of N =48,151 (95% HPD: 5969 — 1.91 x 10°) and
roughly 10-fold lower median estimate of § = 4.81 (95%
HPD: 0.82 — 14.3) X107 in comparison to the kernel-ABC
results.

Discussion

Here, | have presented results demonstrating that a kernel
function can provide a more informative quantification of
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Fic. 3. Histograms summarizing the distribution of ¢, (contact rate,
group 1) estimated by a kernel-ABC analysis on trees simulated with ¢,
= 0.5 (blue) and ¢; = 2.0 (red, hatched). The true parameter settings
and median estimates are indicated by solid and dashed white vertical
lines, respectively. Both runs were initialized at ¢; = 1. The simulated
annealing tolerance parameter was set to decay from 0.005 to 0.002.

phylogenetic tree shapes than summary statistics such as
tree imbalance (fig. 1). This confers an enormous advantage
to kernel methods when classifying tree shapes generated
under varying epidemiological scenarios, even when varying
aspects of tree shape to which imbalance statistics are the
most attuned (specifically, variation in branching rates; table
1). Incorporating the tree shape kernel into an ABC frame-
work provided more accurate estimates of the lineage birth
parameters of the BDSIR model (population size N and trans-
mission rate 3) than obtained using BEAST2. On the other
hand, BEAST2 outperformed the kernel-ABC method in re-
covering BDSIR parameters associated with lineage death,
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namely the rates of removal (y) and sampling (¢). This out-
come implies that the present formulation of the tree shape
kernel function is more sensitive to the internal structure of
the tree, and less sensitive to the distribution of tips over time.
Kernel-ABC seems to benefit from preserving the branching-
order of the tree, however, as opposed to methods like
Kingman'’s coalescent that summarize tree shape as a
vector of coalescence times. Finally, | returned to the differ-
ential risk model used to evaluate the tree imbalance statis-
tics, and showed that kernel-ABC could be used to fit this
model to tree shapes.

This is not the first study to adapt ABC for phylodynamic
inference. In a ground-breaking paper, Ratmann et al. (2012)
implemented a similar ABC-MCMC method to fit a highly
sophisticated model to both an influenza A virus (IAV) sero-
type H3N2 phylogeny and the surveillance data of weekly
incidence in the Netherlands from 1994 to 2009. The distance
metric for fitting this model was a function of nine summary
measures, of which four were based on surveillance data (such
as the mean number of case reports per season) and the
remaining five were derived from sequence variation and
the phylogeny (such as the time to the most recent
common ancestor of all sequences from the same season).
They concluded that key phylodynamic parameters could be
estimated by ABC, but that the summary statistics used
would most likely have to be customized from one study
to another, as determined by the type of data available and
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Fic. 4. Reconstructed dynamics of a recent outbreak of HIV CRF07_BC
in China. Numbers of susceptible (gray) and infected (red) individuals
over time were obtained by forward-time simulation in MASTER under
the birth—death SIR model, using parameter values sampled by kernel-
ABC. Shaded areas indicate the interquartile regions of the respective
counts. Note that the infected counts include removed individuals from
simulated populations. A solid vertical line indicates the median tree
height that approximates the date of the most recent sample in
the data set (2010). Dashed lines indicate the interquartile range in
tree heights. Simulation time zero corresponds to the estimated
origin of the epidemic (1993-1994).

characteristics of the virus. The key difference between their
study and the current work is that | am using only a kernel
function as a distance measure, which operates exclusively on
the shapes of phylogenetic trees. As it does not incorporate
surveillance data, this approach may result in a loss of statis-
tical power; however, it also makes the kernel-ABC approach
more generalizable. Furthermore, the kernel function can be
extended to incorporate other types of information (dis-
cussed below). Other studies have applied tree shape statistics
to reject null models of virus evolution and epidemiology, but
without the full ABC treatment. For example, Koelle et al.
(2006) used Colless’ index (Ic) to compare trees simulated
from a complex map of genotypes to antigenic space and
disease transmission model of IAV to an actual phylogeny.
Leventhal et al. (2012) used Sackin’s index (Is) to quantify
deviations in tree imbalance from null distributions generated
from epidemic simulations on randomly generated contact
networks of individuals. More recently, Colijn and Gardy
(2014) used a number of tree shape statistics to develop
machine learning classifiers for phylogenies representing sim-
ulated outbreaks of tuberculosis, which were driven by
“superspreader” or chain-like dynamics.

A key advantage of a simulation-based ABC framework for
phylodynamic inference is that it can be highly versatile. It
eliminates the requirement of Bayesian MCMC for a closed
form solution for the likelihood of a model, or avoids cost of
evaluating a complex likelihood function (Sunnaker et al.
2013). Thus, any model that can generate transmission
trees can conceivably be used to estimate parameters from
a virus phylogeny. Historically, it was only practical to simulate
trees from a limited number of models, such as Yule’s model
of speciation (Yule 1925), Kingman’s coalescent (Kingman
1982), or the ancestral selection graph (Krone and
Neuhauser 1997). This range was significantly expanded by
the seminal work by Volz (2012) on deriving coalescent pro-
cesses from nonlinear epidemiological models. Such advances,
coupled with kernel-ABC, represent an important opportu-
nity to relax some of the core assumptions of phylodynamic
inference (Frost et al. 2014). For example, | have demonstrated
the use of a kernel-ABC method to fit a differential risk model
to tree shapes (fig. 3), where the host population is structured
by assortative groups with different contact rates. This pro-
vides an example of using kernel-ABC to fit a model that is
not yet possible to fit with conventional Bayesian methods
that require exact likelihoods.

A pervasive assumption in phylodynamics is that the inter-
nal nodes of the phylogeny correspond to transmission events
between hosts over time. This is almost certainly unrealistic for
virus populations such as HIV, where the effective population
size within hosts can be on the same scale as the number of
viral generations between transmission events (Maddison and
Knowles 2006). A branching point in a virus sequence phylog-
eny represents the inferred common ancestor of two virus
lineages. When those lineages were sampled from different
infections, one or more transmissions between hosts must
have occurred at any point(s) along either branch. The time
difference between the common ancestor and a transmission
event (in virus generations) scales roughly with the effective
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population size (N,) within the host where the lineages coa-
lesce (Romero-Severson et al. 2014). N, is close to 1 at the
start of infection due to a transmission bottleneck, followed
by exponential growth to N,~x 10> — 10° (Kouyos et al.
2006). The node heights of an HIV phylogeny are therefore
most likely further back in time than the nodes of the trans-
mission tree. In addition, the discordance between the virus
phylogeny and transmission tree may be exacerbated by in-
complete lineage sorting (Maddison and Knowles 2006),
where the order of coalescent events does not correspond
to the order of transmission events from the same source
infection. Finally, there is growing evidence of a selective bias
for new infections to be founded by archived HIV variants
from the acute stage of the source infection (known as the
“store-and-retrieve” hypothesis; Vrancken et al. 2014). This
process may also bias the node heights of an HIV phylogeny
further back in time relative to the implied transmission
events. Therefore, incorporating within-host evolutionary
processes into increasingly complex phylodynamic models
may be of critical importance. The kernel-ABC framework
makes it feasible to incorporate within-host processes into
phylodynamic inference, as the only prerequisite for
attempting to fit a model to a phylogeny is the ability to
simulate trees.

Further investigation of the kernel-ABC approach will in-
corporate labeled trees into this framework. Indeed, the tree
kernel from which the kernel function was derived was de-
veloped for comparing the parse trees of sentences in which
the labels correspond to words (Collins and Duffy 2002). In
the context of phylodynamics, these labels may correspond to
risk factors or stages of infection, which may confer greater
power for estimating group-specific parameters. In addition,
kernel-ABC can be extended to infer the structure of the host
population from tree shapes by simulating transmission trees
within contact networks (Leventhal et al. 2012). A key chal-
lenge in this future direction will be to implement or adapt an
epidemic network simulation algorithm that will be suffi-
ciently fast to use for ABC-MCMC. Finally, expanding the
spectrum of generative models for trees in kernel-ABC
should include combining the evolution of viruses within
hosts with epidemiological processes among hosts. Taking
this direction will bring the field closer to the original concept
of phylodynamics, in which the shapes of virus trees are de-
termined by processes operating both within and among
hosts (Grenfell et al. 2004).

Materials and Methods

Simulating Tree Imbalance

Phylogenetic trees were generated using a Python module
implemented by E. Volz (colgem?2, https://code.google.com/
p/colgem/, last accessed June 15, 2015) in which a broad range
of epidemic models—expressed as a system of ordinary dif-
ferential equations that can be solved by numerical integra-
tion using SciPy function “odeint” (http://www.scipy.org, last
accessed June 15, 2015)—can be used to determine the coa-
lescent process (Frost and Volz 2013). As tree imbalance sta-
tistics were designed to detect variation in branching rates
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along lineages, | chose an epidemic model in which the host
population was structured into groups with different risks of
transmission for the basis of comparison (Jacquez et al. 1988).
In brief, the conventional susceptible-infected (SI) compart-
mental model is partitioned into nonoverlapping subpopula-
tions whose dynamics are described by the following set of
differential equations:

ds, l

=Ai— i :
dt <§?:5Cp’s-+/ “)
di j
. i _Il )
=5 Sreon ) hn

where A; is the constant input rate of new susceptible indi-
viduals in group i (S;). Infection causes an elevated rate of
mortality by an amount y above the baseline rate . S is the
per-contact transmission rate. Individuals in the ith group
experience ¢; contacts per unit time, with a fraction p; of
these contacts reserved for individuals in group j. Here, |
will use the “preferred mixing” formulation introduced by
Jacquez et al. (1988) to define p; in terms of homophily,
where a fraction p of an individual’s contacts are reserved
for peers from their same group:
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where my = ¢ (Sx + lx). Following Frost and Volz (2013), |
have made the simplifying assumption that p does not vary
among groups. In this study, the number of groups was lim-
ited to 2 to facilitate interpretation. The numerical solution of
this system was used to simulate a coalescent process using a
customized version of colgem?2 that can generate replicate
trees from a single function call.

Epidemics were initialized with a susceptible population
size N=10°—1 with a single infected individual in
risk group 1. The susceptible population was partitioned
into Np — 1 and N(1 — p) individuals in risk groups 1 and
2, respectively, where p is a parameter between 0 and 1. For
these simulations, p was fixed to a value of 0.5. To facilitate
comparison with previous work, the differential risk model
parameter values were set to those in Frost and Volz (2013);
specifically: 8 =0.01 transmissions per  contact;
A; = Si(0)/3, 640; © = 1/3, 640; ¥ = 1/520; and p =0 for
proportional mixing and p = 0.9 for preferential mixing.
Contact rates were set to ¢, = 1 for risk group 2 and
varied for risk group 1 (c; € {0.125,0.25, 0.5, 1, 2, 4, 8}).
All rates were scaled to weeks. In total, 100 replicate coales-
cent trees each relating a sample of n = 10% individuals were
simulated for each setting of c;. Python scripts for generating
these simulations are available at http://bioinfo.cfenet.ubc.ca/
pub/kernel-abc (last accessed June 15, 2015).
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Quantifying Tree Shape

First, | applied a variety of conventional tree imbalance sta-
tistics to quantify the shapes of the trees simulated under the
differential risk model. The number of “cherries” is calculated
by the sum of internal nodes with exactly two terminal
branch descendants (McKenzie and Steel 2000). Sackin’s
index (Is) is defined as the total path length (depth) from a
tip to the root as measured by the number of intervening
nodes (Sackin 1972):

Is = Y Depth()),
j=

where j indexes over the tips of the tree. This index can be
normalized for the size of the tree using the expected depth of
tips under a Yule process (Blum and Francois 2005):

n
A - s - 1
IS = (IS — ’5)//5, wherels =2n E -.
= J
Jj=2

In addition, normalized Colless’ indices (Colless 1982
Kirkpatrick and Slatkin 1993), Shao and Sokal’s B, and B,
statistics, and Fusco and Cronk’s imbalance measures
(Purvis and Agapow 2002) were calculated for all trees. As
outcomes did not vary qualitatively among imbalance mea-
sures, the results section focuses on Sackin’s index as being
representative of this approach to quantifying tree shapes,
with other results summarized in table 1 and supplementary
figure S3, Supplementary Material online.

Additionally, | employed a kernel function to compare
pairs of trees with respect to their shapes. This kernel function
was previously developed for a comparative study of human
and zoonotic RNA virus phylogenies (Poon et al. 2013) as an
extension of the parse tree kernel proposed by Collins and
Duffy (2002), for which an efficient algorithm was developed
by Moschitti (2006). Briefly, the kernel operates by iterating
over all pairings of the ith internal node in tree T; and the jth
internal node in tree T, (denoted by n', and r,, respectively)
to identify the largest common subset tree rooted at these
nodes. A subset tree is a contiguous structure nested within a
tree that does not necessarily extend to the tips. Computing
the inner product of this feature set results in a positive
semidefinite kernel:

k(T1, Ty) = (@(T4), ¢(T2))
=D A )
i

A(ni, h) = rkg(n, [T+ A, W) + A(r(r)), r(my))],
)

where I(n) and r(n) return the left and right nodes descending
from node n, respectively, and A is a constant decay factor to
avoid the “diagonal dominance” problem by penalizing large
subset trees (Collins and Duffy 2002). Equation (2) is adapted
for phylogenetic or coalescent trees by weighting these fea-
tures by their discordance in branch lengths using a Gaussian
radial basis function (Poon et al. 2013). Specifically, the term

A(n', ) was adjusted by a factor:

ko (n'), njz) = exp(
—o (1)1 1))
+ (o= 1)), e

where |I(n)| and | r(n)| extract the branch length between
node n and its left and right descendant nodes, respectively,
and o? is the Gaussian variance parameter. Thus, kg assumes
it maximum value of 1 when I(n})=I(n,) and
r(n') = r(r), and decays to zero with increasing discordance
in branch lengths. As ¢ — 00, k¢ approaches 1 for all subset
trees and we recover the original tree parse kernel of Collins
and Duffy (2002).

All trees were ladderized by rotating branches around in-
ternal nodes such that the branch with the greater number of
descendants was always located on the same side (left or
right). As the kernel function makes a distinction between
the left and right child branches of each node in a tree, this
step confers greater consistency in comparing trees with sim-
ilar topologies. In addition, the branch lengths in all trees were
rescaled by a global factor such that the mean branch length
was 1.0 units, to facilitate the comparison of trees of different
overall lengths.

The kernel score from each pairwise comparison was nor-
malized to facilitate comparisons between trees of different
sizes (number of tips) using the method proposed by Collins
and Duffy:

k(Ty, T,)
Vk(Tq, TK(T,, )

The resulting matrix of kernel scores has been shown to be
positive semidefinite (Poon et al. 2013). The kernel function
was implemented in Python with the BioPython “Phylo” li-
brary (Talevich et al. 2012).

K(T, Ty) = (4)

Model Prediction

For each imbalance statistic, a linear model was trained on
random subsets of the simulated trees, stratified by the target
parameter. The model was then used to predict the param-
eter from imbalance statistics calculated from the remaining
trees. For the kernel method, we generated the kernel matrix
for the training set and then used this matrix to train a €-SVR
(Drucker et al. 1997) using the R package “kernlab”
(Karatzoglou et al. 2004). Prediction accuracy was quantified
using the R statistic, which can be loosely interpreted as the
proportion of the variation explained by the model:

D i —x)
RR=1-¢

D =&

where x is the empirical mean of the variable and X is its
predicted value.
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Approximate Bayesian Computation

To estimate model parameters from a single (reference) tree, |
used the normalized kernel score (eq. 4) to quantify the sim-
ilarity between this reference and one or more trees simulated
from the model under a given set of parameters (6). This
approach belongs to a broad category of techniques known
as ABC, which obviates the need to calculate exact likelihoods
in fitting complex models. Specifically, | employed a type of
ABC inference known as ABC-MCMC, which employs the
likelihood-free method in the MCMC framework (Marjoram
et al. 2003). First, a chain was seeded with arbitrary parameter
values (6) for the model. This chain state was evaluated by
simulating n trees from the model given 6, using either for-
ward-time (MASTER; Vaughan and Drummond 2013) or co-
alescent (rcolgem, http://colgem.r-forge.r-projectorg, last
accessed June 15, 2015) methods. To facilitate comparison
to BEAST2, the analyses reported in this article used the
MASTER (version 2.0.0) program included in the BEAST2
software package. To reduce the computational cost of sim-
ulating n trees, replicate trees were simulated in parallel using
a customized version of rcolgem; MASTER did not support
parallel execution. Branch lengths in each tree were normal-
ized by the mean branch length to facilitate comparison be-
tween trees measured on different scales. Normalized kernel
scores (k') were calculated for the pairwise comparison of
each simulated tree to the reference tree. To accelerate this
step, | used the Python modules “multiprocessing” and “dill”
to distribute kernel computation across multiple cores. The
overall score for 6, denoted by k(6), was estimated by aver-
aging k' over n replicates. Note that k ranges from 0 to 1
because of the normalization in equation (4).

Chain sampling proceeded using a Metropolis—Hastings
algorithm as follows. A new set of parameter values (9')
were drawn at random from a truncated multivariate pro-
posal distribution centered at 6, with a mixture of Gaussian
and lognormal distributions with predefined minimum, max-
imum, and standard deviation for each parameter. All param-
eters were modified by the proposal (full-dimensional
updating), although similar results were obtained using com-
ponentwise (Gibbs) updating. The probability of accepting
the proposed values was determined by computing k(6') as
above, and comparing this value to k() by an exponential
weighting kernel (Ratmann et al. 2012):

B ( exp[—2(1 —k(e’»/r]q(@'wm(e’))
o = min| 1, = . (5
exp[—2(1 — k(60))/1q(0 | 0')(6)

where T is a tolerance parameter. The analyses presented in
this article assumed a uniform prior distribution (7(0) = C)
and symmetric proposal density (q(¢'|0) = q(0]6")). To
prevent the chain sample from becoming stuck in low-scoring
regions of parameter space, which is a well-known problem in
ABC-based inference (Sisson and Fan 2011), | used simulated
annealing where T was adjusted over time by an exponential
decay function:

7(t) = Tmin + (To — Tmin)exp(—A-t)
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,where 7, was the initial tolerance value, A, is an exponential
decay rate, and 7., is the minimum tolerance.

Method Validation

To validate the kernel-ABC method for phylodynamic infer-
ence, | used MASTER (Vaughan and Drummond 2013) to
simulate trees under a BDSIR model. This model specifies
three compartments corresponding to susceptible (S), in-
fected (1), and removed (R) individuals, where removal may
correspond to clearance and immunity from reinfection, mor-
tality, or behavior modification (Kthnert et al. 2014). In ad-
dition, the BDSIR model assumes that sampling individuals
from the epidemic also removes them from the pool of in-
fected individuals. This is assumed to occur at a constant rate
(¢) in proportion to the current number of infected individ-
uals. Using the reaction kinetics notation employed by
MASTER, the BDSIR model can be expressed as follows:

s+150
I5R

¢
I— ’sample .

Following previous work (Popinga A, Vaughan T, Stadler T,
Drummond A, unpublished data, http://arxiv.org/abs/1407.
1792v1, last accessed June 15, 2015), the rate parameters for
removal and sampling were set to ¥ = 0.3 and ¢ = 0.15,
respectively. The birth (transmission) rate was set to
B =103, 3 x 1074 and 10~* for N = 1,000, 3,000, and 10*
susceptible individuals at time 0, respectively. It was necessary
to reduce B with increasing N to prevent explosive growth at
the initial phase of the epidemic, resulting in a “star’-like
phylogeny with unresolvable internal nodes. Under these
varying conditions, trees were generated with exactly 100,
300, and 1,000 tips, respectively, by specifying the “leaf
count” postsimulation condition in MASTER (Vaughan and
Drummond 2013).

| used the software package INDELIBLE (Fletcher and Yang
2009) to simulate sequence evolution along each tree under
the M3 model of codon evolution. This model defines a tran-
sition—transversion bias parameter (x = 8.0) and a discre-
tized gamma distribution of nonsynonymous—synonymous
rate ratios (w) with 50 categories and a mean of 0.5 and
standard deviation of 0.015. Branch lengths in the simulated
trees were rescaled so that codon substitution events were
expected to occur in about 10% of branches in the tree per
codon. These settings yielded alignments of sequences (300
codons in length) resembling rapidly evolving regions of an
RNA virus genome. Although slower rates of evolution may
be more generalizable, the objective was to provide idealized
conditions for parameter estimation using either BEAST2 or
the kernel-ABC method—in other words, to identify biases
inherent to either framework rather than due to uncertainty
in phylogenetic reconstruction. An assessment of the sensi-
tivity of parameter estimation to lower rates of evolution is
provided as supplementary figure S5, Supplementary Material
online.
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The simulated alignments were each imported into
BEAUTI (version 2.1.3). Tip dates, corresponding to the loca-
tions of tips in the tree produced by the MASTER simulation,
were extracted from sequence labels. As the nucleotide se-
quence data were simulated with a constant rate of evolution
and no rate variation among sites, the BEAUTI interface was
used to specify an HKY85 model of nucleotide evolution
(Hasegawa et al. 1985) without rate variation, a strict clock,
and a serial BDSIR tree prior to match the conditions under
which the sequence alignments had been generated. Other
prior distributions were left at their default settings. The re-
sulting XML files were executed with two replicate chains
each for 10° steps using the serial BDSIR model within the
phylodynamics module in the software package BEAST2 (ver-
sion 2.1.3; Bouckaert et al. 2014). Memory allocations were
increased from their default settings to 512 and 1,024 MB for
starting and maximum levels, respectively. To process trees
with 1,000 tips, the maximum memory allocation was in-
creased to 2,048 MB. Gelman and Rubin’s convergence diag-
nostic and effective sample sizes were calculated using the R
package “coda” (Plummer et al. 2006). Replicate posterior
traces in BEAST2 were consistent with convergence based
on Gelman and Rubin’s diagnostic for all three scenarios (po-
tential scale reduction factor = 1). Estimates of total popula-
tion size (N) were derived from the initial number of
susceptible individuals (So) plus one.

To reconstruct phylogenies from the simulated alignments
for phylodynamic inference with the kernel-ABC method,
I used RAXML (version 8.1.3 Stamatakis 2014) with
the GTRCAT model of nucleotide evolution. The resulting
maximum-likelihood tree was converted into a strictly bifur-
cating tree using the “rtt” function in the R package “ape”
(Paradis et al. 2004). A modified version of the RootToTip
function, which was implemented in the Path-O-Gen appli-
cation within the BEAST package (version 1.8.0; Drummond
and Rambaut 2007), was used to extrapolate the root of the
tree from tip dates under a strict molecular clock. The result-
ing time-scaled trees were processed within the kernel-ABC
framework as described above, using MASTER to simulate
n =10 trees under parameter values drawn from the proposal
distribution. Because using forward time simulation to gen-
erate a tree with an exact number of tips can result in a large
number of discarded trees, this requirement was relaxed to
increase the efficiency of this step. Although the kernel func-
tion does not require trees to have the same numbers of tips,
tree shape comparisons can be sensitive to differences in tree
size, so terminal branches in the simulated trees were ran-
domly pruned to the same number of tips. The kernel decay
parameter was set to A = 0.35. The Gaussian radial basis
function tolerance parameter was set to 0 = 2.0 based on
previous work in which it was determined that kernel meth-
ods performed best with o around this value (Poon et al.
2013). Similar but slightly less accurate results were obtained
using o = 0.5, which was consistent with Poon et al. (2013).
Simulated  annealing  parameters were set to
To = 0.02, Tnin = 0.01, and A, = 0.0025 for fitting the
BDSIR model. A log-normal proposal was used for N with
o = 0.2; Gaussian proposals were used for all other

parameters. ABC-MCMC chains were propagated for about
10,000 steps.

A similar procedure used to simulate alignments under the
differential risk model (Jacquez et al. 1988), with the exception
that trees were simulated by implementing equation (1)
within the rcolgem coalescent framework. Model parameters
were set to N =S+ 1= 3,000, 8 =0.01, ¢, =1, p=05,
p =0.9, u=1/3,640,and y = 1/520. With the exception
of N, these settings reiterated the conditions used to simulate
trees for evaluating imbalance statistics and the kernel
function (fig. 1). The contact rate of group 1 was set to c;
= 0.5 and ¢; = 2.0 to generate two sets of alignments.
The kernel-ABC settings for analyzing this model
were A =0.3, 0 = 2.0, Tp = 0.005, Tpin = 0.002, and
Ar = 0.0025. Note that more aggressive simulated annealing
was used due to less variation in kernel scores among trees
simulated under different parameterizations of the differential
risk model using rcolgem.

HIV Data Processing

To reconstruct a phylogeny from real-world data, | queried
the Los Alamos National Laboratory (LANL) HIV Sequence
database (http://www.hiv.lanlgov/, last accessed June 15,
2015) to obtain all published HIV CRF 07BC env gp120 se-
quences isolated in China with known years of collection
(range 1997-2010). These records were restricted to one
record per patient (n=314) using the LANL interface, by
manual inspection, and by excluding identical sequences. |
generated a multiple sequence alignment from these se-
quences using MUSCLE (version 3.8.31; Edgar 2004). The re-
sulting alignment was manually edited in AliView (Larsson
2014) to exclude regions of gp120 with substantial indel var-
iation, which tend to produce alignment errors due to a lack
of homology among inserted sequences. A rooted and timed
phylogeny was reconstructed from this alignment using the
same procedure as applied to simulated sequence data (see
preceding section). An SIR model was fit to this tree by run-
ning an ABC-MCMC chain sample under the same condi-
tions as used in model validation. The first 100 steps was
discarded as a burn-in period. The same alignment was also
processed using the serial BDSIR method in BEAST?2. | speci-
fied a TN93 model with rate variation modeled by a gamma
distribution with four rate classes and an invariant rate cate-
gory. Additionally, | evaluated both strict and relaxed (uncor-
related lognormal) molecular clock models. To reconstruct
the dynamics of susceptible and infected populations, param-
eter values were extracted from every 100 steps of the kernel-
ABC chain sample and used to simulate BDSIR model
trajectories and trees using MASTER. The mean and standard
deviation of the model trajectories were exported using the
“moment” tag in the MASTER XML specification (Vaughan
and Drummond 2013).

Data Availability

Scripts, alignments, and phylogenies are available at http://
github.com/ArtPoon/kamphir (last accessed June 15, 2015).
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Supplementary Material

Supplementary tables S1 and S2 and figures S1—S5 are avail-
able at Molecular Biology and Evolution online (http://www.
mbe.oxfordjournals.org/).
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