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Abstract

Avian pathogenic Escherichia coli (APEC), which has potential zoonotic risk, can cause

severe systemic infections such as septicemia and meningitis in poultry. Colibactin is a

hybrid non-ribosomal peptide/polyketide secondary metabolite produced by bacteria, which

induces double-strand DNA breaks and chromosome instability in eukaryotic cells. ClbA is a

4’-phosphopantetheinyl transferase (PPTase) that is essential for colibactin and plays a role

in siderophore synthesis. However, whether ClbA is associated with meningitis develop-

ment in APEC is unclear. In this study, we abolished the clbA gene in the APEC XM strain,

investigated the effect of clbA on colibactin synthesis and evaluated the pathogenic capacity

of colibactin on meningitis development. Deletion of clbA reduced DNA damage to cells and

hindered the normal synthesis of colibactin. Compared with the mice infected by wild-type

APEC XM, the clbA deletion mutant infected mice had significant reduction in a series of

characteristics associated with meningitis including clinical symptoms, bacterial loads of

blood and brain, disruption of the blood brain barrier and the expression of inflammatory fac-

tors in the brain tissue. Complementation of ClbA recovered some APEC XM virulence. We

conclude that ClbA is obligatory for the synthesis of colibactin and is responsible for the

development of meningitis in mice infected by APEC.

Introduction

Avian pathogenic Escherichia coli (APEC) is an extra-intestinal pathogenic Escherichia coli
(ExPEC), which causes severe systemic infections such as meningitis and septicemia in poul-

try. The rate of isolation of meningitis-causing APEC from poultry is increasing, leading to an
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increasing proportion of neurological symptoms [1, 2]. APEC strains with serotypes O18 and

O2 cause meningitis in newborn mice and ducks. They harbor many similarities with neonatal

meningitis E. coli (NMEC) in genomic structure and toxic factors, such as ibeA, ibeB, and

gimB [3–5]. Therefore, APEC is considered to share similar virulence gene contents and patho-

genic ability with ExPEC and it has potential zoonotic risk.

Colibactin is a natural genotoxin that induces DNA double-strand breaks and damage in

eukaryotic cells, leading to cell cycle arrest and megalocytosis [6, 7]. Colibactin is synthe-

tized by a hybrid non-ribosomal peptide synthetase-polyketide synthase (NRPS-PKS)

assembly line, which is encoded by a 54-kb genomic island (pks island) [6]. The pks island

was initially identified in a NMEC strain IHE3034. It is also found in other E. coli strains

such as ExPEC, commensal strains [6] and in Klebsiella pneumoniae [8]. E. coli harboring

the pks island (pks+ E. coli) is over-represented in newborns with neonatal meningitis and

sepsis, and it exacerbates development of systemic pathologies [9]. In addition, pks+ E. coli
also causes a mutational signature in colorectal cancer [10] and promotes colon tumor

growth [11]. The pks island consists of a total of 19 genes (clbA to clbS) [6]. ClbA is a 4’-

phosphopantetheinyl transferase (PPTase) that is essential for biosynthesis of colibactin [6].

ClbA also contributes to siderophore biosynthesis. ClbA is important for maintaining the

full virulence of a phylogroup B2 ExPEC strain in a mouse model of sepsis [12]. The dele-

tion of clbA hindered Klebsiella pneumoniae hypervirulence in the meningitis development

of BALB/c mice [13].

APEC XM (O2:K1), a B2 phylogenetic group E. coli strain used in this study, was isolated

from the brains of ducks infected with meningitis and sepsis. This strain causes severe menin-

gitis in 5-week-old mice, newborn SD rats and ducks [14, 15]. However, the meningitis-caus-

ing mechanism of APEC has not been clarified. The genome of APEC XM carries the pks
island. The expressions of pks island genes such as clbA and clbG are induced when APEC XM

infects mouse microvascular endothelial cell line (bEnd.3) [16]. The possible clbA contribution

to meningitis development in APEC XM has not been reported. In this study, we deleted the

clbA gene in APEC XM and evaluated a series of phenotypes associated with meningitis devel-

opment in clbA deletion mutant in mouse meningitis infections.

Materials and methods

Bacterial strains, plasmids, and growth conditions

The bacterial strains and plasmids used in this study are listed in Table 1. The APEC XM

strain (O2:K1) was donated by Dr. Chengping Lu, Nanjing Agricultural University. It was

isolated from a duck brain with symptoms of septicemia and meningitis. The clbA deletion

mutant and complemented mutant were derived from the APEC XM. All bacteria were

grown aerobically on Luria-Bertani (LB) plates or in LB broth at 37˚C with agitation (180

rpm), except for the mutants containing the temperature-sensitive plasmid pCP20 or

pKD46, which was grown at 30˚C. Strains harboring antibiotic resistance genes were cul-

tured in LB containing ampicillin (Amp, 100 μg/mL) (Sangon Biotech, Shanghai, China) or

chloramphenicol (Cm, 34 μg/mL) (Sangon Biotech, Shanghai, China) when appropriate.

Plasmids pKD3, pKD46 and pCP20 were used for the λ-Red mediated recombination sys-

tem. pBR322 was used for the construction of the complemented mutant. To determine

growth rates, bacteria were incubated at 37˚C in LB broth for 24 h with continuous agitation

(180 rpm). The number of live bacteria was measured at 1 h intervals by determining the

optical density (OD) at 600 nm. The growth curve experiment was performed with three

biological replicates.
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Construction of the clbA deletion mutant and the complemented mutant

All primers used for mutant construction are listed in S1 Table. The clbA deletion mutant was

constructed using the λ-Red mediated recombination system as previously described [17, 18].

Briefly, primer pairs ClbA-F and ClbA-R were used to amplify the chloramphenicol resistance

(Cmr) cassette from plasmid pKD3, including 50-bp homology extensions from the 5’ and 3’

of the clbA gene sequence. The polymerase chain reaction (PCR) product was purified and

introduced into plasmid pKD46-containing APEC XM to construct the Cmr recombinant bac-

teria, and then, the Cm cassette was removed using plasmid pCP20. The clbA complete dele-

tion mutant APEC XM4clbA was confirmed by PCR screening using primers (ClbA-VF and

ClbA-VR) and DNA sequencing (S1 Fig). For the generation of the complemented strain, the

full-length clbA sequence was cloned into plasmid pBR322 using primer pair pBRclbA-F and

pBRclbA-R. The recombined plasmid pBR-clbA was transformed into the clbA deletion

mutant to generate the complemented mutant.

Determination of the genotoxic effect induced by colibactin

The expression of γ-H2AX in bEnd.3 cells was determined to assess the genotoxicity induced

by colibactin [6]. The bEnd.3 cells were infected with APEC XM, APEC XMΔclbA, or APEC

XMΔclbA/pclbA for 4 h. Cells were washed three times with PBS and incubated in Dulbecco’s

minimal Eagle medium (DMEM; Gibco, USA) with 10% fetal bovine serum (FBS; Gibco,

USA) containing gentamicin (100 μg/mL). Then, the expression of γ-H2AX was detected

immediately (at 0 h) or at 72 h post-incubation. The cells were washed three times and fixed

with 4% paraformaldehyde for 20 min and then permeabilized with 0.1% Triton X-100 for 20

min and processed for immunofluorescence following a standard protocol [19] using the pri-

mary antibody (monoclonal rabbit anti phosphorylated H2AX, Cell Signaling Technology,

MA, USA) and the secondary antibody (goat-anti-rabbit IgG (H+L) Alexa Fluor Plus 488,

Thermo Fisher Scientific, CA, USA). Then, the cells were stained with 4’, 6-diamidino-2-phe-

nylindole (DAPI, Beyotime Biotechnology, Shanghai, China). Finally, the coverslips were fixed

using a fluorescence mounting medium. The GFP fluorescence was detected and photo-

graphed by a fluorescence microscope (Leica, Weztlar, Germany).

Megalocytosis determination induced by colibactin

Mouse microvascular endothelial cell line bEnd.3 (American Type Culture Collection, ATCC

CRL-2299) was used to determine the cytotoxic effect induced by colibactin on eukaryotic

cells. The cells were cultured in DMEM with 10% heat-inactivated FBS at 37˚C in an

Table 1. Bacterial strains and plasmids used in this study.

Strain or plasmid Characteristic or function Source and reference

APEC XM Virulent strain of APEC Donated by Dr. Chengping

Lu

APEC XMΔclbA Deletion mutant of clbA with APEC XM background This study

APEC XMΔclbA/

pclbA
APEC XM ΔclbA carrying the vector pBR-clbA, Ampr This study

pKD46 Ampr, λ red recombinase expression [17]

pKD3 Cmr; Cm cassette template [17]

pCP20 Ampr, Cmr, Flp recombinase expression [17]

pBR-clbA Ampr, pBR322 carrying the entire clbA nucleotide

sequence

This study

https://doi.org/10.1371/journal.pone.0269102.t001
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atmosphere of 5% CO2. Megalocytosis determination was performed as described previously

[12]. Briefly, bacteria were cultured to log phase and washed with DMEM. The bEnd.3 cell cul-

tures (about 75% confluence) were infected with a multiplicity of infection (MOI) of 100. At 4

h post-inoculation, cells were washed three times with PBS and incubated in DMEM with 10%

FBS containing gentamicin (100 μg/mL) for 72 h. The cells were fixed with 4% paraformalde-

hyde for 20 min and then stained with 0.1% methylene blue for 20 min. The methylene blue

was extracted with HCl, and the quantification of staining was measured at OD600 nm using a

microplate reader.

Establishment of mouse meningitis model infected with APEC XM

The animal experiments followed the National Institute of Health guidelines for the ethical use

of animals in China. All animal protocols were approved by the Animal Care and Ethics Com-

mittee of Yangzhou University and carried out in accordance with the approved guidelines.

All research staffs have been trained in animal care and handling. Four-week-old Institute of

Cancer Research (ICR) mice were provided by the Comparative Medicine Center of Yangzhou

University (License number: SCXK (Su) 2017–0007). All mice had free access to food and

water under a 12:12 h (L:D) photoperiod.

Bacteria were grown in LB to log phase, collected by centrifugation and diluted in PBS

prior to inoculation into mice. Forty 4-week-old ICR mice were randomly separated into nega-

tive control group, APEC XM infection group, APEC XMΔclbA group and APEC XMΔclbA/

pclbA group. Each group included ten mice (five males and five females). Each mouse was

intraperitoneally injected with a dose of 107 CFU bacteria in 100 μL normal saline, or with

100 μL sterile normal saline in control group. The status and clinical symptoms of mice were

monitored per hour throughout the experiment. The health status of the mice was assessed by

a clinical score method which was described previously (0, no apparent behavioral abnormal-

ity; 1, moderate lethargy; 2, severe lethargy; 3, unable to walk; 4, dead) [20]. When reaching

clinical score 3, the mouse was sacrificed for ethical reasons. None of the animals died sponta-

neously. At 12 h post infection, 10 mice from each group were randomly chosen for Evans

blue (EB) (Sigma, USA) permeability assay. All efforts were made to minimize suffering. Then

the mice were sacrificed by manual cervical dislocation, which resulted in enthanasia within

approximately 10 second. Once euthanasia was confirmed, blood, brains, spleen and lungs

were immediately collected. None of mice died spontaneously before enthanasia.

Determination of bacterial loadings in mouse tissues

At 12 h post infection, the diseased mice were selected for euthanization and dissection. The

right hemisphere of the brain, lungs and blood samples were aseptically collected and homoge-

nized with sterile pre-cooled PBS. Bacteria were isolated from the abovementioned homoge-

nates by plating 10-fold serial dilutions on MacConkey plates. The bacterial loadings were

calculated by CFU per gram of organs or per microliter of blood.

Evans blue permeability assay

Evans blue (EB) can penetrate the blood-brain barrier (BBB) when the integrity of BBB is dis-

rupted under a pathological state. So, the integrity and permeability of BBB can be evaluated

by measuring the EB amount in the brain. A 2% EB solution in normal saline (100 μL per

mouse) was injected into the caudal vein of mice. After 30 min, the mice were anesthetized

and perfused with 50 mL of ice-cold PBS transcardially. After euthanasia, brain tissues were

collected and homogenized in 1.1 mL of pre-cooled PBS and then centrifuged at 15,000 g for

30 min at 4˚C [21]. The supernatant was collected in aliquots. Each 500 μL of supernatant was
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mixed into an equal amount of 50% trichloroacetic acid (Enox, China), incubated for 12 h at

4˚C, and centrifuged at 15,000 g for 30 min at 4˚C to separate the supernatants. The absor-

bance was measured at 630 nm using a spectrophotometer.

Expression of ZO-1, occludin, and claudin-5 proteins examination by

western blot

Expressions of zonula occludens (ZO)-1, occludin, and claudin-5 proteins in brains were mea-

sured by western blot. Briefly, total proteins were extracted from the brains using RIPA Lysate

Buffer (Beyotime Biotechnology) and separated by 12% SDS–PAGE. Gels were blotted onto

PVDF membranes using a Trans-Blot SD system (Bio-Rad, Hercules, CA, USA). The mem-

branes were rinsed with TBST20 buffer (20 mM Tris base, 150 mM NaCl and 0.1% Tween 20),

blocked for 2 h in 10% skimmed milk and incubated with primary antibodies overnight at

4˚C, including ZO-1 (1:1000; Invitrogen, Carlsbad, CA, USA), occludin (1:500; Invitrogen),

claudin-5 (1:50; Invitrogen) and GAPDH (1:1000; Cell Signaling Technology). The blots were

washed three times with TBST20 buffer. Then, the membranes were incubated with HRP-con-

jugated secondary antibodies (1:10000 dilution in 5% skimmed milk) at room temperature for

1 h. The blots were washed three times with TBST20 and developed using an enhanced chemi-

luminescence for 30 s. The blot intensity was analyzed using a chemiluminescence imaging

system (Clinx Science Instruments, ChemiScope 5300, China).

Detection of inflammatory cytokine expression in brain tissues by

quantitative real-time PCR (qRT-PCR)

Total RNA from brain tissues was extracted using TRIzol reagent (Invitrogen). cDNA was syn-

thesized using the PrimeScript RRT reagent kit with gDNA Eraser according to manufacturer

protocol (Takara, Tokyo, Japan). Primers for amplifying IL-1β, IL-6 and tumor necrosis fac-

tor-α (TNF-α) are listed in S1 Table. Relative transcript abundance was determined by

qRT-PCR with SYBR Premix Ex Taq II (Takara, Tokyo, Japan) using an ABI7500 instrument

(Applied Biosystems, Foster, CA, USA). Assays were performed in triplicate, and all data were

normalized to the endogenous reference gene GAPDH using the 2-44CT method.

Magnetic resonance imaging (MRI) scanning

The MRI scanning of brains was performed on a 7.0-T MRI scanner (Bruker Corporation,

BRUKER BIOSPEC 70/30, Germany). 5 mice in each group were used for Magnetic resonance

imaging (MRI) scanning. After 12 h post infection, the mice were anaesthetized by 2% isoflur-

ane inhalation and then maintained with 1.5% isoflurane. Then, the head of mouse was fixed

with two flat head plastic thumbscrews and placed on a heating pad for maintaining the body

temperature at 37˚C. The saturation of pulse oxygen, heart rate, respiratory rate and rectal

temperature of mouse were monitored during the scanning. The brain was scanned using

mapping sequence and T1-weighted imaging (T1WI) sequence. Gadopentetate meglumine

contrast was given by tail vein injection at the dosage of 0.1 mmol/kg of a 100 μL solution.

Then the contrast-enhanced T1WI sequence was performed to determine the permeability

changes of BBB after infection.

Brain histopathology and immunohistochemical analysis

The brain samples were excised and fixed in 4% paraformaldehyde for 2 d. Then, the tissues

were dehydrated using serial gradient alcohol and xylene and embedded in paraffin. The

embedded tissues were cut into 4-μm paraffin sections by an automated microtome (Leica,
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Weztlar, Germany) and stained with hematoxylin and eosin (H&E). The brain sections were

observed and analyzed using a microscope (Nikon, Eclipse 80i, Japan). Additionally, serial sec-

tions were used for immunohistochemical analysis. Briefly, the active endogenous peroxidase

was blocked by 3% hydrogen peroxide. The sections were placed in citrate buffer at 100˚C for

15 min, incubated with 5% bovine serum albumin (BSA; Boster Biological Technology) at

37˚C for 1 h and subsequently incubated with primary antibodies against ZO-1 (1:100 dilution;

Invitrogen), occludin (1:100; Invitrogen) and claudin-5 (1:200; Invitrogen) overnight at 4˚C.

The sections were washed and incubated with secondary antibody for 45 min at room temper-

ature. After washing with PBS three times, the sections were stained with 0.1% 3, 3’-diamino-

benzidine (DAB; Boster Biological Technology) and counter-stained with hematoxylin.

Protein expression was observed with a microscope (Leica), and images were analyzed by Ima-

geJ software.

Statistical analysis

Data were analyzed with SPSS 17.0 software (SPSS, Chicago, IL, USA) using one-way ANOVA

for multiple comparisons. Differences were considered significant when p� 0.05. The results

of immunohistochemical analysis were analyzed with Image-Pro Plus 6.0. Three biological

replicates were used in each experiment with three technical replicates.

Results

ClbA deletion does not affect the growth of APEC XM

The effect of ClbA on the growth of APEC was analyzed by the growth curves. The growth of

the clbAmutant in LB liquid medium was similar to that in WT and complemented mutant

(S2 Fig). This indicated that the deletion of clbA did not affect the growth of APEC XM.

ClbA is involved in colibactin production and elicits genotoxic effects in

vitro

The γH2AX expression and megalocytosis level in bEnd.3 cells were detected to evaluate the

effect of ClbA in colibactin production and genotoxicity. The result of immunofluorescence

staining assay of γH2AX showed that, after 4 h of infection, the percentages of γH2AX positive

cells infected by APEC XM ΔclbA decreased significantly at 0 h post-infection (hpi, S3A and

S3B Fig) and 72 hpi (S3C and S3D Fig) (p<0.01) when compared with that infected by APEC

XM. There were no differences in the phosphorylation of H2AX between the APEC ΔclbA
infection group and the control group. This indicated that deletion of clbA led to a decreased

ability of APEC to damage DNA in bEnd.3 cells. The APEC XM ΔclbA/pclbA completely

restored the genotoxicity to bEnd.3 cells.

Colibactin led to megalocytosis in bEnd.3 cells due to blocking of the cell cycle. Megalocyto-

sis was measured by methylene blue staining and absorbance value determination at 630 nm.

The cells infected with AEPC XM ΔclbA showed attenuated megalocytosis and significantly

higher absorbance (630 nm) compared with the AEPC XM infection group (p<0.01) but a

similar absorbance as the control group (S3E Fig). This indicated that ClbA affected the geno-

toxicity to bEnd.3 cells and colibactin production of AEPC XM. The APEC XM ΔclbA/pclbA
completely restored colibactin production ability.

ClbA plays an important role in the virulence of APEC XM in vivo

The ClbA function in the virulence of APEC XM was evaluated by infecting a mouse model

with wild-type APEC XM, APEC XMΔclbA and APEC XMΔclbA/pclbA, respectively. After
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challenge with APEC XM for 6 h, the mice began to show clinical signs one after another.

Especially during 10–12 hours, most mice displayed serious clinical symptoms such as depres-

sion, thick eye discharge, diarrhea, neurological symptoms and unable to walk (clinical score

2~3, Fig 1A and 1B). At 12h, clinical scores of all the mice reached 3. In the APEC XMΔclbA
infection group, the mice did not present apparent behavioral abnormality (clinical score 0,

Fig 1A and 1B), while the mice infected by APEC XMΔclbA/pclbA displayed similar clinical

signs with APEC XM infected mice (Fig 1A and 1B).

The bacterial loads in the brain, spleen and lungs were significantly decreased in the APEC

XMΔclbA infection group (p<0.01), when compared with the APEC XM infection group. In

the APEC XMΔclbA/pclbA infection group, the bacterial loads in the above mentioned organs

were similar to those in the APEC XM infection group (Fig 1C). These results indicated that

the deletion of clbA decreased the virulence of APEC XM, and the complementation of clbA
restored the virulence of APEC XM.

ClbA contributes to blood-brain barrier disruption in vivo

The amount of EB in the brain is proportional to the integrity of BBB. In this study, the brains

of mice infected by APEC XM, APEC XMΔclbA, and APEC XMΔclbA/pclbA were stained by

Evans blue dye. Compared to the negative control group, significant EB stain accumulation

was observed in the mice brains infected by APEC XM and APEC XMΔclbA/pclbA, while only

slight stain accumulation was observed in the brains of APEC XMΔclbA-infected mice (Fig

2A). Quantification of EB in the APEC XMΔclbA infection group was significantly decreased,

compared with the APEC XM infection group (p<0.01) (Fig 2B). There was no significant dif-

ference in the quantification of EB between the APEC XM and APEC XMΔclbA/pclbA infec-

tion groups (Fig 2B).

The expressions of tight junctional proteins ZO-1, occludin and claudin-5 were detected in
vivo by western blot and immunohistochemical staining. The western blot results showed that,

compared with the negative control group, the expressions of ZO-1, occludin and claudin-5 in

the brains of mice infected by APEC XM and APEC XMΔclbA/pclbA were all significantly

decreased, while the expression level in the APEC XMΔclbA infection group was similar to

that in the control group (Fig 3A–3D). The immunohistochemical staining of ZO-1 (Fig 4A),

claudin-5 (Fig 5A) and occludin (Fig 6A) can be observed in the pia mater, cerebral cortex and

hippocampus of the mice brains. Compared with the negative control group, the expression of

ZO-1 (Fig 4B–4D), claudin-5 (Fig 5B–5D) and occludin (Fig 6B–6D) in the pia mater, cerebral

cortex and hippocampus of mice brains infected by APEC XM and APEC XMΔclbA/pclbA
was significantly decreased, while the expression level in the APEC XMΔclbA infection group

was similar to that in the control group. These results indicated that deletion of clbA decreased

the disruption of BBB integrity and permeability.

ClbA contributes to brain lesions in mice

The MRI scan (enhanced T1WI) revealed that a range of lesions such as thickened pia mater,

widened sulci and a diffusion enhancement of cerebral parenchyma occurred in mice brains

infected by APEC XM. The lesion characteristics of mice infected by APEC XMΔclbA were

lower when compared with the APEC XM infection group. The lesion causing ability of APEC

XMΔclbA/pclbA restored partly (Fig 7). It indicated that ClbA contributed to brain lesions in

mice.

The histopathological analysis showed that pia mater of the brains in mice challenged with

APEC XM was discontinuous, edematous and was detached from the cerebral cortex. Leuko-

cyte infiltration could be observed in the cerebral cortex. There were no obvious
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Fig 1. ClbA is required for the virulence of APEC XM in vivo. (A) Clinical symptoms of mice after 12h infection. The mice infected by APEC

XM suffered from lethargy, thick eye discharge and diarrhea. The mice infected by APEC XMΔclbA displayed very mild symptoms. (B) Clinical

scores of mice which challenged with APEC XM, APEC XMΔclbA and APEC XMΔclbA/pclbA for 12h infection. Ten mice in each group were

used this experiment. The clinical scores were recorded at time points of 2, 4, 6, 8, 9, 10, 11, 12 hour. Data were analyzed with one-way ANOVA

and presented as the mean±standard errors of the mean for the clinical scores of 10 mice in each group. (C) Bacterial loads in the brain, blood,

spleen and lungs of infected mice after 12 h of infection. 10 mice in each group were used in this experiment. Dots represent the values of

bacterial loads in the organs of each infected mouse which are calculated by plate counting with triplicate replicates. Data were analyzed with
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histopathological characteristics in the brains of mice when challenged with APEC XMΔclbA.

The mice brains challenged with APEC XMΔclbA/pclbA showed histopathological characteris-

tics similar to those in the mice infected by the wild-type strain (Fig 8).

The relative expressions of IL-1β, IL-6 and TNF-α mRNA in brain tissues were measured by

qRT-PCR. Compared with the negative control group, the relative expressions of IL-1β, IL-6
and TNF-α were all increased significantly in the brains of mice infected by APEC XM

(p<0.01). IL-1β, IL-6 and TNF-α mRNA expression was decreased in the APEC XMΔclbA
infection group compared with the APEC XM infection group (p<0.01), while there was no

significant difference between the APEC XMΔclbA/pclbA and APEC XM infection groups (Fig

9). Based on the results of the MRI scan, histopathological analysis and inflammatory cytokine

expression, we conclude that the deletion of clbA decreased the brain lesions caused by APEC

XM in mice.

Discussion

APEC XM (O2:K1) used in this study induces meningitis in animals and is considered to have

potential zoonotic risk. Because APEC and NMEC utilize similar pathogenic strategies for

causing meningitis [22], the meningitis-causing mechanism of APEC is attracting increasing

attention. The development of meningitis is dependent on a series of virulence factors such as

IbeA and OmpA. However, many factors are uncharacterized. Colibactin, encoded by a pks
island, is produced in many B2 phylogenetic group E. coli strains that cause sepsis and

one-way ANOVA and presented as the mean±standard errors of the mean for the organs of 10 mice. Significant differences between the APEC

XMΔclbA and wild-type strain APEC XM are indicated (��p< 0.01, versus APEC XM group).

https://doi.org/10.1371/journal.pone.0269102.g001

Fig 2. Determination of BBB integrity by EB staining. 10 mice in each group were inoculated intraperitoneally with

107 CFU of test bacteria (APEC XM, APEC XMΔclbA, and APEC XMΔclbA/pclbA) or with an equal volume of sterile

saline. After 12 h of infection, 2% EB solution was injected to the mice. EB content that penetrated the brain was

determined by measuring the absorbance (OD630) after brain homogenization and precipitation. (A) Dorsal view of

Evans blue stained mouse brains after EB injection; (B) Quantification of EB content in mice brain. Dots represent the

OD630 values of EB content in the brains of each infected mouse. Data were analyzed with SPSS 17.0 software using

one-way ANOVA. Error bars represent the standard errors of the means. Significant differences between the wild-type

strain APEC XM and the APEC XMΔclbA are indicated (��p< 0.01, versus APEC XM group).

https://doi.org/10.1371/journal.pone.0269102.g002
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meningitis in human neonates [23–25]. Phylogenetic analysis revealed that the majority of

meningitis E. coli belonged to the B2 phylogroup [26]. ClbA, a PPTase, contributes to the pro-

duction of both colibactin and PPTase-dependent siderophores [6, 12]. It is unclear whether

ClbA has a pleiotropic function in virulence and meningitis-causing ability of APEC. In this

study, we established a mouse infection model, abolished the clbA gene and evaluated the path-

ogenic role of ClbA in meningitis caused by APEC XM.

In our study, the established mouse infection model is suitable for evaluating the func-

tion of ClbA on meningitis development. Although APEC XM was originally isolated from

the brains of ducks, this strain could also infect mice [14]. APEC is considered to be a

potential pathogen of humans because of the high similarity between APEC and NMEC

[22]. A mouse model is valuable to clarify the potential pathogenic mechanism in mammals.

We found that APEC XM could infect mice, and the infected mice displayed a series of typi-

cal clinical symptoms associated with meningitis. This indicated that the model was

Fig 3. The expressions of ZO-1, claudin-5 and occludin in the brain were measured by western blot. 9 mice in each group were

used in this experiment. Because of low protein content, samples from each of the three mice in each group were merged together as

one sample for WB detection. In other words, this experiment was repeated three times with three technical replicates. GAPDH was

used as a loading control. The protein expression in the control group is defined as 100%. The dots represent the ratio of gray density

value of protein in bacterial infection group to that in control group for each replicate. Data are analyzed with SPSS 17.0 software using

one-way ANOVA and expressed as mean ± standard error of the mean for triplicate experiments. Significant differences between the

wild-type strain APEC XM and the APEC XMΔclbA are indicated (��p< 0.01, �, 0.01< p< 0.05, versus APEC XM group).

https://doi.org/10.1371/journal.pone.0269102.g003
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constructed successfully and could be used for further study of the ClbA function in menin-

gitis development.

In E. coli K1 and Klebsiella pneumoniae, ClbA contributes to the synthesis of both colibactin

and siderophores [12, 13]. Colibactin is a genotoxin that induces DNA damage and chromo-

somal abnormalities in vitro and in vivo [7, 27]. Colibactin is a veritable virulence factor in the

mouse model with sepsis or neonatal meningitis. Pks-harboring E. coli could be isolated from

immunocompromised mice with urosepsis and meningitis [28]. The production of colibactin

by septicemic E. coli exacerbates lymphopenia and decreases the survival rate in mice [29]. In

an E. coli strain expressing the K1 capsule, colibactin contributes to the colonization capacity

of the neonatal gastrointestinal tract and subsequently causes systemic infection in neonates

[9]. Abolishment of colibactin production hinders K. pneumoniae hypervirulence in key

Fig 4. The expressions of ZO-1 in the brain were measured by immunohistochemistry. This experiment was repeated three times. 3 mice were used in each

group for each experiment. (A) Immunohistochemistry staining of ZO-1 protein in infected mouse brains (bar = 20 μm). The black arrowheads point to the

pia maters, and the black arrows point to the microvascular. The percentage of positive staining intensity of ZO-1 in pia mater (B), cerebral cortex (C) and

hippocampus (D) was calculated by defining the relative optical density of the control group as 100%, and the relative optical densities of other groups were

normalized by the control group. The dots represent the relative optical densities for each replicate. Data are analyzed with SPSS 17.0 software using one-way

ANOVA. The results are presented as the mean ± standard deviations of three independent experiments. Significant differences between the wild-type strain

APEC XM and the APEC XMΔclbA are indicated (��, p< 0.01, versus APEC XM group).

https://doi.org/10.1371/journal.pone.0269102.g004

PLOS ONE clbA contributes to the virulence of APEC in meningitis infection of mice

PLOS ONE | https://doi.org/10.1371/journal.pone.0269102 July 28, 2022 11 / 19

https://doi.org/10.1371/journal.pone.0269102.g004
https://doi.org/10.1371/journal.pone.0269102


pathogenic steps toward meningitis development [13]. It indicated that colibactin was an

important virulent factor in K. pneumoniae and E. coli. Siderophore-mediated iron acquisition

is important for the survival of E. coli in the host and extra intestinal infection. As a critical fac-

tor for siderophore synthesis, ClbA contributes to the virulence of E. coli during the step of the

infection in a mouse model of sepsis [12]. Moreover, clbA was essential for colibactin produc-

tion and substantially attenuated the genotoxicity to mammalian cells [6, 9, 13].Our study

revealed that the clbAmutation led to the loss of genotoxicity of APEC XM to bEnd.3 cells.

This indicated that ClbA was a critical factor for colibactin synthesis. Besides clbA, all the

genes in pks island were required to synthesize colibactin in E. coli [6]. Previous studies showed

that the deletion of clbG or clbH abolished the production of colibactin and then affected the

development of meningitis in mice induced by APEC [30, 31]. This study demonstrated that

the deficiency of clbA significantly attenuated APEC virulence in systemic infections and the

process of meningitis development including bacteremia, penetration of the BBB and induc-

tion of pro-inflammatory factor expression. The decrease of virulence caused by clbH or clbG

Fig 5. The expressions of claudin-5 in the brain were measured by immunohistochemistry. (A) Immunohistochemistry staining of claudin-5 protein in

infected mouse brains (bar = 20 μm). (B-D) The percentage of positive staining intensity of claudin-5 in pia mater (B), cerebral cortex (C) and hippocampus

(D). The methods of positive staining intensity calculation and data analysis were same as that in Fig 4.

https://doi.org/10.1371/journal.pone.0269102.g005
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deletion was much less obvious than that caused by clbA deletion. It was speculated that the

contribution of ClbA in attenuation of APEC virulence was caused by not only colibactin-

caused cytotoxicity but also ClbA-mediated iron uptaken.

Bacterial meningitis usually develops through several processes. These include mucosa coloni-

zation in the gastrointestinal tract or upper respiratory tract, crossing the mucous membrane cell

layer, invasion into and survival/multiplication in the bloodstream with a high level of bacteremia,

traversing the BBB and entry into the subarachnoid space. After these processes, bacterial menin-

gitis elicits inflammation and pathophysiological alterations such as BBB disruption and brain

damage [32–34]. Multiplication in the bloodstream to reach the threshold level of bacteremia is

necessary for meningitis development [32]. A significantly higher occurrence of E. colimeningitis

in neonates is observed when the bacterial counts in blood are higher than 103 CFU/mL [35]. In

this study, mice infected by APEC XM had more than 105 CFU/mL bacterial loads in the blood,

and they suffered from meningitis. In addition to their presence in the blood, bacteria were also

isolated from the brain, spleen and lungs of mice. This indicated that APEC XM caused a systemic

Fig 6. The expressions of occludin in the brain were measured by immunohistochemistry. (A) Immunohistochemistry staining of occludin protein in

infected mouse brains (bar = 20 μm). (B-D) The percentage of positive staining intensity of occludin in pia mater (B), cerebral cortex (C) and hippocampus (D).

The methods of positive staining intensity calculation and data analysis were same as that in Fig 4.

https://doi.org/10.1371/journal.pone.0269102.g006
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infection. Deletion of clbA significantly reduced the bacterial loads of APEC XM in the blood,

brain, spleen and lungs of mice. It indicated that ClbA and colibactin in APEC were important in

the bacteremia and systemic infection of mice. Colibactin in the E. coliK1 strain also contributed

to invasion of the blood and was associated with bacteremia and systemic infection in a neonatal

rat model [9]. We speculate that colibactin in neonatal meningitis-causing E. coli and that in

APEC have similar pathogenic mechanisms in the bacteremia and systemic infection.

Penetration of the BBB is a prerequisite for the development of central nervous system

(CNS) infection and meningitis [36, 37]. EB staining of brain showed that the permeability of

Fig 8. Histopathological analysis of the brain tissue of 4-week-old ICR mice infected with APEC XM, APEC XMΔclbA and APEC XMΔclbA/pclbA
and non-infected mice. Sections were stained with hematoxylin-eosin and visualized with an optical microscope (bar = 100 μm). Thickened pia mater

with hemorrhage (red arrowheads) was observed in the brain section of mice infected by APEC XM and APEC XMΔclbA/pclbA. Leukocyte infiltration

(black arrowheads) was observed in the cerebral cortex and medulla of mice infected with APEC XM and APEC XMΔclbA/pclbA.

https://doi.org/10.1371/journal.pone.0269102.g008

Fig 7. Lesion examination of mouse brains by MRI scanning. MRI was performed to assess the brain lesions at 12 h post infection. Diffusion enhancement of the

cerebral parenchyma (Blue Arrowhead) are observed in the mice infected with APEC XM or APEC XMΔclbA/pclbA.

https://doi.org/10.1371/journal.pone.0269102.g007
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BBB in the mouse brain was enhanced by APEC infection. Deletion of clbA significantly

reduced the ability of APEC to penetrate the BBB. ZO-1, occludin and claudin-5 are the main

elements of intercellular tight junction proteins, which are responsible for the BBB structure

and functional integrity [38]. Damage to, or detachment of ZO-1 may enhance the barrier per-

meability. Occludin is a tight junction-associated transmembrane protein with barrier func-

tion [39]. Claudin-5 is an important component of the tight junctions by selectively decreasing

the permeability to ions and maintaining high transepithelial electrical resistance [40]. Previ-

ous studies demonstrated that the expressions of ZO-1, occludin and claudin-5 were reduced

in the brain endothelial cells infected by E. coli [41] or Neisseria meningitidis [42]. We demon-

strated that the expressions of ZO-1, occludin and claudin-5 were observably decreased when

the mice were infected by APEC XMΔclbA, compared with mice infected by APEC XM. It

indicated that clbA deletion in APEC reduced BBB disruption in the brain of mice. Due to a

pleiotropic phenotype of clbAmutant related to colibactin and siderophores, this reduction of

BBB disruption could be caused by a direct or indirect combined effects of colibactin and side-

rophores. The previous study showed that colibactin contributed to serum resistance ability of

APEC [30]. Deletion of colibactin-encoded genes such as clbH, clbG decreased the bacterial

load in the blood of APEC infected mice [30, 31]. ClbA deletion also showed the similar phe-

notype in our study. It was supposed that colibactin-mediated bacterial serum resistance and

the amount of bacteria in the blood led to the reduction of BBB disruption. Moreover, as a gen-

otoxin, colibactin probably reduced the BBB disruption by inducing DNA damage in mouse

brain microvascular endothelial cells. In addition, ClbA could contribute to siderophores syn-

thesis. The presence of ClbA was required for the survival of ExPEC in vivo [12]. Reduction of

BBB disruption in clbAmutant could be caused by a non-specific damage of the tissue associ-

ated with increased survival of the bacteria in the extraintestinal compartment.

Once bacteria enter the CNS, they multiply and induce brain dysfunction and the release of

host pro-inflammatory factors such as cytokines IL-1β, IL-6 and TNF-α [43]. IL-1β is associated

with systemic inflammatory response and contributes to macrophage recruitment and Streptococ-
cus pneumoniae clearance [44]. TNF-α is a powerful inflammatory cytokine related to the acute

phase of inflammation. TNF-α and IL-6 can induce a permeability increase of BBB, which is

Fig 9. The mRNA transcript levels of inflammatory cytokines TNF-α (A), IL-1β(B), and IL-6 (C) were determined by qRT-PCR. This experiment was repeated three

times. 3 mice were used in each group for each experiment. The relative gene expression level was calculated using the 2-44CT method. GAPDH was used as the

normalizing internal standard. The data were analyzed with SPSS 17.0 software using one-way ANOVA and presented as mean ± standard deviations of three replicates.

Significant differences between APEC XMΔclbA and APEC XM are indicated (��, p< 0.01, �, 0.01< p< 0.05, versus APEC XM group).

https://doi.org/10.1371/journal.pone.0269102.g009
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caused by a decrease of ZO-1 and occludin expression and loss of BBB integrity [45, 46]. The

infection caused by APEC in this study led to a significant increase in the expression of IL-1β, IL-

6 and TNF-α mRNA in mice brains. The increased expression of these cytokines is consistent

with the characteristics of bacterial meningitis. The cytokine expressions were decreased because

of clbA deletion in APEC. Histopathological analysis and MRI examination also showed that dele-

tion of clbA reduced the brain injuries of mice infected by APEC. This indicated that colibactin

contributes to the pathogenicity of APEC in brain damage and meningitis development.

In summary, ClbA is an essential factor for colibactin production and contributes to APEC

virulence in systemic infections and meningitis development in mice. However, the manner in

which ClbA affect meningitis development through genotoxicity and iron absorption remains

unclear. Because colibactin has not been purified [7], the direct toxic effect of colibactin on the

mouse brain remains unknown.
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