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Abstract

Information transfer, measured by transfer entropy, is a key component of distributed com-

putation. It is therefore important to understand the pattern of information transfer in order to

unravel the distributed computational algorithms of a system. Since in many natural systems

distributed computation is thought to rely on rhythmic processes a frequency resolved mea-

sure of information transfer is highly desirable. Here, we present a novel algorithm, and its

efficient implementation, to identify separately frequencies sending and receiving informa-

tion in a network. Our approach relies on the invertible maximum overlap discrete wavelet

transform (MODWT) for the creation of surrogate data in the computation of transfer entropy

and entirely avoids filtering of the original signals. The approach thereby avoids well-known

problems due to phase shifts or the ineffectiveness of filtering in the information theoretic

setting. We also show that measuring frequency-resolved information transfer is a partial

information decomposition problem that cannot be fully resolved to date and discuss the

implications of this issue. Last, we evaluate the performance of our algorithm on simulated

data and apply it to human magnetoencephalography (MEG) recordings and to local field

potential recordings in the ferret. In human MEG we demonstrate top-down information flow

in temporal cortex from very high frequencies (above 100Hz) to both similarly high frequen-

cies and to frequencies around 20Hz, i.e. a complex spectral configuration of cortical infor-

mation transmission that has not been described before. In the ferret we show that the

prefrontal cortex sends information at low frequencies (4-8 Hz) to early visual cortex (V1),

while V1 receives the information at high frequencies (> 125 Hz).

Author summary

Systems in nature that perform computations typically consist of a large number of rela-

tively simple but interacting parts. In human brains, for example, billions of neurons

work together to enable our cognitive abilities. This well-orchestrated teamwork requires

information to be exchanged very frequently. In many cases this exchange happens rhyth-

mically and, therefore, it seems beneficial for our understanding of physical systems if we
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could link the information exchange to specific rhythms. We here present a method to

determine which rhythms send, and which rhythms receive information. Since many

rhythms can interact at both sender and receiver side, we show that the above problem is

tightly linked to partial information decomposition—an intriguing problem from infor-

mation theory only solved recently, and only partly. We applied our novel method to

information transfer in the human inferior temporal cortex, a brain region relevant for

object perception, and unexpectedly found information transfer originating at very high

frequencies at 100Hz and then forking to be received at both similarly high but also much

lower frequencies around 20Hz. These results overturn the current standard assumption

that low frequencies send information to high frequencies.

This is a PLOS Computational Biology Methods paper.

Introduction

Many natural or artificial complex systems perform distributed computation. In a distributed

computation multiple relatively simple parts of the system perform rather elementary opera-

tions on their inputs, but do communicate heavily amongst each other in order to jointly

implement complex computations. Along similar lines other complex systems in a similar way

consist of many interacting simple parts that exchange information in some sense. Thus, to

understand such complex systems, measuring the information transferred between the parts

of the system is crucial. A mathematically rigorous measure of information transfer is the

transfer entropy (TE) [1]. TE, as a model-free information theoretic measure, is ignorant of

the details on how the information transfer is physically implemented, which is indeed a highly

desirable property when we only want to detect and measure information transfer. However,

many systems display highly rhythmic activity when performing distributed computation, sug-

gesting that measuring the information transfer associated with different spectral components

may provide valuable additional insights. This holds in particular for biological neural systems

where rhythmic or quasi-periodic activity is found frequently across many scales from spiking

activity of individual neurons to electroencephalographic (EEG) recordings of large pools of

neurons (see [2] and references therein).

Early attempts [3] to obtain the desired frequency-resolved measurement of TE resorted to

narrow-band filtering of the data from information source and information receiving target

and to feeding the resulting narrow-band signals into a TE analysis (including the additional

calculation of a signal envelope in [3]). Yet, these approaches come with certain problems that

are well-known from the field of Granger-Causality (GC) analysis. Due to the equivalence of

GC and TE for jointly Gaussian variables [4], these problems carry over to TE analyses:

1. Most importantly, the use of filters prior to TE computation for achieving frequency resolu-

tion will lead to false positive results due to phase distortions, or will not have the desired

frequency-specific effect at all, i.e. TE computed from filtered and unfiltered signals is

approximately the same. This latter effect is due to the fact that reducing the power of a sig-

nal does not reduce the information contained in it, except for additional effects of signal

quantization. Both modes of failure are well known from results on the linear approxima-

tions of TE (e.g. via Granger causality, [4–7]).
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2. The usual focus on information transfer between a source and a target within a specific nar-

row frequency band (driven by ideas of synchronization) practically confines the analysis to

the linear interaction regime—even when using a nonlinear, model-free, measure like TE.

This is because many interesting nonlinear mechanisms of information transfer will actu-

ally transform frequencies between source and target.

3. Within-frequency band analyses also ignore the potential many-to-many relationships that

source and sender frequencies could have when there is information transfer. For example,

a signal at approximately 10 Hz in the source may not seem to transfer information to any

specific frequency of the target, yet when considering all frequencies of the raw target signal

together, then non-zero TE from 10 Hz at the source to the full signal at the target is

observed. In the same way, source signals in two or more bands may have to be considered

jointly to reveal TE to the target. On the other hand, multiple bands in the source may carry

and transfer identical information to the target, that might be ‘double counted’ in a naive

frequency-resolved analysis. Last, when one frequency is observed sending information and

another receiving information, it is not guaranteed that this is actually the same informa-

tion. In other words, information may be sent from the observed source frequency to all tar-

get frequencies jointly while different information may be sent from all source frequencies

jointly to a specific target frequency.

To circumvent filtering-related problem 1 we here suggest a novel algorithm to obtain fre-

quency resolution of TE without ever filtering the original signals. Instead of filtering the origi-

nal signals, we apply filtering in the creation of surrogate data representing the null-hypothesis

of no information transfer at the frequencies of interest. This way, we use the potential distort-

ing effect of filtering to our advantage, and destroy temporal order in the surrogates instead of

changing the power-spectra of the signals. To solve problem 2, we create the frequency-specific

surrogate data separately for source- and target-frequencies. This reflects that frequency spe-

cific TE is a many-to-many problem, and that within frequency-band analyses may miss most

or all of the information transfer. We then discuss problem 3 at the conceptual level, and we

explain how splitting of source and target signals into multiple frequencies gives rise to a mul-

tivariate problem that is of the ‘partial information decomposition’ (PID)-type [8, 9]. We use

the PID formalism specifically to shed light on the inherent complexity of the problem of spec-

trally-resolved information transfer in the case where more than one frequency carries infor-

mation. This also adds an independent motivation to frequency-resolve source and target

separately.

Materials and methods

We start this section with a detailed problem statement, explaining what is and what is not

provided by the proposed algorithm. We then also present technical background material on

the transfer entropy measure and on the creation of frequency-specific surrogate data in which

only a single spectral component has been altered. These two technical sections maybe be

skipped at first reading or when not interested in technical details. After this technical back-

ground we then present the two core algorithms of this study, which serve to identify source-

frequency specific and receiver-frequency specific information transfer.

Background

Problem statement and analysis setting. The aim of the methods proposed here is to

determine whether there is statistically significant information transfer orienting from some

frequency in an information source, and being received by some—potentially different—
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frequency in a target of the information transfer. We pose this question in a network setting.

This means that we are interested in the above frequency-resolved information transfer condi-

tional on the other processes in the network. For the algorithms presented here we explicitly

assume that the multivariate network identification problem has been solved, i.e. that the

information transfer between a source and a target, conditional on the relevant rest of the net-

work, is genuine. By this we mean that the information flows directly from source to target,

and does not flow via any intermediate node that we have data from. We also assume that the

information transfer in question is not an apparent information transfer due to common

driver effects (see e.g. [10]). This setting can be achieved by computing either multivariate

transfer entropies directly (see next section), possibly via some greedy approximation [11, 12],

or via a computation of bi-variate transfer entropies in combination with another approximate

correction method [10].

Specifically, we assume a network of M + 1 nodes. For any spectrally resolved analysis these

are conceived of as M potential source processes Si; i ¼ 1 . . .M, and 1 potential target pro-

cess T . These stochastic processes are represented by multidimensional state vectors Si, T (see

e.g. [13]), covering the relevant past of the processes. This relevant past can be obtained via the

methods described in [14] and [11]. The assignment of a process to be the target can be

repeated until the whole network has been covered. Ultimately, we obtain a set of targets with

their respective information sources in space and time. For each information source of a target

we have in the process also computed the frequency-independent information transfer from

source to target—conditional on the other sources in the form of a conditional, or multivariate,

transfer entropy.

Last, we would like to stress again that in this setting problems related to cascade and com-

mon driver effects in the network can be considered as solved, or solved to the degree possible

by non-interventional methods. Our methods to compute spectrally-resolved information

transfer can then be seen as post-processing step aimed at providing the more fine grained

spectrally-resolved perspective, i.e. the methods presented here are not aimed at providing net-

work identification.

Technical background: Transfer entropy and pre-computation of multivariate transfer

entropy. Transfer entropy (TE) as the fundamental measure of information transfer was

introduced first in [1] in a bivariate framework for two random processes X , Y as:

TEðX ! YÞ≔ IðYþ : X� jY� Þ ð1Þ

where I(�: �|�) is the conditional mutual information and Y+, Y−, X− are, respectively, a future

random variable of the process Y, a vector of suitably chosen past random variables of the past

of that process, and a suitably chosen vector of past random variables of the process X (see [1,

11, 13–15] for considerations on the correct choice of the past random variables). TE measures

the amount of information transferred between a single source and a single target process. In a

network setting where multiple sources may interact to transfer information to a target, or

where multiple sources transfer information redundantly to a target, TE needs to be extended

to a multivariate formalism in order to avoid spurious results. Thus, we need to measure the

information transfer from a single source to a target, but now in the context of all other rele-

vant sources in an observed network [10, 16]. In other words, the multivariate TE (mTE) for a

system of M random source processes S1; . . . ;SM , and a target T , observed over D discrete

time steps, represented by random vectors Si = (Si,1, . . ., Si,D), measures the information trans-

fer as a conditional mutual information of the following form:

mTEtotðSi ! T jSnfSi ;Tg
<t Þ ¼ IðTt : Si;<tjT<t; S

nfSi ;Tg
<t Þ ; ð2Þ
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where T is a process considered as the current target of the information transfer, Si,<t =

(Si,t−δ, . . ., Si,t−k), with δ� k is a vector of random variables chosen from Si from the past of

the current time point t. The last element k of this vector is chosen such that Si,<t renders Tt

conditionally independent of all variables in the process Si that are further back in time. The

delay parameter δ is chosen such that it reflects the physical delay in the system (see [14]).

SnfSi ;Tg
<t signifies the collection of past random variables from all other processes except Si and

T. Last, the subscript ‘tot’ means that we are focusing on the total information transferred

from all relevant past variables of the process Si, rather than the contribution of each indi-

vidual variable Si,d.

Computing the mTEtot in Eq 2 exactly is an NP-hard problem [17], and approximations are

necessary for practical use. This problem was recently addressed in [12, 18], with the imple-

mentation of an approximate greedy algorithm in the IDTxl toolbox, which allows a large-scale

directed network inference with mTE [11] and is freely available from GitHub (https://github.

com/pwollstadt/IDTxl). IDTxl performs a greedy algorithm with an iterative sequence of sta-

tistical steps to infer the ‘relevant’ sources of the network, thus reducing the dimensionality of

the problem, and allows to properly construct the nonuniform embedding of source and target

time-series [19, 20], i.e. it also yields approximations for parameters like δ and k. We note that

even using the greedy approximation, computations of mTEtot scale as n3, with n being the

number of processes under consideration. Last we note that any interpretation of empirical

values for mTEtot from real-world systems needs to take into account also problems of partial

observability (not all relevant nodes of the system are recorded) [21] and coarse graining

(recordings from ‘nodes’ of the system represent summary signals from more microscopic

parts).

The mTEtot estimated from the original data will be the test statistic of interest for our spec-

tral mTE algorithm in which it is statistically tested against a non-parametric null distribution

of the same measure computed from frequency-specific surrogate data constructed by the

maximum overlap discrete wavelet transform (MODWT). These surrogate data represent the

null hypothesis of no information transfer being sent (or received) by the frequency of

interest.

In the exposition of the spectral mTE algorithm below we will assume that multivariate

network reconstruction, and mTEtot estimation for the original data have been performed

and a set of sources Si,<t significantly contributing mTE for the target T has been identified.

This set of significant source processes with respect to a target will be passed to the spectral

TE algorithm, to identify TE relations at specific frequencies in these sources and the target.

The algorithm is applied to find the spectral components of contributing to the overall infor-

mation transfer one source at a time Si,<t, but is of course repeated over all relevant sources

of a target.

All values of mTEtot were estimated using the nearest-neighbour based methods proposed

by Kraskov (estimator 1 in [22] as implemented in the IDTxl toolbox [12]. For all simulations

we reported the sample size of data points used. For the empirical data see descriptions of the

data in the corresponding sections below.

Technical background: Maximum overlap discrete wavelet transform. Several methods

have been established for surrogate data creation, each with its own limitations and advantages

(see [23] for a review). Among many, wavelet-based methods allow to create frequency-spe-

cific surrogate data through randomization of the wavelet coefficients [24]. In particular, wave-

let-based surrogates that preserve the local mean and the variance of the data were introduced

by [25]. Similarly to [26], we employ the Maximal Overlap Discrete Wavelet Transform

(MODWT), to transform the data in the wavelet domain. The MODWT is well defined for
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time-series of any sample size and produces wavelet coefficients and spectra unaffected by the

transformation. [26].

The MODWT of a time-series X = (X0, . . ., XN−1) of J0 levels, where J0 is a positive integer,

consists of J0 + 1 vectors: J0 vectors of wavelet coefficients ~W1; . . . ; ~WJ0
and an additional vec-

tor ~VJ0
of scaling coefficients, all with dimension N (our exposition of the MODWT closely fol-

lows that of [27], pages 159-205). The coefficients of ~Wj and ~VJ0
are obtained by filtering X,

namely:

~Wj;t ¼
XLj � 1

l¼0

~hj;lXt� l mod N ; ð3Þ

~Vj;t ¼
XLj � 1

l¼0

~g j;lXt� l mod N ; ð4Þ

where f~hj;lg and f~g j;lg are the jth level MODWT wavelet and scaling filter, with l = 1, . . ., L
being the length on the filter and Lj = (2j − 1)(L − 1) + 1. We can write the above in matrix

notation as:

~W j ¼
~W jX ð5Þ

~VJ0
¼ ~V J0

X ð6Þ

where each row of the N × N matrix of ~W j has values denoted by f~h�j;lg, while ~V j has values

denoted by f~g �j;lg, where f~h�j;lg and f~g �j;lg are the periodization of f~hj;lg and f~g j;lg to circular fil-

ter of length N [27]. Thus, the MODWT treats X as if it were periodic, such periodic extension

is known as ‘circular boundary condition’ [27]. Finally, the time series X can be retrieved from

its MODWT with [27]:

X ¼
XJ0

j¼1

~WT
j

~W j þ
~VT

J0
~VJ0 ð7Þ

While, the coefficients ~VJ0
represent the unresolved scale [26, 27], and capture the long term

dynamics of X, the coefficients ~W j are associated with changes of the underlying dynamics, at

a certain scale, over time. If N = 2J and we set J0 = J, then a full decomposition is performed

and the scale ~VJ0
retains only the average constant of the data with all other information repre-

sented in the wavelet coefficients [26, 28]. Since in many applications a full decomposition is

not necessary (e.g. the dynamic of a physical system is meaningful over a certain frequency

range only), J0 can be set to any integer J� b(log2(N))c so that the decomposition at any scale

is shorter than the total length of the time series [29]. The selection of J0 determines the

number of scales of resolution with the MODWT coefficients at a certain scale j related to the

nominal frequency band |f| 2 (1/2j+1, 1/2j) [27]. Moreover, given ~Wj and ~V j it is possible to

reconstruct the time-series X through the inverse MODWT (IMODWT). If the coefficients are

not modified, the IMODWT returns the original time-series X [27].
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Algorithms

Algorithm I: Identifying source- or receiver-frequency specific TE.

Core idea. The core idea of the proposed algorithm is to never apply any frequency-spe-

cific signal processing to the original data from which TE is computed, as this is known to

come with a whole host of problems [5, 7]. Rather, frequency-specificity is obtained by

destroying TE-relevant signal properties (like temporal order) in a frequency-specific manner

in the surrogate data and to then look for a significant drop in mTE in these surrogate data

compared to the original mTE via non-parametric statistical testing. To this end, we create sur-

rogate data via an invertible wavelet transform (maximum overlap discrete wavelet transform,

MODWT) and a frequency (scale-) specific scrambling of the wavelet coefficients in time.

Thus, in the surrogate data temporal order and phase relations are destroyed specifically in the

band of interest, while the power spectra of the signals are preserved. The null hypothesis

embodied by the surrogate data thus that the wavelet-coefficients of the frequency-component

of interest in the source time series are exchangeable in their temporal relation to the target

time series with respect to the information transferred between source and target.

As frequency separation is never perfect, we confine ourselves in most cases to only inter-

preting the wavelet-scale or frequency where the difference between the median of the distri-

bution of mTE from surrogate signals and the value of total original multivariate TE (mTEtot,

see next) is largest. If multiple, well separated maxima of this difference can be observed, all of

them may be interpreted. However, Bonferroni-correction for multiple testing should be

applied in this case.

Implementation for source-frequency specific information transfer. As introduced

above, we obtain a measure of frequency-specific information transfer by creating surrogate

datasets in which the temporal ordering of the signals has been destroyed for specific spectral

components of these signals—by first transforming into the frequency domain, then scram-

bling wavelet coefficients for a specific frequency and last transforming back to the time

domain to obtain a surrogate dataset. Naively one may be tempted to apply this process to

source and target processes at the same time. Yet, this approach would limit the analysis to

within-band effects. As laid out in the introduction and also detailed in section Frequency
resolved TE as a partial information decomposition problem, this would ignore the multivariate

nature of the problem. Therefore, we apply the creation of frequency-specific surrogate data

separately to source and target processes, i.e. we apply two variants of the analysis—one mea-

suring source-frequency specific information transfer and the other measuring target-fre-

quency specific information transfer. A combination of the results of both analyses is

sometimes possible when carefully considering before the multivariate nature of the problem

and prior knowledge (see section Relation of the partial-information decomposition framework
and the SOSO-algorithm below).

We will now detail the algorithm variant for the measurement of source-frequency specific

information transfer and report the relevant differences for measuring target-frequency spe-

cific information transfer afterwards.

Measuring source-frequency specific mTE relies on five main steps:

1. Perform a wavelet decomposition of the source time series through the MODWT to obtain

a time-frequency representation of Si in J0 scales.

2. At the jth scale of the MODWT decomposition shuffle the wavelet coefficients to destroy

information carried by the scale (frequency band)

3. Apply the inverse wavelet transform, IMODWT, to get back the time representation of the

time series
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4. Compute the mTE0 between the surrogate source and the target, conditional on all other

significant sources in the network.

a. Repeat step 2 to 4 for a number of permutations to build a surrogate data distribution.

b. Repeat step 1 to 4 for all J0 scales.

5. Test whether the original mTEtot is above the 1 � a

J0
quantile of the surrogate-based distribu-

tion of mTE0 values at each scale, i.e. perform a significance test with respect to the surro-

gate-derived distribution.

The operations implemented in the five steps are illustrated in Fig 1 and described in detail

hereafter.

Step 1. The source time-series is decomposed once into J0 scales through the MODWT (Fig

1A). As introduced in section Maximum Overlap Discrete Wavelet Transform this

decomposition gives a set of details coefficients ~WJ0
and an additional set of approxi-

mation coefficients ~VJ0
. The latter is saved in this first step and utilized only in step 3,

without any modification. Only the ~WJ0
coefficients at the jth scale under analysis are

subjected to step 2. The current implementation uses a Least Asymmetric Wavelet

(LA) as mother wavelet of length 8 or 16, since both lengths showed to be robust

against spectral leakage and do not relevantly suffer from boundary-coefficient limita-

tions. [25, 27, 30].

Fig 1. Spectral TE algorithm pipeline. (A) The neural signal (blue) is converted to a time-frequency representation

(grey) using the invertible maximum overlap discrete wavelet transform (MODWT). (B) At a frequency (wavelet scale)

of interest in the source (or the target) the wavelet coefficients are shuffled in time, destroying its connection to the

target (or source). (C) The signal is recreated by the inverse MODWT. (D) The transfer entropy for the original and

many shuffled signals is computed. (E) A statistical test determines whether the shuffling reduced the information

transfer, indicating that the transferred information was indeed encoded at the specific frequency. Each panel here

shows the distribution of mTE0 values (vertical bars) obtained from surrogate data where the wavelet coefficients of the

scale of interest were shuffled, the median of this distribution (red line), and the original transfer entropy (black line).

The analysis and the testing is repeated for all scales of interest (here 4, 5, 6).

https://doi.org/10.1371/journal.pcbi.1008526.g001
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The creation of surrogate data for subsequent statistical testing comprises of the fol-

lowing steps 2 and 3.

Step 2. The frequency-specific information transfer between source and target is destroyed

by shuffling the ~WJ0
wavelet coefficients one scale at a time. The jth scale under analy-

sis is shuffled by randomly permuting the coefficients ~W j, whereas all the other scales

decomposed by the MODWT stay intact (Fig 1B, jth scale in red). We implement two

alternative methods for the creation of surrogate data: a Block permutation of the

wavelet coefficients [24] and the Iterative Amplitude Adjustment Fourier Transform

(IAAFT) [24, 26]. Since there is no unique method of surrogate data creation and in

many cases the employment of one method or another much depends on the specific

analysis carried out by the user, we describe the two methods and the input parame-

ters in section Resampling methods and the free parameters.

Step 3. The unchanged set of coefficients, ~WJ0nj
, the unchanged ~VJ0

’s, and the permuted coef-

ficients at scale j ( ~Wj) are submitted to the IMODWT, to reconstruct the surrogate

source signal, S0i, in the time-domain (Fig 1C). This step is identical for both of the

implemented surrogate-data creation methods: Block permutation of the wavelet

coefficients and IAAFT. The reconstructed source S0i (source surrogate) differs from

the source Si only on the shuffled jth scale. In this way, we destroy the source-target

information transfer only if the information transfer is carried by the jth scale, other-

wise the information transfer stays the same.

Step 4. With S0i we compute again the mTEtot on the network previously identified. We illus-

trated this step in Fig 1D. Let Si,<t be the set of past variables of the selected sources
and T<t, the past variables of the selected target previously found in the network analy-

sis, with S0i;n being the n-th source surrogate under analysis in the network at scale j;
then, the mTE0 for the surrogate data is:

mTE0 ¼ mTEðS0i;n ! TjS
nfS0i;n;Tg
<t Þ ¼ IðTt : S0i;n;<tjT<t; S

nfS0i;n ;Tg
<t Þ ð8Þ

The algorithm is repeated from step 2 to step 4 for n permutations, with n = 1, . . ., N,

to create a distribution of surrogate mTE0n values; N is set according to the desired crit-

ical level for statistical significance (including Bonferroni correction for the number

of scales, see below). Subsequently, all the J0 scales decomposed by the MODWT in

step 1 are subjected to step 2, step 3 and step 4, such that J0 separate distributions of

mTE0n-values, one for each scale, are obtained.

Step 5. As a final step, the mTEtot is tested for statistical significance against the J0 different

distributions of mTE0 surrogate values. If the Sj
i (where j is one of the scales decom-

posed by the MODWT) carries any information transfer to the target T, a significant

drop of the mTE0 surrogates will be observed. This step is applied for all J0 scales

under analysis and a Bonferroni correction is applied such that each individual scale

is tested at the significance level α/J0.

Additionally, each scale analyzed is plotted, see Fig 1E, and we restrict ourselves to

interpret only the scale that shows maximal distance (or well separated local maxima)

from the original mTEtot, maxjðmTEtot � m~TE0Þ, where m~TE0 denotes the median of

the surrogates distribution. We consider the maximal distance in addition to the sta-

tistical significance test because frequency decomposition is never perfect (e.g.
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leakage, noise and wavelet bands overlap). Indeed, validation of the algorithm on syn-

thetic data (section 3) shows that the maximal distance reliably reflects the ground

truth in the sender-receiver frequency information transfer, independently of the

method employed for surrogate construction, whereas the statistical significance test

can suffer from leakage effects on adjacent scales. Obviously, this limits the detectabil-

ity of frequency-specific mTEtot to one source frequency and may be overly conserva-

tive. Thus, in scenarios, where information transfer from multiple sources is strongly

expected a priori, or where the length of the data allows for vanishing leakage effects,

the above restriction may be lifted.

Implementation for target-frequency specific information transfer. To measure the

target-frequency specific mTE, we apply the same algorithm as before, but this time we create

frequency-specific surrogate data from the target time series:

1. Perform a wavelet decomposition through the MODWT to obtain a time-frequency repre-

sentation of the target time series’ present state, Tt, the target of the multivariate informa-

tion transfer from Si to T.

2. At the jth scale of the MODWT decomposition shuffle the wavelet coefficients to destroy

information entering the scale in the target or amplitude-phase relations. This step is differ-

ent from the shuffling in the source algorithm implementation; here, we destroy only the

target current value Tt to obtain T 0t;n, where T 0t;n is the n-th target surrogate under analysis in

the network at scale j and leaving the target past set, T<t, intact,

mTE0 ¼ mTEðSi ! T0njS
nfSi ;Tng
<t Þ ¼ IðT 0t;n : Si;<tjT<t; S

nfSi ;Tng
<t Þ ð9Þ

3. Apply the inverse wavelet transform, IMODWT, to reconstruct the time series in the time

domain.

4. Compute the mTE0 between the source and the target surrogate, conditional on all other sig-

nificant sources in the network.

a. Repeat step 2 to 4 for N permutations to build a surrogate data distribution.

b. Repeat step 1 to 4 for all J0 scales.

5. Check for which scale, j, the difference between the original mTEtot and the median of the

mTE0 distribution is maximal, and determine statistical significance for this scale, similar to

the source-frequency implementation.

Algorithm II: Testing for direct information transfer from source to receiver frequen-

cies. Consider the following scenario where a certain frequency in the source transfers infor-

mation to a certain frequency in the target (Fig 2A). We would like to then identify these two

related frequencies in the source and the target and to determine that there is indeed transfer

information between them—and not to other, more broadband parts of the spectrum. In other

words, we want to exclude the possibility that the source frequency sends information to many

other frequencies in the target, potentially even missing the identified target frequency, while

the identified target frequency receives information from many source frequencies, potentially

excluding the identified source frequency (Fig 2B)—such that the direct information transfer

between the two identified frequencies is actually absent. We also want to exclude the
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possibility that the direct information transfer between source and target is entirely redundant

with other spectral components of information transfer (Fig 2C).

When applying algorithm I to the target in the setting assumed above (Fig 2A) we will

observe a drop in mTE for the surrogate data at the source frequency driving the information

transfer, and the target frequency receiving it. If we applied the same algorithm to data where

the phase of the sending frequency had been destroyed beforehand, then no information trans-

fer should be seen from the source, and thus, also algorithm I applied to the target should also

not yield a drop anymore (for the surrogate data with an additionally scrambled target, see

also Fig 3B and 3C). Since in this procedure we first swap out the source frequency and then

the target frequency in addition, we also refer to algorithm II as the ‘swap-out swap-out

(SOSO)’ algorithm from here on. This SOSO algorithm is to be applied after algorithm I has

identified specific source and specific target frequencies. That is, we apply the SOSO algorithm

as a post-hoc analysis.

Algorithm implementation. In the following we describe a version of the implementa-

tion of the SOSO algorithm, in which we first destroy the target Tr and subsequently also the

source time-series Sj
i, where j, r are the scales of interest (Fig 3). The algorithm can also be

applied in the opposite direction by first destroying the source Sj
i and subsequently the target

Tr.

First, let d
j
TESi
¼ mTEtot � m~TE0, be the distance between the mTEtot and the m~TE0, com-

puted with Algorithm I at scale j from source Si and target T. Then, Algorithm II comprises

two main steps:

1. For N-times, scramble the target time-series current value Tt at scale r with one of the

implemented shuffling methods and compute the mTE0T;n (as described in the subsection

Implementation for target-frequency specific information transfer). Here the subscript ‘T’

indicates that the target has been shuffled.

Fig 2. Three systems with the same identified sending and receiving frequencies (indicated by the darker blue and

red colors), but a different structure of information transfer. In system A one source and one target frequency take

part in a direct transfer of information between them. In system B one source frequency sends information to all target

frequencies except the identified target frequency. This one target frequency, in turn, receives other information from

all source frequencies except the identified source frequency. In system C the same source frequency sends

information redundantly into all target frequencies, while one target frequency receives (partially different)

information redundantly from all source frequencies.

https://doi.org/10.1371/journal.pcbi.1008526.g002
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a. For each permutation, create an inner loop running K-times, where also the source Si is

destroyed at scale j, as before, and compute mTE@, to obtain a distribution of mTE@n;k val-

ues. Here the double prime symbol signifies that both the target and the source scale of

interest have been destroyed.

Fig 3. Algorithm II (SOSO). Algorithm to determine whether information transfer exists from an identified

information source scale to an identified target scale. (A) Results from the initial analysis using Algorithm I indicating

significant information transfer emanating from one scale (source scale j) and significant information reception at a

target scale (target scale r). (B) To test if the information send from the source scale is indeed the information that is

received at the target scale do the following: scramble the target at the relevant scale N times and note the mTE0T;n
values. For each such scrambled target then apply algorithm I for the source, i.e. scramble the relevant source scale K
times and note the distribution of the mTE@n;k values. Compute the drop in mTE obtained for the n − th target shuffling

with respect to the median m~TE@n of the distribution of source-and-target shuffled mTE@n;k values, d
0

TEn
. (C) Statistically

test the original target drop dTES against the distribution of the d
0

TEn
. A significantly larger value of dTES indicates that

information send by the source scale is indeed received by the target scale.

https://doi.org/10.1371/journal.pcbi.1008526.g003
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b. Compute the distance between mTE0T;n and the median over k, m~TE@n of the distribution

mTE@n;k, to obtain a distribution of distances d
0

TEn
¼ mTE0T;n � m~TE@n;k

2. Check whether d
j
TESi

is at the extreme upper end of the distribution of surrogate distances

d
0

TEn
.

The SOSO algorithm performs (N + 1) � K mTE computations at the selected source scale

and target scale pairs, where N and K are the number of permutations. Although the SOSO

algorithm could be, in principle, applied to all possible source- and target-scale combinations

of the identified network, we discourage this approach as pointed out in section Advantages
and drawbacks of the proposed methods.

Resampling methods and the free parameters

In this section we provide a description of the resampling methods implemented in the spec-

tral mTE algorithms above and of their free parameters. These methods are used to shuffle the

wavelet coefficients for the creation of the surrogate data.

Resampling block size. The block resampling technique has been used extensively in sur-

rogate data generation (see for example [24]). In this paper, we consider a resampling block

size of 1, which can be thought of as a simple random permutation of the wavelet coefficients.

The block size is an input parameter of the spectral TE and it can be set by the user (e.g. the

block size is set to 32 in [24]).

Iterative Amplitude Adjustment Fourier Transform. The IAAFT method relies mainly

on the work of [26], where a detailed description of the implementation and different applica-

tions can be found. We used the same algorithm with two fundamental changes. First, we

apply the IAAFT method at one scale at time. This is motivated by the necessity to destroy

putative TE information one scale at a time, keeping the contribution of the other scales intact.

Second, with the IAAFT we do not apply any threshold to retain wavelet coefficients intact at a

certain scale (to refer to [26] we set the threshold p = 0, so all coefficients are randomly shuffled

and go to the iterative amplitude adjustment) since our goal was not to have a qualitative anal-

ysis between surrogate data and original data.

Choice of target history coverage. Eq 2, in Technical background: Transfer entropy and
pre-computation of multivariate transfer entropy, contains the candidate source past set S<t

and the candidate target past set T<t which have to be defined to compute mTE. In the pre-

sented simulations, we set the maximum lag of the target to cover at least 1/4 of the cycle of the

lowest frequency of interest (e.g. if the lowest frequency was 4 Hz, we covered 1/4 of the cycle

of 4 Hz). The maximum source lag was set to 3 samples lag, since the true delays were known

in the simulations (1 or 2 samples lag). In case of other applications the maximum source lag

should span a plausible number of samples for the system under study (e.g. a range of plausible

axonal conduction delays in the case of neural data). We note that if sufficient computational

resources are available, then it is possible to set a very generous limit on the covered history of

the target and let the iterative algorithms of IDTxl decide where to truncate the target history.

A cautionary note on frequency specific information transfer versus cross frequency

coupling. Before concluding, we would like to stress that our novel algorithm should not be

misunderstood as an analysis technique to estimate cross-frequency coupling (CFC, see [31]

and references therein). This is because, first, information transfer and coupling are conceptu-

ally different (and it is transfer that is more important when trying to understand a computa-

tion, whereas coupling is important to understand the biophysics and dynamics of a system,

[32, 33]). Ironically, however, most of the methods cited in the field of cross-frequency
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coupling do not yield strong evidence of physical coupling, but remain correlation-based (see

discussion in [31]). Thus, these methods can be seen as some form of coarse approximation to

cross-frequency information transfer. Yet it should be kept in mind that these methods lack

directionality, and do not quantify information proper, but some other measure of statistical

dependency (often linear). Also, these methods typically focus on specific dependencies

between the phase-evolution and the amplitude envelope of the recorded signals (see [31], and

references therein). In contrast, a full information-theoretic analysis takes all of these into

account simultaneously.

We would also like to stress here again that the concept of information being transferred

from individual source frequencies to individual target frequencies—as it is expressed in the

specific wording ‘cross-frequency’—does not reflect the actual complexity of the problem.

Results

To test the ability of the proposed spectral mTE algorithm to successfully estimate frequency-

specific sender-receiver information transfer, we employed multiple synthetic simulations,

where the information transfer was known (ground truth). Additionally, we demonstrate the

application of algrithms I and II to two neural data sets. The first is a human neuroimaging

dataset, acquired with Magnetoencephalography (MEG); the second dataset consists of local

field potential (LFP) recordings from the ferret cortex. The simulations for individual scenar-

ios and details of the neural MEG and LFP data are described below. All analysis were per-

formed with a block permutation of the wavelet coefficients method (to construct surrogates)

and LA(8) as mother wavelet, if not stated otherwise.

Example 1: Uncoupled system, no information transfer

At first, we tested the behaviour of the spectral mTE algorithm in the case of an uncoupled

system. Since no information transfer occurs (at any frequency band), the applications of

the spectral mTE algorithms should not reveal any significant drop in term of TE, at any

scale.

We simulated two uncoupled signals with the following equations:

S0ðtÞ ¼ A � cosð2pf1t þ yÞ þ w1 ð10Þ

T1ðtÞ ¼ A � cosð2pf2t þ yÞ þ w2 ð11Þ

Here A is the amplitude of the signal and is set to 1 if not stated otherwise, θ is a uniform ran-

dom variable between 0 and 2π, f1 = 5 Hz, f2 = 50 Hz and w1, w2 are samples of i.i.d Gaussian

noise process with a standard deviation of 1. We simulated 10 seconds and 100 trials with a

sampling rate of 125 Hz (125000 samples).

The computation of mTE without spectral resolution, correctly, did not show any signifi-

cant TE in either direction. Nevertheless, just for demonstration purposes, we applied the spec-

tral TE algorithm I, considering S0 as source and T1, as target (this choice is arbitrary since

there is no real coupling). The results showed no significant drop at any scale for both source

and target, as expected (Fig 4B). Additionally we ran the spectral mTE analysis 500 times to

estimate if the alpha level chosen (0.05/ number of scales at source or target), reliably protects

from false positive results. At each scale, for source and target, no false positives, with α/J0
(where J0 is set to 5 in this simulation), were found, indicating that our measure is in fact some-

what conservative here.

PLOS COMPUTATIONAL BIOLOGY Spectrally-resolved information transfer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008526 December 28, 2020 14 / 40

https://doi.org/10.1371/journal.pcbi.1008526


Example 2: Information transfer from one source to one target frequency

in a bivariate system

Next, we simulated a simple bivariate scenario, where a single source S0 is (multiplicatively)

coupled to a target T1 that oscillates at a much faster frequency, such that the amplitude of the

target is modulated by the phase of the source, leading to a cross-frequency information trans-

fer (CFIT) (Fig 5A). Moreover, the source is coupled to the target with a delay of 2 samples.

The synthetic data are generated according to the following equations:

S0ðtÞ ¼ A � cosð2pf1t þ yÞ þ w1 ð12Þ

T1ðtÞ ¼ A � cosð2pf2t þ yÞ � S0ðt � 2Þ þ w2 ð13Þ

Where, f1 = 6 Hz, f2 = 50 Hz and w1, w2 are samples of i.i.d Gaussian noise process with a stan-

dard deviation of 1. We simulated 10 seconds and 100 trials with a sampling rate of 125 Hz

(125000 samples).

First, we performed a TE analysis to recover the source-target information transfer. Table 1

reports the result of the TE analysis. We recovered the true direction of interaction from S0 to

T1, with a maximal TE at a lag of 2 samples (16 ms), as simulated. Then, we applied the spectral

mTE algorithm to the identified source-target relation to recover the sender- and receiver-fre-

quency information transfer. We found a significant drop of mTE� in the source S0 at source-

scale 4 (frequency band 4 − 7 Hz), as expected (Fig 5B). The amplitude-phase modulation of

the target T1 is visible at target scale 1 (frequency band 62 − 31 Hz)—again as expected. In this

relatively simple scenario in terms of sender-receiver frequency relation, the spectral mTE is

Fig 4. Spectrally resolved transfer entropy for the null-case (example 1). (A) Top, a ‘source’ S0 and a ‘target’ T1 of an

uncoupled system. Bottom, power spectra of S0 and T1. (B) Spectrally resolved Transfer Entropy. Each panel, except

those at the bottom, shows the mTE0 distribution obtained from the surrogate datasets with shuffled coefficients at the

scale indicated to the left, or, equivalently, the frequency band indicated at the top of each panel. White bars represent

histograms of surrogate data, i.e. relative frequencies in (a.u.), the red dashed line is the median of the surrogate mTE0
distribution, the black dashed line is the original mTE value. The horizontal black line indicates the distance δTE
between the original mTE and the median of the surrogate distribution (��, p< 0.005; �, p< 0.05). These display

conventions will be kept for figures displaying spectrally resolved TE analyses. The temporal surrogate analysis using

surrogates constructed by permuting blocks of samples in the time-domain is shown in the bottom row. No significant

drop of the shuffled wavelet coefficients could be found, since no information transfer occurred between a putative

source and the target site. (Note that the choice of source or target here is arbitrary since no coupling was simulated).

https://doi.org/10.1371/journal.pcbi.1008526.g004

PLOS COMPUTATIONAL BIOLOGY Spectrally-resolved information transfer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008526 December 28, 2020 15 / 40

https://doi.org/10.1371/journal.pcbi.1008526.g004
https://doi.org/10.1371/journal.pcbi.1008526


Fig 5. Spectrally resolved transfer entropy for example 2. (A) Left, a source S0 is unidirectionally coupled, at scale

j = 4 (frequency band 4 − 7 Hz), with a target T1 at scale j = 1 (frequency band 31 − 62 Hz). Right, power spectra of S0

and T1. (B) Spectrally resolved Transfer Entropy. See Fig 4 for display conventions. Information transfer correctly

drops when wavelet coefficients are selectively shuffled at scale 4 at the source (S0, left column). The corresponding

reception of information at the target (T1) is shown on the right, where a drop for shuffled wavelet coefficients is

observed for the frequency band receiving the information in this simulation (i.e. scale 1). The temporal surrogate

analysis using surrogates constructed by permuting blocks of samples in the time-domain is shown in the bottom row.

(C) SOSO analysis. Blue bars display the distribution of distances d
0

TE between the median of the surrogate data

distribution with a shuffled source (compare Fig 5B) when also the target is shuffled. The red line indicates the median

of the distribution of d
0

TE. The black line indicates the original distance between the median of the surrogate data

distribution with a shuffled source and the mTE value computed on the original data. If this latter value is found in the

upper rejection interval of the distribution of d
0

TE, there is significant direct information transfer from the source to the

target frequency band under investigation. (Left Panel) No information transfer remains when the source sending scale

and the target receiving scale are simultaneously shuffled and no drop of mTE can be seen (the distribution d
0

TE
approaches 0); the original drop in mTE is significantly larger. (Right panel) Information transfer remains when an

unrelated target frequency band is shuffled. d
j
TESi

(black bar), median of the d
0

TE distribution (red dotted bar).

https://doi.org/10.1371/journal.pcbi.1008526.g005

Table 1. Results of TE analysis.

simulation system interaction

source! target
TE max lag

(ms)

p-values

Example 1 uncoupled n/a ns

Example 2 S0!T1 16 <0.01��

Example 3 S0!T1 16.6 <0.01��

Example 4 Sy0!Ty1 8.3 <0.01��

Sy1!Ty0 <0.01��

Example 5 S0!T1 4.1 <0.01��

Example 6 S1!T0 4 <0.01��

Example 7 S0!T1 16 <0.01��

Example 8 S0!T1 8 <0.01��

Example 9 S0!T1 4 <0.01��

�p< 0.05;

��p< 0.01;

���p< 0.001;

https://doi.org/10.1371/journal.pcbi.1008526.t001
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able to recover the information transfer in terms of identifying the correct frequencies via the

scale of the maximal drop of the surrogate-based distribution and with statistical significance

at those frequencies.

Evaluation of the SOSO algorithm (II) on example 2

Here, we evaluated the SOSO algorithm on the CFIT from above (section Example 2: Informa-
tion transfer from one source to one target frequency in a bivariate system). In the first SOSO

analysis we set the source scale to be tested to j = 4 and the target scale to j = 1—as these were

revealed by the spectral mTE analysis. As a control analysis, intended only for demonstration

purposes here, the target scale was set to j = 3, i.e. a scale not identified as receiving

information.

In the first SOSO analysis, the distance d
4

TES0

was significantly bigger than the median of the

distribution of the d
0

TE (see Fig 5C and Table 2), when we simultaneously destroyed source and

target specific scale, indicating a direct information flow between the source and the target. In

contrast, and as expected, no significant difference was found when we set the target scale to

j = 3, since the simulated information transfer between source scale j = 4 and target j = 1 was

not removed by shuffling at the wrong scale (i.e. j = 3). In section Relation of the partial-infor-
mation framework and the SOSO-algorithm we further outline the importance of the SOSO

algorithm in terms of the PID framework.

Example 3: Comparison with Granger causality

In this example, we compared the spectral mTE algorithm with the spectral Granger causality.

First, we simulated two AR(2) processes that exhibit autonomous oscillations at f1 = 45 Hz and

Table 2. Results of spectral TE analysis.

simulation system simulated scale

source! target
scale of maximum drop at source scale of maximum drop at target p-values

Example 1 n/a n/a n/a n/s

Example 2 4!1 4 1 <0.01��

Example 2 SOSO 4!1 4 1 <0.05�

4!2 ns
Example 3 1!1 1 1 <0.01��

Example 4 4!4 4 4 <0.01�

1!1 1 1 <0.01�

Example 4 SOSO 4!4 4 4 <0.05�

4!1 4 1 <0.05�

1!1 1 1 <0.05�

1!4 1 4 <0.05�

Example 5 5!1 5 1 <0.01��

Example 6 5 5 <0.01��

Example 7 3, 4, 5!1 3,4,5 1 <0.01��

Example 8 5!1, 2, 3 5 1,2,3 <0.01��

Example 9 4!2 4 2 <0.01��

Example 9 SOSO 4!2 4 2 ns

�p< 0.05;

��p< 0.01;

���p< 0.001;

https://doi.org/10.1371/journal.pcbi.1008526.t002
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are linearly coupled with a delay of 2 samples. We simulated 10 s at the sampling rate of 120

Hz and 100 trials (120000 samples). The AR(2) processes were generated as follows:

S0ðtÞ ¼ 2p cosð2pf1ÞS0ðt � 1Þ � p2S0ðt � 2Þ þ s1Z1ðtÞ þ w1 ð14Þ

T1ðtÞ ¼ 2p cosð2pf2ÞT1ðt � 1Þ � p2T1ðt � 2Þ þ c1S0ðt � 2Þ þ s2Z2ðtÞ þ w2 ð15Þ

where c1 = 0.7 and determines the coupling strength, p = 0.98, η1,2 are the innovation terms

and σ1 = 0.3, σ2 = 0.45 control the strength of the innovation terms contribution. Additional

white noise (w) was added as observation noise to the time-series. Since the model order was

known, in this simulation, we used a parametric spectral Granger with a model order of two.

Second, we compared the application of the nonparametric spectral Granger [34] with Exam-

ple 2, where a CFIT occurred. We computed the cross-spectral density matrix using the fast

fourier transform (FFTT) in combination with multitapers (2 Hz smoothing). To assess the

significance level, we generated 500 permutations, by shuffling the trial order for the source,

and obtaining the 95%-quantile of the maximal values over the frequencies (maximum statis-

tics for multiple comparison correction). The null-hypothesis is that of no differences between

the Granger frequency spectra of the coupled and the noncoupled system.

As before, we first recovered the simulated system connectivity with mTE, which yielded a

significant information transfer from S0 to T1 at 1 sample lag (Table 1). Next, we applied the

spectral mTE to obtain a frequency resolution of the system. Fig 6B left, shows a significant

drop at the source site at scale 1 (frequency band 30 − 60 Hz), containing the 45 Hz peak. The

source frequency, linearly entering the target can be seen at the target site, with a significant

drop at the same scale 1 (Fig 6B right). Then, we compared this result with the spectral

Granger causality analysis. As shown in Fig 6C left, a significant interaction could be found

from S0 to T1, with a Granger frequency peak at 45 Hz (blue line significantly above the 95%

significance level, black dashed line). Next, we applied a nonparametric spectral Granger to

Fig 6. Comparison of spectrally resolved transfer entropy to spectral Granger causality for within-band transfer

(example 3). (A) Left, a source S0, is unidirectionally coupled, at scale j = 1 (frequency band 30 − 60 Hz), with a target

T1. Right, power spectra of S0 and T1. (B) Spectrally resolved TE. Information transfer, correctly, drops when wavelet

coefficients are selectively shuffled at scale 1 (frequency band 30-60 Hz) at the source site (left panel). At the target site

the drop of wavelet coefficients at scale 1 exhibits the frequency entering the target linearly. (right panel). (C)

Parametric spectral Granger analysis. First panel, a significant source was identified with peak at 45 Hz, (Granger

causality estimates blue line). The 95% significance level obtained by permutation is indicated by a black dashed line).

https://doi.org/10.1371/journal.pcbi.1008526.g006
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Example 2. As expected for a scenario with only CFIT, in this scenario the Granger analysis

did not exhibit any significant result (Fig 7A).

Example 4: Bidirectional system

In this example we simulated a bidirectional system of two AR(2) processes with different

oscillatory profiles.

y0ðtÞ ¼ 2p cosð2pf1Þy0ðt � 1Þ � p2y0ðt � 2Þ þ c1y1ðt � 1Þ þ s1Z1ðtÞ þ w1 ð16Þ

y1ðtÞ ¼ 2p cosð2pf2Þy1ðt � 1Þ � p2y1ðt � 2Þ þ c2y0ðt � 1Þ þ s2Z2ðtÞ þ w2 ð17Þ

where: f1 = 5 Hz, f2 = 45 Hz, p = 0.98, η1,2 are the innovation terms and σ1 = 0.6, σ2 = 0.7 con-

trol the strength of the innovation terms contribution and c1 = 0.3,c2 = 0.2 are the couplings

parameters. Additional white noise (w) was added to the time-series. The simulation consisted

of 20 seconds and 50 trials at the sampling rate of 120 Hz (120000 samples). First, we applied

the multivariate mTE to recover the system, this analysis showed a significant TE from Sy0
to

Ty1
and, vice-versa Sy1

to Ty0
(see Table 1); here, Sy0

indicates that process Y0 is considered as

the source, and Ty1
means that process Y1 is considered to be the target, and vice versa. Next,

we applied the spectral mTE to identify the relevant frequency bands.

The results in this system are interesting in two aspects. First, the expected within-band

information transfer at the two different frequencies is recovered in both coupling direction,

as expected, with the dynamic Eigen-frequency of the sending system correctly identified as

the frequency of this transfer (Fig 8B and 8C, significant effects at the same scale for both col-

umns and Table 2). Second, we see that the information of the sending process is received in
addition at the dynamic Eigen-frequency of receiving process, i.e. at the frequency of the

receiving process’ dynamics when unperturbed by the coupling. We consider this result to be

also correct as the innovation of the sending process is felt as an additional innovation term by

Fig 7. Nonparametric spectral Granger causality in a system with cross-frequency information transfer (CFIT,

example 2). (A) Nonparametric spectral Granger causality. No significant source could be found in either directions.

Granger causality estimates (blue line) and the 95% significance level obtained by permutation (black dashed line). (B)

Spectrally resolved information transfer of the same system, in contrast, reveals the CFIT.

https://doi.org/10.1371/journal.pcbi.1008526.g007
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the receiving process in a 1-to-1 manner due to the additive linear coupling. Thus, the infor-

mation generated in the innovations of the sender (e.g. system y0) is incorporated into the

dynamics of the receiver (e.g. system s1). This is also supported by the SOSO analysis that does

show a significant effect for the out-of-band analysis (Fig 8D and 8E). This is because the inno-

vations produce information on a white spectrum, thus they do indeed have some information

at the chosen sending frequency that is then incorporated at the receiving system’s Eigen-fre-

quency. This “cross-frequency” effect will be missed by classic within band analyses. We also

stress that this second effect is not a failure of our approach in the bivariate setting.

Fig 8. Spectrally resolved transfer entropy for example 4. (A) Left, a system with bidirectionally coupled nodes: y0

and y1. The process y0 is linearly coupled with y1 at scale j = 4 (frequency band 4-8 Hz) and the process y1 is linearly

coupled with y0 at scale j = 1 (frequency band 30-60 Hz). Right, power spectral of y0 and y1. (B) Spectrally resolved

Transfer Entropy for source y0 and target y1. See Fig 4 for display conventions. (Left panel) Information transfer,

drops when wavelet coefficients are selectively shuffled at scale 4 (frequency band 4-8 Hz) on the source site. The

corresponding reception of information at the target is shown on the right panel, where a drop for shuffled wavelet

coefficients is also observed at scale 4 (frequency band 30-60 Hz). A significant drops is also observed at scale 1, in

relation to the autonomous oscillations of the target. (C) Spectrally resolved Transfer Entropy for source y1 and target

y0. See Fig 4 for display conventions. (Left panel) Information transfer, drops when wavelet coefficients are selectively

shuffled at scale 1 (frequency band 30-60 Hz) on the source site. The corresponding reception of information at the

target is shown on the right panel, where a drop for shuffled wavelet coefficients is also observed at scale 1 (frequency

band 30-60 Hz). A significant drops is also observed at scale 4, in relation to the autonomous oscillations of the target.

(D) SOSO analysis for source y0 and target y1 (E) SOSO analysis for source y1 and target y0. Both, within- and cross-

frequency information transfer is detected. (For plotting conventions see Fig 5).

https://doi.org/10.1371/journal.pcbi.1008526.g008
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Example 5: Cross-frequency information transfer (CFIT) with nonlinear

coupling in a multivariate three-node system

Next, we generated a multivariate network of three nodes. The network simulation was gener-

ated as follows: first, a source S0 was coupled to a target with a CFIT. We adapted an example

of [35] to simulate a more complex scenario with a non-sinusoidal driver, since in nonlinear

systems such as the brain, perfect sinusoidal are often an exception [36]. The CFIT coupling

was between f1 = 6 Hz and f2 = 80 Hz. To modulate the amplitude of the target time series we

employed a sigmoid on the source and a delay of 2 samples. Second, to create a multivariate

network, a ‘distractor’ node S2 was added with an oscillation of f3 = 90 Hz and it was modu-

lated independently of the f1 = 6 Hz of S0 (Fig 9A). The simulation consisted of 10 seconds and

50 trials with a sampling rate of 240 Hz (120000 samples). The driver S0(t) was generated

applying a bandpass filter to a Gaussian white noise at center frequency f1 with a bandwidth of

0.4 Hz. The S2(t) and T1(t) were generated as follows:

S2ðtÞ ¼ A � sinð2pf3t þ yÞ þ w1 ð18Þ

T1ðtÞ ¼ A � sinð2pf2t þ yÞ � gðS0ðt � 2ÞÞ þ w2 ð19Þ

where g(x) is the sigmoid function:

gðxÞ ¼
1

1þ expð� lxðtÞÞ
ð20Þ

with λ = 3. Gaussian white noise with a standard deviation of 1.2, 0.8, 0.6 was added to the sig-

nal S0, S2 and to the target T1, respectively.

The TE analysis recovered the multivariate network with the associated delay (Table 1),

identifying significant TE only between S0 and T1. The spectral mTE revealed the CFIT

Fig 9. Spectrally resolved transfer entropy for example 5. (A) Top, a source S0, but not S2, is unidirectionally

coupled, at scale j = 5 (frequency band 4-8 Hz), with a target T1 at scale j = 1 (frequency band 60-120 Hz). Bottom,

power spectral of S0, S2 and T1. (B) Spectrally resolved Transfer Entropy. See Fig 4 for display conventions. (Left panel)

Information transfer, correctly, drops when wavelet coefficients are selectively shuffled at scale 5 (frequency band 4-8

Hz) on the source site. The corresponding reception of information at the target is shown on the right panel, where a

drop for shuffled wavelet coefficients is observed at scale 1 (frequency band 60-120 Hz), which contained the simulated

target frequency.

https://doi.org/10.1371/journal.pcbi.1008526.g009
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between S0 and T1, with the maximal distance from the mTEtot at scale 5 for S0 and scale 1 for

T1 (Fig 9B).

Example 6: Delay-coupled Rossler systems (nonlinear)

We evaluated the spectral mTE with a non-linear system able to generate self-sustained non-

periodic oscillations. To this end we generated a coupled Rössler oscillator similar to [37]. The

model was simulated with the following equations:

dx1

dt
¼ � w1y1 � z1 þ �x2ðt � tÞ

dy1

dt
¼ w1x1 þ 0:15y1

dz1

dt
¼ 0:2þ z1ðx1 � 10Þ

dx2

dt
¼ � w2y2 � z2

dy2

dt
¼ w2x2 þ 0:15y2

dz2

dt
¼ 0:2þ z2ðx2 � 10Þ

ð21Þ

where w1 and w2 are the natural frequencies of the oscillator which were set to 0.8 and 0.9, � =

0.07 is the coupling strength and τ is the time delay, which was set to 2 time steps. As can be

seen in Fig 10A, the two systems oscillated around 8 Hz, but were not identical. The analysis

was performed on the assumption that only variables x1(t) and x2(t) could be observed, with

S1 = x2(t) and T0 = x1(t), in this simulation. The sampling rate was 500 HZ, 4 seconds and 50

trials were generated (200000 samples).

The TE analysis correctly identified the driver S1 with a delay of 2 samples (Table 1). The

spectral mTE showed a significant drop at scale 5 (Fig 10B). No significant drop was observed

at the target site T0.

Fig 10. Spectrally resolved transfer entropy for example 6. (A) Top, a source S1 is unidirectionally coupled, at scale

j = 5 (frequency band 8-16 Hz), with a target T0. Bottom, power spectra of S1 and T0. (B) Spectrally resolved Transfer

Entropy. See Fig 4 for display conventions. (Left panel) Information transfer, correctly, drops when wavelet coefficients

are selectively shuffled at scale 5 (frequency band 8-16 Hz) on the source site. (Right panel) No significant drop is

present at the target site.

https://doi.org/10.1371/journal.pcbi.1008526.g010
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Example 7: Information transfer from multiple source frequencies to one

target frequency

To test the ability of the spectral mTE to recover multiple source frequencies sending informa-

tion to a target frequency, we simulated a bivariate example similar to Example 1 but with mul-

tiple source scales showing a phase-amplitude relation with a single target scale.

S0ðtÞ ¼ Aðcosð2pf1t þ yÞ þ cosð2pf2t þ yÞ þ cosð2pf3t þ yÞÞ þ w1 ð22Þ

T1ðtÞ ¼ A � cosð2pf4t þ yÞ � S0ðt � 2Þ þ w2 ð23Þ

with S0 constructed as a sum of sinusoids with different phases θ and Gaussian noise processes

for w1 and w2, as before. Then, the source S0 modulates the amplitude of the target T1 at scale

j = 1 with a sample delay of 2 (Fig 11A). The simulation consisted of 5 seconds with 50 trials at

125 Hz (31250 samples).

The TE analysis showed the source S0 as driver of the target T1 (Table 1), as simulated with

a sample delay of 2. Then, we applied the Spectral TE to identify the three scales of the source

S0 sending information to the target scale j = 1. Fig 11B, showed three significant scales: 3 (fre-

quency band 8-16 Hz), 4 (frequency band 4-8 Hz), 5 (frequency band 2-4 Hz), at source site

and scale 1 (frequency band 31-63 Hz) at target site. This application demonstrates the ability

of the spectral TE to recover multiple sources sending information to the target site. We also

noted that the three scales at the source have a slightly different drop (or maximal distance

from original mTEtot) which can be related to how noise affects the wavelet frequency decom-

position at different scales.

Fig 11. Spectrally resolved transfer entropy for example 7. (A) Top, a source S0 is unidirectionally coupled, at

multiple scales: j = 3 (frequency band 8-16 Hz), j = 4 (frequency band 4-8 Hz) and j = 5 (frequency band 2-4 Hz), with

a target T1 at scale j = 1 (frequency band 31-63 Hz). Bottom, power spectral of S0 and T1. (B) Spectrally resolved

Transfer Entropy. See Fig 4 for display conventions. (Left panel) Information transfer, correctly, drops when wavelet

coefficients are selectively shuffled at scale 3 (frequency band 8-16 Hz), 4 (frequency band 4-8 Hz), 5 (frequency band

2-4 Hz) on the source site. The corresponding reception of information at the target is shown on the right panel, where

a drop for shuffled wavelet coefficients is observed at scale 1 (frequency band 31-63 Hz).

https://doi.org/10.1371/journal.pcbi.1008526.g011
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Example 8: Information transfer from one source frequency to multiple

target frequencies

To test the ability of the spectral mTE to recover one source frequency sending information to

multiple target frequencies, we simulated a bivariate example with a single source frequency

showing a phase-amplitude relation with multiple target frequencies.

S0ðtÞ ¼ A � cosð2pf1t þ yÞ þ w1 ð24Þ

yðtÞ ¼ A � ðcosð2pf2t þ yÞ þ cosð2pf3t þ yÞ þ cosð2pf4t þ yÞÞ ð25Þ

T1ðtÞ ¼ y � S0ðt � 1Þ þ w2 ð26Þ

where y is a sum of sinusoids at different high frequencies, with f2 = 100 Hz, f3 = 58 Hz and

f4 = 30 Hz, which are modulated by the source S0 with f1 = 5 Hz, with a sample delay of 1 (Fig

12A), and different noise levels, w1 with a standard deviation of 0.4 and w2 with a standard

deviation of 1. The simulation consisted of 5 seconds with 50 trials at 250 Hz (62500 samples).

The TE analysis correctly identified the source S0 as the driver of T1 with the sample delay

of 1 (Table 1). The application of the spectral TE showed two significant scales at the source

site: 5 (frequency band 4-8 Hz) and 6 (frequency band 2-4 Hz). In this application, the simu-

lated source scale (j = 5) is recovered by the spectral analysis and it is the scale with the largest

drop (see Fig 12B). However, scale 6 is also significant. At the target site three scales have a sig-

nificant drop: 1 (frequency band 63-125 Hz), 2 (frequency band 31-63 Hz) and 3 (frequency

band 16-31 Hz), as simulated. This application showed the ability of the spectral TE algorithm

to identify multiple receiving targets from one source. Although, the scale with the largest

drop, reliably reflects the ground truth, nearby scales have to be interpreted with caution,

Fig 12. Spectrally resolved transfer entropy for example 8. (A) Top, a source S0 is unidirectionally coupled, at scales

j = 5 (frequency band 4-8 Hz), with a target T1 at multiple scales: j = 1 (frequency band 63-125 Hz), j = 2 (frequency

band 31-63 Hz) and j = 3 (frequency band 16-31 Hz). Bottom, power spectrum of S0 and T1. (B) Spectrally resolved

Transfer Entropy. See Fig 4 for display conventions. (Left panel) Information transfer, drops when wavelet coefficients

are selectively shuffled at scale 5 (frequency band 4-8 Hz) and 6 (frequency band 2-4 Hz) on the source site. The

corresponding reception of information at the target is shown on the right panel, where a drop for shuffled wavelet

coefficients is observed at scale 1 (frequency band 63-125 Hz), scale 2 (frequency band 31-63 Hz) and scale 3

(frequency band 16-31 Hz).

https://doi.org/10.1371/journal.pcbi.1008526.g012
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which might have a substantial smaller drop, but still significant, if the the spectral decomposi-

tion is not perfectly confined within a single band. To obtain a better frequency concentration,

we repeated the analysis employing the MODWT with LA(16). Using a longer wavelet filter

should decrease the spectral leakage at nearby scales although increasing the number of

boundary-coefficients. Indeed, this analysis revealed a correct identification of the only simu-

lated scale 5 (frequency band 4-8 Hz) at the source site, see Supplementary Material (S1 Fig).

Example 9: Multiple information flows at multiple frequencies from source

to target

In this final simulation, we tested the ability of the SOSO algorithm to rule out direct informa-

tion flow from a source to a target when one source frequency sends information redundantly

into all target frequencies, while one target frequency receives (other) information redundantly

from all source frequencies (see Fig 13A, and also Fig 2). The simulation consisted of 10 sec-

onds at the sampling rate of 250 Hz and 50 trials (125000 samples) and it was carried out

according to:

S0ðtÞ ¼ x1 þ x2 þ w1 ð27Þ

T1ðtÞ ¼ y1 þ y2 þ w2 ð28Þ

where x1 and y1 were simulated with:

x1ðtÞ ¼ A� � cosð2pf1t þ yÞ ð29Þ

zðtÞ ¼
Xl

i¼2

A � cosð2pfit þ yÞ ð30Þ

y1ðtÞ ¼ z � x1ðt � 1Þ ð31Þ

where l = 6 and with f1 = 9 Hz (j = 4), A� set to 2, f2 = 80 Hz (j = 1), f3 = 40 Hz (j = 2), f4 = 18

Hz (j = 3), f5 = 9 Hz (j = 4) and f6 = 5 Hz (j = 5). The signals x2 and y2 were simulated with:

x2ðtÞ ¼
Xl

i¼2

A � cosð2pgit þ yÞ ð32Þ

y2ðtÞ ¼ A � cosð2pg1t þ yÞ � x2ðt � 1Þ ð33Þ

where l = 6 and with g1 = 40 Hz (j = 4), g2 = 80 Hz (j = 1), g3 = 40 Hz (j = 2), g4 = 18 Hz (j = 3),

g5 = 9 Hz (j = 4) and g6 = 5 Hz (j = 5). The parameter θ is a uniform random variable between

0 and 2π, w1,w2 are samples of i.i.d Gaussian noise process with a standard deviation of 1, and

all parameters A, except A�, are set to 1.

The spectral TE analysis showed (Fig 13B), correctly, the largest drop at scale 4 (frequency

band 8-16 Hz) at the source site (it was simulated with higher amplitude A� = 2), because this

is the source of non-redundant information; additionally scale 5 (frequency band 4-8 Hz) was

significant, likely due to spectral leakage. No other scales could be detected at the source site.

At the target site, the largest drop was at scale 2 (frequency band 31-63 Hz), being the scale

coupled with source scale 4 but also receiving information from all others source scales, i.e.

receiving multiple non-redundant information streams. Additionally, only scale 1 (frequency

band 63-125 Hz) and 3 (frequency band 16-31 Hz) were significant at the target site. This

example was designed to show that a direct non-redundant information transfer from source
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scale 4 to target scale 2 can be ruled out by using the SOSO-Algorithm. Indeed, the SOSO algo-

rithm confirmed that no direct, non-redudant information transfer took place (see Fig 13C).

We direct the reader to section Relation of the partial-information framework and the SOSO-
algorithm, for further discussion of the SOSO-algorithm in relation to the PID framework.

Application to neural data

Finally, we tested the spectral TE method on two different neurophysiological datasets, first, a

human MEG dataset with significant TE between seven sources published in [38], and, second,

a local field potential (LFP) recording in the ferret in Prefrontal Cortex (PFC) and Primary

Visual Area (V1) published in [39].

Information transfer in MEG data from a Mooney face detection task. The data ana-

lyzed here were published in [38]. In short, neural activity was recorded with MEG from

n = 52 subjects at 1.2 kHz sampling rate on a 275 channel whole head magnetoencephalograph

(Omega 2005, VSM MedTech). Subjects had to detect either faces (face condition) or houses

(house condition) in a stream of black and white pictures of faces (Mooney faces), houses, and

scrambled versions of these. From the MEG recordings task-relevant sources were identified

Fig 13. Spectrally resolved transfer entropy for example 9. (A) Top, a source S0 is unidirectionally coupled, with

target T1. Multiple scales (j = 1, 2, 3, 5) of S0 are coupled with a single target scale 2 and at the same time a single source

scale 4 of S0 is coupled with multiple target scales (j = 1, 2, 3, 4, 5). Bottom, power spectrum of S0 and T1. (B) Spectrally

resolved Transfer Entropy. See Fig 4 for display conventions. (Left panel) Information transfer drops when wavelet

coefficients are selectively shuffled at scale 4 (frequency band 8-16 Hz) and 5 (frequency band 4-8 Hz) on the source

site. The corresponding reception of information at the target is shown on the right panel, where a drop for shuffled

wavelet coefficients is observed at scale 1 (frequency band 63-125 Hz), scale 2 (frequency band 31-63 Hz) and scale 3

(frequency band 16-31 Hz). (C) SOSO application to redundant information flow. See Fig 5C, for display conventions.

Information transfer remains when the source scale 4 and the target scale 2 are simultaneously shuffled, ruling out a

direct information transfer between these two frequency bands.

https://doi.org/10.1371/journal.pcbi.1008526.g013
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by means of beamformer source reconstruction from pre-stimulus baseline data, reflecting the

subject’s expectations relevant for the original study, and a comparison of the local active

information storage values between the two experimental conditions. After identifying 5 task-

relevant sources, bivariate TE was computed on the baseline interval between all pairs of

sources and compared between conditions. This procedure identified a significantly different

TE between the two conditions (face, house conditions) from anterior inferotemporal cortex

(aIT) to the fusiform face area (FFA). Here we follow up on these results by analyzing which

source and target frequencies carried the TE found in the original study.

At the group level, for each scale in the face condition, we determined if the m~TE0 was sig-

nificantly smaller than the mTEtot (randomization test [40] on the dependent-samples t-statis-

tic, alpha level was set at 0.05 and Bonferroni corrected for the fourteen scales tested).

In the face condition (Fig 14A), we found the aIT source to be sending information at fre-

quencies around 110 Hz (scale 3: 75-150 Hz, with possible additional contributions above 150

Hz scale 2: 150-300 Hz), while the FFA target received significant information transfer at mul-

tiple high frequency bands: above 150Hz (scale 2: 150-300 Hz) and around 110 Hz (scale 3: 75-

150 Hz) and multiple lower bands: around 14 Hz (scale 6: 9-19 Hz) and around 7 Hz (scale 7:

5-9 Hz). Results for the spectrally resolved mTE in the house condition were qualitatively simi-

lar (see S2 Fig).

Finally, we applied the SOSO algorithm to the face condition at scale 2 for the source aIT

and to the four significant scales at the target FFA (scales: 2,3,6 and 7). The SOSO algorithm

showed a significant direct information flow between source scale 2 (frequency band 75-150

Hz) and all four scales at the target site (scales: 2,3,6 and 7), confirming a high complexity of

interaction between the source aIT and multiple frequencies at the FFA area (see Fig 14B).

These spectral mTE results provide important information about the spectral complexity of

the interaction between aIT and FFA in that the information transfer took place between

Fig 14. Spectrally resolved information transfer between MEG sources when preparing to detect faces. (A)

Spectrally resolved information transfer between aIT as a source and FFA as a target in the condition where subjects

are trying to detect target faces. aIT sends information mainly at 75-150Hz (left column), whereas FFA receives

information at high frequencies (75-150Hz and above) as well as low frequencies (9-19Hz and 5-9Hz) (right column).

See Fig 4 for display conventions. (B) Analyses of cross-frequency information transfer between specific source

frequency in aIT and multiple target-frequencies in FFA (second panel on the right side). All four scales (2, 3, 6, 7) at

the target side showed a significant direct information transfer from the source at scale 3. d
j
TESi

(black bar), median of

the d
0

TE distribution (red dotted bar).

https://doi.org/10.1371/journal.pcbi.1008526.g014

PLOS COMPUTATIONAL BIOLOGY Spectrally-resolved information transfer

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008526 December 28, 2020 27 / 40

https://doi.org/10.1371/journal.pcbi.1008526.g014
https://doi.org/10.1371/journal.pcbi.1008526


different frequency bands. These results could not have been obtained with a spectral GC

approach, as spectral GC only searches for within-band transfer of information.

Occipito-frontal and fronto-occiptal information transfer in the ferret. We applied the

spectral TE method to data from a previous study on anaesthesia effects in the ferret [39]. In

short local field potentials were recorded simultaneously in primary visual cortex (V1) and the

prefrontal cortex (PFC) of two female ferrets (see Fig 15A, for a schematic depiction of

Fig 15. Spectrally resolved information transfer for the ferret. See Fig 4 for display conventions for B and D and Fig 5 for

C and D. (A) Schematic location of recording sites on the ferret brain (from [39]). (B) Spectrally resolved information

transfer from PFC to V1 in the ferret. (Left panel) Information transfer, drops at scale 7, 8, and 9 on the source site (PFC),

when the wavelet coefficients are shuffled. (Right panel) A significant drop is observed at scale 2 at the target site (V1).

mTEtot original (black dotted bar), m~TE� (red dotted bar). Scale 1 is not shown since LFP were low passed at 300 Hz. (C)

Analyses of cross-frequency information transfer between specific source- and target-frequencies in PFC and V1 of the

ferret. (Left Panel) No information transfer is present when the source sending scale and the target receiving scale are

simultaneously shuffled and no drop of mTE can be seen (the distribution d
0

TE approaches 0). (Right panel) Information

transfer is still present when unrelated target frequency band is shuffled. d
j
TESi

(black bar), median of the d
0

TE distribution (red

dotted bar). (D) Spectrally resolved information transfer from V1 to PFC. (Left panel) Information transfer, drops at scale 2,

3, and 4 on the source site (V1), when the wavelet coefficients are shuffled. (Right panel) A significant drop is observed at

scale 2 at the target site (PFC). mTEtot original (black dotted bar), m~TE� (red dotted bar). Scale 1 is not shown since LFP

were low passed at 300 Hz. (E) SOSO application to source V1 and target PFC of ferret.(Left Panel) No information transfer

is present when the source sending scale and the target receiving scale are simultaneously shuffled and no drop of mTE can

be seen (the distribution d
0

TE is centered on 0). This means that there is indeed a direct transfer of information from source

scale 3 to target scale 2 (Right panel) Information transfer into target scale 2 is still present when the source scale 4 is

shuffled, meaning information does not flow from source scale 4 to target scale 2. d
j
TESi

(black bar), median of the d
0

TE

distribution (red dotted bar).

https://doi.org/10.1371/journal.pcbi.1008526.g015
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recording sites) under different concentrations of the anesthetic isoflurane and under awake

conditions. Since the application of spectrally resolved mTE here served only as a proof of

principle we only analysed the data of ferret 1, i.e. the ferret that showed significant bi-direc-

tional TE in the awake condition. Moreover, we only analyzed data from the awake condition.

For more information on the experimental procedures see [39]. First, using the mTE-algo-

rithms from our new IDTxl toolbox we replicated the earlier findings of a significant bidirec-

tional TE between PFC and V1 and vice versa (see Table 3).

Second, in the direction from PFC to V1 the spectral TE method revealed a significant effect

in scales 7, 8, 9, with scale 7 (4-8 Hz) as minimum, when PFC was considered as source of V1.

In contrast, at the target site (V1), the only scale that revealed a significant TE decrease when

shuffled was scale 2 (125-250 Hz, high gamma band, or very high frequency oscillations,

VHF), indicating a possible CFIT from PFC to V1, results are reported in Table 4. To test this,

we applied the SOSO algorithm on scale 7 from the PFC source and scale 2 from the target V1.

As a control analysis we additionally randomly picked another scale on the target side to verify

that the interaction was restricted only to target scale 2.

Similarly to our simulations (see Fig 5C), the PFC source at scale 7 and the V1 target at

scale 2 showed a significant decrease of the distribution of delta values and dTESi
was in the

extreme 5% of the distribution (p<0.05�). No significant result was found when we applied the

SOSO algorithm to the randomly chosen control target-scale 5 (see Fig 15C left, and Table 4).

Table 3. Results of TE analysis neural data.

experiment interaction significant subjects p-values

MEG face condition aIT!FFA 29 <0.01��

LFP Ferret PFC!V1 n/a <0.05�

V1!PFC n/a <0.05�

�p< 0.05;

��p< 0.01;

���p< 0.001;

https://doi.org/10.1371/journal.pcbi.1008526.t003

Table 4. Results of spectral TE analysis.

experiment scale of maximum drop at source scale of maximum drop at target p-values

MEG faces condition 3 2,3,6,7 <0.01��

SOSO
aIT!FFA 3 2,3,6,7 <0.001���

LFP Ferret
PFC!V1 7 2 <0.05�

V1!PFC 3 2 <0.05�

SOSO
PFC!V1 7 2 <0.05�

7 5 ns

V1!PFC 3 2 <0.05�

4 2 ns

�p< 0.05;

��p< 0.01;

���p< 0.001;

https://doi.org/10.1371/journal.pcbi.1008526.t004
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Third, we considered V1 as source and PFC as target. The spectral TE algorithm revealed a

significant TE decrease on scale 2, 3, 4 at source site, with scale 3 (high gamma) as minimum.

On the target side (PFC) scale 2 was the only significant result (see Table 4).

We applied the SOSO algorithm on the source scale 3 and 4, and target scale 2. This analysis

revealed a significant decrease of the distribution of delta values for source scale 3 and target

scale 2 (p<0.05�, see Fig 15E, left and Table 4), but interestingly not for source scale 4 (see Fig

15E, right and Table 4).

The application of the new spectral TE algorithm on data that showed significant bidirec-

tional TE revealed, a low frequency top-down communication, PFC!V1, with a possible

CFIT (Fig 15B), and high frequency bottom-up communication V1!PFC (Fig 15D), in agree-

ment with [41].

These results demonstrate the value of separate analyses for source and target frequencies

and the post-hoc tests to identify only direct TE from source to target.

Discussion

We present an algorithm to measure the information transfer that is associated with specific

spectral components in an information source or target. Our evaluation results demonstrate

that spectral components in the source or target can be reliably identified, given that there are

not many closely overlapping components contributing to the information transfer. If many,

closely overlapping components are present, a conservative approach is to focus only on the

component yielding the largest contribution. One of the advantages of the algorithm presented

here is that the original signals are never filtered before the computation of information trans-

fer. Rather, we defer the filtering operation to the creation of spectrally-specific surrogate data,

where phase shifts, filtering artefacts or filter-inefficiencies only lead to overly conservative

results in the worst case, but not to spurious false positives. Our algorithm can be extended to

investigate whether the information transferred from a specific source-frequency indeed arri-

ves at a specific target frequency, whenever there is an a priori reason to assume that this possi-

bility exists in the system under investigation. If no such a priori consideration applies, the

intricacies of the partial information decomposition warrant utmost caution when inferring a

direct transfer of information from identified source to target frequencies (see the section on

partial information decomposition, below).

In the remainder of this section we will detail the added value of spectrally-resolved TE

analysis for neuroscience, discuss the inherent but often-overlooked complexities of measuring

spectrally-resolved information transfer, discuss advantages and drawbacks of the algorithm

presented, discuss its relation to previous approaches, and remark on the choice for the free

parameters of the algorithm.

Information transfer in rhythmic neural processes beyond within-band

synchronization and linear interactions

Having the possibility to analyze how information is transferred in relation to various spectral

components is of particular interest in neuroscience. This is because of the importance of

information transfer for the distributed computation performed in neural systems and because

of the prevalence of rhythmic processing in neural systems. This rhythmic processing is evi-

dent for example in the mammalian neocortex, where researchers have studied processes in

various frequencies for decades (e.g. δ, θ, α, β, low and high frequency γ rhythms). Our novel

analysis techniques offer the unique opportunity to unravel how information is exchanged

between different rhythmic processes, but also, and importantly between arhythmic (wide-

band) and rhythmic processes (see Example 7: Information transfer from multiple source
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frequencies to one target frequency). We thus expect that our methods will widen the current

focus on synchronization and within-band interactions to reveal a fuller picture of neural

processing.

In this respect, even our proof of concept analyses of MEG and LFP data have provided

intriguing new insights:

1. In the MEG data we found two surprising results: (A) Information transfer at very high fre-

quencies that was possibly linked to leaked multi-unit activity or to oscillatory components.

We are not aware of other reports of functional connectivity or information transfer at

those frequencies, possibly owing to the fact that coupling at these frequency bands may be

nonlinear and may not be carried by relatively stable oscillations. Nevertheless our analyses

demonstrate that the information in these bands is well captured by the MEG. (B) The

information sent via high frequencies from aIT cortex to FFA is also received at the low

beta band, i.e. there is information flowing from high frequencies to lower frequencies. This

result differs from the usual assumption that lower frequencies modulate higher ones (e.g.

via phase-amplitude coupling [31]), but corroborates earlier findings in nonhuman pri-

mates that showed the same effect [3].

2. In the ferret LFP-recordings, we observed information being sent from frontal cortices at

low frequencies from δ, θ and α-bands, and being received in V1 at high γ-frequencies—in

line with previous reports. Yet, of the information in the low source frequencies, only infor-

mation in the alpha band seems to be directly received by the high γ-band in the target—

with the information sent by the δ and θ-bands being either redundant with the informa-

tion in the α-band or being received across all frequencies in the target as indicated by the

SOSO-analysis (Fig 15C).

In sum, these two exemplary applications to neural data demonstrate the enormous level of

detail provided by the proposed algorithms for the analyses of neural communication. These

examples also point to the possibility that there are many neural communication processes or

mechanisms that have been overlooked so far due to the lack of proper analysis methods.

Frequency resolved TE as a partial information decomposition problem

To discuss frequency-resolved analysis of information transfer as a partial information decom-

position (PID) problem, we first introduce the concept of PID by a simple example. Imagine

two source variables S1, S2 that together provide some information about a target variable T,

i.e. the joint mutual information I(T: S1, S2) is non-zero. One may ask, then, how much of that

joint mutual information about T can only be obtained from S1, but not from S2 and vice

versa, how much information can be redundantly obtained from either variable, and how

much information can be only obtained from S1, S2 considered jointly. These three ‘types’ of

information are called unique, shared and synergistic mutual information (see [42, 43] for

reviews, and [8, 9, 44, 45] for further details).

In the same way that a joint mutual information can be decomposed we can also decom-

pose a conditional mutual information, e.g. I(T: S1, S2|Z). Since transfer entropy is just a condi-

tional mutual information, and since our spectral components would take the role of the

source variables S1, . . ., Sn we see that asking for the contribution of each spectral component

to the overall transfer entropy amounts to solving the partial information decomposition prob-

lem. Unfortunately, the full complexity of such partial-information decompositions has only

been realized very recently, and their mathematical formulation is still a matter of active

research (see for example the recent special issue on this topic [46]). Yet, independent of the

specific mathematical formulation, the PID framework is a useful tool to think about the
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inherent complexity of spectrally-resolved information transfer in order to better interpret

results. We would like to stress, however, that our proposed algorithms in no way depend on a

solution to the PID problem, as all quantities involved are just classic conditional mutual infor-

mation terms.

At present, existing PID measures only allow a decomposition of either the source or the

receiver processes into PID components. This unsolved problem is also the fundamental rea-

son why we have mostly confined ourselves to considering source and receiver frequencies

separately (apart from trying to identify the special case of one source frequency interacting

with one target frequency). While the field of PID is still under rapid development in terms of

proper information theoretic measures, the underlying structure of the problem is clear, and

can be harnessed to understand the spectral analysis of information transfer. In particular,

using the PID formalism we can clearly map out which specific components and combinations

of components of a PID will be detected or missed by our analysis method, irrespective of any

particular definition or measure of PID components:

1. Frequencies on the source or target side that contribute unique information to the transfer

entropy from source to target will be detected, both on the source and the target side.

2. Frequencies on the source or target side that carry information redundantly (and with

approximately equal amount and signal to noise ratio) will be missed. This is because

destroying one of these frequencies in the surrogate data will not remove the information,

as it is redundantly carried via the other frequency. Hence, the mTE on the permuted data

will most likely not drop significantly.

3. Frequencies on the source or target side that synergistically contribute to the TE will all be

detected, as destroying each of them will reduce the amount of information transfer in the

permuted data. There will be no indication as to whether the information transfer was a

synergistic or unique contribution of those frequencies, unless there is only one frequency

that leads to a reduction of the TE in the permuted data (in which case it is a unique

contribution).

We note that the difficulties mentioned under 2. and 3. are generic and do not apply to the

analysis of transfer entropy alone but to any spectrally-resolved measure of information trans-

fer. They simply reflect the complex nature of statistical dependencies in multi-variable

systems.

Comparing population statistics of frequency-resolved information transfer from a

PID perspective. Somewhat more formally, there are (at least) two options for computing a

frequency-resolved measure (population statistic) of information transfer in the form of infor-

mation theoretic quantities. If we use the notation X(f ) for the isolated spectral component at

frequency f of process X—however this is defined and achieved–, then the approach using an

isolation of frequency components before mTE-computation aims to compute I(X−(f ): Y+(f 0)|
Y−(f 0)), i.e. to describe the information transfer from a frequency f in the source to the fre-

quency f 0 in the target. Here the superscripts + and − indicate the history and the present states

of the processes. Since all other frequencies have been removed from this expression, redun-

dant information transfer from the set of other frequencies {f †} \ {f } for the source and the set

{f †} \ {f 0} for the target will appear again at other frequencies. In a PID perspective this

approach lumps unique information transfer from f to f 0 together with any redundant infor-

mation transfer from or to frequencies other than f, f 0. Our approach (algorithm I) differs first

by dropping the frequency resolution for one of the processes. If we take the source perspec-

tive, we thus replace Y+(f 0) and Y−(f 0) with Y+ and Y−. Next, since we are looking for the fre-

quency specific drop which arises from destroying unique synergistic contributions of the
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source frequency f, but not from destroying redundant contributions, we measure the sum of

unique and synergistic contributions. As per the consistency equations of PID [44] this sum is

the conditional mutual information I(X−(f ): Y+|Y−, X({f †} \ {f })). In the SOSO algorithm II,

we correspondingly aim to measure I(X−(f ): Y+(f 0)|Y−, Y+({f †} \ {f 0}), X−({f †} \ {f })), i.e. fre-

quency resolution for the target is added, as well as an additional conditioning removing

redundancies in the target. In sum, the ‘classic’ approach of isolating spectral components first

focuses on all information transferred by a spectral component. In contrast, our approach

focuses on the information transferred specifically by that spectral component, possibly in

conjunction with others (but not redundantly with others). Apart from the practical problems

associated with the classic approach, the choice of one of the two approaches is foremost a mat-

ter of the scientific question at hand. The PID framework allows to formulate this question

more precisely than possible previously.

Relation of the partial-information decomposition framework and the SOSO-algo-

rithm. Understanding that measuring frequency-resolved TE is a PID-problem is particu-

larly useful in understanding the necessity of the SOSO-algorithm to determine putative cross-

frequency effects (see Algorithm II: Testing for direct information transfer from source to
receiver frequencies). For system A in Fig 2 there is direct information transfer from one source

to one target frequency. Algorithm I will identify these frequencies and the SOSO-algorithm

will confirm the direct transfer of information between these frequencies. In system B, how-

ever, one source frequency sends information to all target frequencies except one. This one tar-

get frequency, in turn, receives other information from all source frequencies except the

identified one. In this system the information sent redundantly by multiple frequencies, and

the other information received redundantly will not be revealed, as destroying individual fre-

quencies does not destroy it (information is present redundantly in other frequencies). What

algorithm will indicate is the information transfer non-redundantly emitted from one source

frequency and (another) information transfer non-redundantly received by one target fre-

quencies. Yet, the SOSO-analysis will show correctly that the identified source and target fre-

quency do not exchange information directly. In system C the same source frequency sends

information redundantly into all target frequencies, while one target frequency receives infor-

mation redundantly from all source frequencies. Depending on the signal to noise ratio, here

either no source and no target frequency will be identified by algorithm I, as all the informa-

tion is carried redundantly, or both the source and the target frequency will be detected if they

have superior signal to noise ratio. Then, the direct transfer from one source to one target fre-

quency will be confirmed by the SOSO-algorithm.

Again, the difficulties that arise in the identification of sender and receiver frequencies and

in establishing a direct transfer of information from one source frequency to one target fre-

quency are closely related to the fact that we deal with a partial information decomposition

problem.

Methodological advantages and drawbacks of the proposed method

The most important advantage of obtaining frequency-selectivity without filtering the original

data is that we do not introduce distortions into the relative timing of the original data or have

to deal with other filtering-related artifacts, or even ineffective filters as they were described

before. Ultimately this protects us from generating false positive results due to filtering.

With respect to the influence of filtering artifacts biasing TE estimation, as described in [5],

manipulating only the surrogate data in the spectral domain restricts the appearance of filter-

ing-related artifacts to the surrogate data. If these artifacts will produce an erroneous increase

in TE then this will only lead to conservative errors; if artifacts produce a decrease, this is the
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desired effect in surrogate data creation, anyways. We consider these filtering-related errors to

be mild in most cases, as demonstrated by the correct recovery of relevant source and target

frequencies of information flows in our evaluation examples.

Our approach also solves the problem of filter ineffectiveness as described in [7]. This prob-

lem arises in approaches that use filtering of the original data to remove spectral power in fre-

quencies of no interest. Yet, filtering will only dampen spectral power, not remove the

information contained in a specific frequency as long as the numeric resolution is high enough

to keep the unwanted signal above the numeric quantization noise. Ironically, this problem is

more serious when using high-precision math libraries. In our approach we use the filtering-

equivalent MODWT transform only to isolate the information of interest in order to then

destroy the information by coefficient scrambling in surrogate data creation.

In terms of drawbacks, the most important one is likely to be the computational burden our

analyses presents, especially when using the SOSO-algorithm. This burden stems from the use

of information theoretic estimators for continuous data as well as from recursively nested

non-parametric statistics with sufficient iterations and permutations. Due to the computa-

tional burden, our method does not lend itself to large-scale exploratory studies as they have

been popular with simpler methods based on correlations for example. We therefore advise to

apply the methods presented here in a confirmatory way, e.g. for testing highly specific

hypotheses of interest, or to neural interactions that have been carefully pre-selected by other

methods (e.g. by an mTE analysis, or simply by drawing on prior knowledge).

On the other hand, the hierarchical approach of first searching for source and target fre-

quencies of interest—and only then applying the SOSO-algorithm to selected frequency pairs

in a confirmatory step—makes our methods scale better with the number of frequencies

involved (basically OðjÞ instead of Oðj2Þ, where j is the number of frequencies involved).

Last, we note, that the frequency resolution that our methods provides is at the level of

wavelet scales. This means that we ascribe the information coming from the source and the

information reaching the target to specific frequency bands (i.e. the wavelet scales), not single

frequencies.

Specific caveats

The advantage of the proposed algorithms of avoiding filtering of the original data comes at

the price that the measurement of the frequency-specific TE contribution is not in absolute

terms, but as a difference to the TE value obtained from the surrogate data. This will lead to a

potential underestimation of the information transferred by a certain frequency. Yet, for finite

data, a comparison of estimated TE values to the TE obtained from suitable, case-specific sur-

rogate data is recommended in most cases anyway, due to the considerable bias problems

inherent in the estimation of information theoretic quantities from finite data [33]. Moreover

giving exact quantities for the information sent or received by a frequency again means having

to face questions of how to attribute uniquely, redundantly or synergistically sent or received

information.

Nonstationary signals

To reliably estimate TE, an assumption of stationarity is required. In cases where such an

assumption cannot be made, exploiting shorter time windows or observing multiple realiza-

tions (i.e. an ensemble) of the system might alleviate this problem [47]. If the mTE algorithm

wrongly identifies the interaction in the system under analysis due to the nonstationary prop-

erties of the signals, this is reverberated also in the spectral mTE analysis. One possible way to

alleviate these problem due to nonstationarities is to keep the relevant nonstationarities intact
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also in the surrogate data. If one has to deal with a nonstationary processes (e.g. stochastic pro-

cesses with time-varying mean or variance), one way to achieve this is to sample replications

(epochs) from these processes such that these replications all start at the same random variable

of the process. Surrogate data for network reconstruction and computation of mTEtot can then

be obtained by exchanging full replicas/epochs (this is done in IDTxl, for example); corre-

spondingly, for estimates of the spectrally-resolved information transfer the full unaltered

sequences of wavelet coefficients at the desired frequency are exchanged between epochs. This

way, any difference between original measures and those obtained from surrogate data do not

arise from the nonstationarities that have been kept intact in the surrogate data.

Why are the values for spectral mTE sometimes systematically elevated for

the surrogate data?

At first it may seem an indication of a problem of our method that the distribution of values

for mTE from surrogate data is sometimes systematically higher than for the actual data. This

is however, just an expression of the problems of filtering mentioned in the introduction, i.e.

it reflects that filtering can create artefactual increases in TE. However, while in standard

approaches this leads to false positives, in our approach it makes the method more conserva-

tive. We also note that some choices of the wavelet and permutation methods can be made to

alleviate this problem (see S3 Fig). At the moment it is an open question whether there is one

set of parameters for surrogate data creation that is optimal for all cases.

Relation to previous approaches

While we have seen attempts at frequency resolved TE and mTE estimation at conferences,

none of these seem to have been published. The literature on frequency-resolved TE is thus

very sparse. Specifically, we found that the approaches in [3, 48–50] all use spectral decomposi-

tion techniques on the original data, and thus seem suffer from the vulnerabilities detailed in

[5, 7]. As one exception, Xu and colleagues [51] use a technique similar to the definition of

spectral Granger causality, but for this approach to work they rely on Gaussianity of the data.

Some important progress on filtering-related problems has however been made recently for

linear multivariate auto-regressive processes using state space formalisms (see [52] and refer-

ences therein) and Granger Causality. Yet, at present these approaches seem to be focused on

within-band (or -scale) information transfer. Thus, they have a narrower focus compared to

our problem setting. However, if a system of interest is well described by a multivariate linear

auto-regressive process, and exhibits (only) within-band information transfer the methods

from [52] will be more data-efficient and come with a much lower computational burden.

With respect to measures releated to transfer entropy proper, we note that the phase trans-

fer entropy introduced by Lobier [50] as the transfer entropy between the time series of the

instantaneous signal phases extracted by the narrow band filtering and application of the Hil-

bert transform is conceptually very different from a our approach, and from TE in general, as

it reduces the dimensions of state spaces of the variables entering the TE computation to just

two, thereby potentially hiding interesting aspects of the system under study.

Last, the recent approach of Wan [53] is similar to ours in that it uses a wavelet decomposi-

tion of the data and a permutation approach to create surrogate data (for bias correction). It

differs from our approach however, in that it does not decouple multivariate network identifi-

cation from spectral decomposition, and most importantly the spectral techniques are applied

to the original time series, rather than to the surrogate data only. Thus, their technique can still

be seen as a filtering-based approach. Also, the investigation of cross-frequency information

transfer is explicitly left for future refinements of their method.
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Another important difference of the approach proposed here and previous approaches is

the recognition of the problem of frequency resolved TE as a PID-problem—warranting sepa-

rate analyses for sender and receiver and a particular care in the interpretation of results as laid

out above.

When dependencies between different frequencies are of interest, it is sometimes the enve-

lope of a faster frequencies that carries the information to be transferred and that influences

other spectral components. To detect such phenomena, often spectral power envelopes are

explicitly extracted via narrow-band filtering and a subsequent Hilbert-transform (e.g. [54,

55]), or simply via rectification of a band limited signal and low pass filtering of the rectified

signal [3]. These envelopes are then subjected to some technique to compute information

transfer, such as TE or GC. We note that such preprocessing steps should not be necessary

when using transfer entropies and surrogate data creation, because the time varying aspects of

the envelope will be absent in the surrogate data with scrambled phases of the carrier signal,

and thus the information encoded in the envelope will be gone. This in turn leads to desired

drop in information transfer at the carrier frequency in the surrogate data when using algo-

rithm I.

Conclusion

We here present an algorithm that returns the frequencies at which a source sends information

to a target via any (possibly nonlinear) mechanism, or at which the target receives information

from a source. We discuss that a full analysis of frequency-resolved information transfer is a

problem of the partial-information decomposition type, such that results should be interpreted

carefully, and in the light of possible synergies and redundancies between frequencies in the

source or the target. Against this background, we also present a test for a potential one-to-one

information transfer from a source frequency to a target frequency. While our algorithms are

motivated by problems from neuroscience they are applicable in all fields where frequency-

specific information transfer is of interest, e.g. turbulence or climate research.

Our method is fully available and integrated in the open source package IDTXl: https://

github.com/pwollstadt/IDTxl/tree/feature_spectral_te, along with a demo script.

Supporting information

S1 Fig. Spectrally resolved transfer entropy for example 8 with LA16. See Fig 4 for display

conventions. (Left column) Information transfer, drops when wavelet coefficients are selec-

tively shuffled at scale 5 (frequency band 4-8 Hz) on the source site. The corresponding recep-

tion of information at the target is shown on the right column, where a drop for shuffled

wavelet coefficients is observed at scale 1 (frequency band 63-125 Hz), scale 2 (frequency band

31-63 Hz) and scale 3 (frequency band 16-31 Hz).

(TIFF)

S2 Fig. Spectrally resolved information transfer between MEG sources when preparing to

detect houses. See Fig 4 for display conventions. Spectrally resolved information transfer

between aIT as a source and FFA as a target in the condition where subjects are trying to detect

target houses. aIT sends information mainly at 75-150Hz (left column), whereas FFA receives

information at high frequencies (75-150Hz and above) as well as low frequencies (9-19Hz and

5-9Hz) (right column).

(TIFF)

S3 Fig. Spectrally resolved transfer entropy for example 6 with IAAFT surrogates. See Fig 4

for display conventions. (Left column) At the source site the maximum drop of the wavelet
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coefficients is at scale 5. (Right column) The distributions of surrogates at the target site exhibit

less increase compared to the ones in Fig 10B, obtained with the block resampling method,

especially at lower scales.
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35. Dupré la Tour T, Tallot L, Grabot L, Doyère V, van Wassenhove V, Grenier Y, et al. Non-linear auto-

regressive models for cross-frequency coupling in neural time series. PLoS Computational Biology.

2017; 13(12):1–32. https://doi.org/10.1371/journal.pcbi.1005893 PMID: 29227989

36. Hyafil A. Disharmony in neural oscillations. Journal of Neurophysiology. 2017; 118(1):1–3. https://doi.

org/10.1152/jn.00026.2017 PMID: 28179476

37. Vakorin VA, Krakovska OA, McIntosh AR. Confounding effects of indirect connections on causality esti-

mation. Journal of Neuroscience Methods. 2009; 184(1):152–160. https://doi.org/10.1016/j.jneumeth.

2009.07.014 PMID: 19628006
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