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Introduction: Interventions to curb the spread of COVID-19 during the 2020—2021 influenza sea-
son essentially eliminated influenza during that season. Given waning antibody titers over time,
future residual population immunity against influenza will be reduced. The implication for the sub-
sequent 2021—2022 influenza season is unknown.

Methods: An agent-based model of influenza implemented in the Framework for Reconstructing
Epidemiological Dynamics simulation platform was used to estimate cases and hospitalizations
over 2 successive influenza seasons. The impact of reduced residual immunity owing to protective
measures in the first season was estimated over varying levels of similarity (cross-immunity)
between influenza strains over the seasons.

Results: When cross-immunity between first- and second-season strains was low, a decreased first
season had limited impact on second-season cases. High levels of cross-immunity resulted in a
greater impact on the second season. This impact was modified by the transmissibility of strains in
the 2 seasons. The model estimated a possible increase of 13.52%—46.95% in cases relative to that
in a normal season when strains have the same transmissibility and 40%—50% cross-immunity in a
season after a very low one.

Conclusions: Given the light 2020—2021 influenza season, cases may increase by as much as 50%
in 2021—2022, although the increase could be much less, depending on cross-immunity from past
infection and transmissibility of strains. Enhanced vaccine coverage or continued interventions to
reduce transmission could reduce this high season. Young children may have a higher risk in 2021
—2022 owing to limited exposure to infection in the previous year.

Am J Prev Med 2022;62(4):503—510. © 2021 American Journal of Preventive Medicine. Published by Elsevier
Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

oronavirus disease 2019 (COVID-19) was

declared a pandemic by the WHO on March

11, 2020. Cases were identified in the U.S. in
early 2020, resulting in widespread interventions to
reduce the spread of the virus, including school closure
and measures to decrease social interactions. These
interventions impacted not only COVID-19 transmis-
sion but also the transmission of other diseases that
spread by the same mechanisms. Markedly decreased
influenza activity was documented in many locations
after the institution of COVID-19 interventions.'~ Lit-
tle influenza activity was detected by the Centers for

© 2021 American Journal of Preventive Medicine. Published by Elsevier Inc.

Disease Control and Prevention (CDC) in the U.S. dur-
ing the 2020—2021 influenza season.”
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Previous-year vaccination is believed to provide little
protection from subsequent-year influenza,” but natural
infection appears to provide measurable immunity for
several seasons, particularly if the circulating strains are
close antigenic matches.” The limited number of influ-
enza cases in the U.S. in 2020—2021 has raised concerns
about the possibility of a higher burden of influenza ill-
ness in the 2021—2022 season owing to reduced immu-
nity from previous-year natural infection. Children aged
<2 years may be at increased risk after a season with
limited influenza because they likely have never been
exposed to natural infection and therefore have immu-
nity only from vaccination.

Modeling has been applied to infectious diseases since
the 1920s and is a well-established technique for analyz-
ing and predicting influenza epidemics.” Historically,
compartmental models were applied extensively to esti-
mate values for the reproduction number in past epi-
demics and pandemics and to estimate the possible
impact of interventions if applied to past and hypotheti-
cal future epidemics.'’”'” Agent-based and individual-
based modeling of infectious diseases became more com-
mon when high-performance computing became avail-
able."®"* This type of model requires more computing
resources but allows the setting of individual-based
parameters and includes randomness so that a range of
results are produced. Agent-based modeling can be used
to perform highly detailed investigations of possible dis-
ease scenarios, for example, the effects of changes in
strain transmissibility or the impact of vaccination.

The Framework for Reconstructing Epidemiologic
Dynamics (FRED) simulation platform™" is an agent-based
modeling platform that was developed in response to the
2009 influenza pandemic and has been used for modeling
influenza as well as other infectious and noninfectious con-
ditions.”*** FRED models use census-based synthetic pop-
ulations whose agents have realistic demographics, locations,

Distribute Prior
Immunity to First
Season Influenza

and

Simulation Start

Sep 15

Seed First Season Influenza
Cases
Nov 15

|

2020 | 2021
Distribute First Season
Vaccination
Oct 1

Application of Social Distancing
Sep 15, 2020 - May 15, 2021

and interaction patterns and rates, allowing for targeting of
parameters by those factors. The FRED influenza model was
formerly limited to simulating a single season. This study
expands the pandemic model to include immunity from
previous infection and from vaccination and to allow for
modeling of multiple consecutive seasons of influenza. It
therefore represents a novel expansion of modeling capabili-
ties in this area and provides a starting point for more com-
plex simulations.

To explore the impact of limited influenza activity on
subsequent-year influenza burden, FRED was used to
model 2-season influenza scenarios under a variety of
assumptions on the impact of natural infection on sec-
ond-year immunity and a variable degree of antigenic
relatedness of first- and second-year circulating strains.
Simulations estimated the impact of increased vaccina-
tion, continued interventions to reduce respiratory dis-
ease transmission, and the specific impact on the
youngest age group in the population.

METHODS

The FRED simulation platform has been described in detail previ-
ously.”" Details of simulations and the models used in this study
as well as parameters used can be found in the Appendix
(available online). A timeline is shown in Figure 1. FRED uses a
transmissibility parameter to represent the infectious ability of a
transmissible condition. The transmissibility parameter contrib-
utes to producing R, or R, in a simulation. A higher transmissibil-
ity parameter will produce a larger outbreak if no other
parameters in the model change. Simulations were run with a low
transmissibility parameter value (0.6, Ry ~1.31, 95% CI=0.79,
1.83) and a high transmissibility parameter value (0.8, Ry ~1.75,
95% CI=1.13, 2.37). Base model results are included in Appendix
Table 1 (available online).

Population
Simulations were performed on a population representing
Allegheny County, a medium-sized county in the southwest of

Seed Second Season Influenza Cases Simulation End
Nov 15 May 31

=
| 2022
Distribute Second
Season Vaccination
Oct 1

Figure 1. Timeline of influenza simulation.

Apr, April; Aug, August; Dec, December; Feb, February; Jan, January; Jul, July; Jun, June; Mar, March; Nov, November; Oct, October; Sep, September
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Pennsylvania, with a population of approximately 1.2 million. It
contains both urban and suburban areas and is large enough to
capture the spread of influenza through a population. Simulations
were performed with 100 repetitions to capture stochastic behav-
ior.

Agents were immunized by age group as per CDC data using
the following rates: age 0.5—17 years, probability=0.638; age 18
—49 years, probability=0.384; age 50—64 years, probability=0.506;
age >65 years, probability:O.698.2(’ In the model, vaccination
reduces susceptibility to influenza by 40% (vaccination efficacy in
CDC studies ranges between 10% and 60%) (Appendix Table 2,
available online).””** Strain-specific vaccination occurs in October
of the simulation year, and immunity wanes after vaccination at
7% per month.”

Immunity from previous infection was distributed by age
group in the population using attack rates estimated by CDC for
2019—2020 (Appendix Table 2, available online).*

Reduced agent interactions at the population level were used to
investigate the impact on second-season influenza cases. A simpli-
fied method of reducing contacts by isolating a proportion of
agents in the simulation was used. Calibration runs with varied
rates of isolation determined the percentage of the population
needing to be isolated to prevent first-season influenza cases. Cali-
bration results are in Appendix Section 7 (available online). The
use of this method accomplishes the purpose of eliminating a
first-season influenza epidemic. The method was not specifically
focused on the impact of a particular social distancing interven-
tion and does not address the nuances of various interventions (e.
g., masking, work from home), which is not necessary for this
study. Isolating 40% of the population was sufficient to reduce the
first influenza epidemic to levels similar to those identified in the
2020—2021 influenza season (Appendix Section 7, available
online, Model Validation Results). In 2-year simulations using the
reduced interaction model, reductions were applied only in the
first season. Additional simulations used a 40% reduction in the
first season and lower levels of isolation (10% and 20%) in the sec-
ond season.

To estimate the impact of increased vaccination, 1-year simula-
tions with previous immunity were run with vaccination uptake
by age group as reported by CDC and with 10% and 20%
increases. Influenza vaccination levels as reported by CDC from
2010 to 2020 have increased by levels in the 10%—20% range.”"

To orient the results to specific subtype/lineage scenarios in the
modeled first and second influenza seasons, the level of reduction
in susceptibility to infection by a subtype/lineage of influenza con-
ferred by infection with the same or different subtype/lineage was
estimated on the basis of discussions with experts in virology,

influenza, and vaccination (Table 1). Support for expert opinion
was identified in the literature.”>*” These estimates represent the
ranges of possible strain cross-immunity.

The University of Pittsburgh IRB determined that this study
was not human subject research. It was therefore an exempt study
design.

RESULTS

Model validation results are included in Appendix
Section 7 (available online). In a 2-strain, 2-season
model, normal first-season cases prevented second-sea-
son influenza cases and hospitalizations in all 4 trans-
missibility scenarios. A low first season would cause
second-season case increases equal to the reductions
caused by a normal first season. The impact varied by
the transmissibility of the first- and second-year strains
and by the similarity (cross-immunity) between those
strains (Figure 2 and Appendix Table 4, available
online). After waning, highly similar strains might have
approximately 50%—60% cross-immunity (Table 1).
Using 50% cross-immunity, if both season strains had
lower transmissibility, the difference between second-
season cases after a normal first season and a low first
season  was  26.29%  (29.99%  hospitalizations)
(Figure 2A). A lower transmissibility strain in the first
season had less impact on second-season cases when the
second-season strain was more transmissible (difference
of 3.83% cases and 4.31% hospitalizations) (Figure 2B).
When the first-season strain had greater transmissibility
than the second-season strain, there was a difference of
97.72% in cases (96.98% hospitalizations) (Figure 2C).
When both the first-season and second-season strains
were more transmissible, case difference in the second
season was 49.47% for cases (56.81% hospitalizations)
(Figure 2D). Higher transmissibility strains in the first
season cause higher case numbers, contributing more to
second-season immunity. When this immunity is
removed, there is a larger increase in the second season.
In the low transmissibility scenarios, R, is approximately
1 in a model with previous immunity and vaccination;

Table 1. Theoretical Percent Cross-Immunity Between Influenza Subtypes/Lineages

::':Ll;eg'::a subtype/ Immunity to reinfection within the current year Immunity to infection after 1-year waning®
HA1N1 H3N2 BYam BVic H1N1 H3N2 BYam BVic

HAN1 0.85-1.0 0 0 0 0.49-0.64 O 0 0

H3N2 0 0.65-1.0 0 0 0 0.29-0.64 O 0

BYam 0 0 0.90-1.0 0.40-0.60 0 0 0.54-0.64 0.04-0.24

BVic 0 0 0.40-0.60 0.90-1.0 0 0 0.04-0.24 0.54-0.64

®Waning is modeled at 3% per month, 36% between seasons.
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Figure 2. Influence of cross-immunity between annual strains on second season influenza cases.

Note: Second-season cases per 100,000 are depicted by the burden of the first season (low versus normal) and by the amount of viral transmissibil-
ity (low versus high). x-axis is % cross-immunity between first- and second-year strains; y-axis is mean second season cases per 100,000. The shaded
area represents 95% Cls of model results. Arrows indicate likely cross-immunity values for first-season/second-season strain pairs. For example,
HA1N1/H1N1 means that the first season and second season strains are both H1N1. The dashed line is second-season cases after a low first season.
The solid line is second-season cases after a normal first season. The difference between dashed and solid lines indicates an increase in second-

season cases when first-season cases are very low.

therefore, a greater impact of an intervention is not
unexpected.

When agent interactions were reduced in the second
season as well as in the first season (40% reduction first
season), cases were reduced in the second season. Reduc-
tion of interactions by 20% in the second season resulted
in a 98.6% reduction in cases (95% CI=98.5, 98.7) for
the low transmissibility scenario and 85.3% reduction
(95% CI=84.8, 85.8) for the high transmissibility sce-
nario. Reduction of interactions by 10% resulted in a
68.6% reduction in cases (95% CI=67.7, 69.4) for the low
transmissibility scenario and 32.1% reduction (95%
CI=30.4, 33.9) for the high transmissibility scenario.

Increasing vaccination rates above those reported by
CDC by 10% and 20% decreased the number of cases
and hospitalizations in a single-season simulation.
Increased vaccination rates had a greater impact on sim-
ulations with a lower transmissibility strain (10%
increase in vaccination caused a 31.5% decrease in cases
and 32.9% decrease in hospitalizations; 20% increase in
vaccination caused a 45.5% decrease in cases and 47.4%
decrease in hospitalizations). For simulations with a
more transmissible strain, increased vaccination resulted

in a more modest effect (10% increase in vaccination
caused a 2.3% decrease in cases and 3.3% decrease in
hospitalizations; 20% increase in vaccination caused a
5.0% decrease in cases and 8.5% decrease in hospitaliza-
tions). In the low transmissibility scenario, increased
vaccination rates may have a greater impact owing to
vaccination levels reducing the reproduction number in
that model to approximately 1 (R.=0.93, 95% CI=0.57,
1.30 in a model including previous immunity and vacci-
nation at CDC-reported rates). Relatively low vaccina-
tion effectiveness in this model (40%) may decrease the
impact of vaccination in a high transmissibility scenario.
Single-year simulations include previous immunity, as
described in Methods and Appendix (available online).
The age group 0—4 years comprised 5.2% of the simu-
lation population and accounted for approximately 6%
of cases in the simulation (5.8%—6.2% of cases). Increas-
ing vaccination coverage by 10% decreased cases in this
age group by 31.7% in the lower transmissibility scenario
but only 1.7% in a higher transmissibility scenario
(Figure 3). A 20% increase in vaccination coverage
resulted in 45.7% fewer cases for a lower transmissibility
strain but only 4.1% fewer cases for a more transmissible

www.ajpmonline.org
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Figure 3. Change in total infections per 100,000 children aged 0-4 years with an increase in vaccination coverage rate in a single

season simulation.

Note: Base vaccination from reported rates. Coverage rates were increased by 10% and 20%. A proportion of agents had immunity at the start of the
simulation to reflect immunity from previous-year infection, as described in Methods and Appendix (available online).

strain. Hospitalizations decreased by similar amounts
(for the low transmissibility scenario, 33.7% decrease
with 10% uptake increase and 49.0% with 20% increase;
for the high transmissibility scenario, 3.1% decrease with
10% uptake increase and 5.4% decrease with 20%
increase). Low R, may enhance the effects of vaccination
in the low transmissibility scenarios.

Applying model results specifically to influenza sub-
types/lineages, the greatest impacts would be expected
for seasons in which the current predominant strain was
closely related to the previous-year strain, and cross-
immunity is generally high between strains in succeed-
ing years. A 40%—50% reduction in susceptibility could
be expected for similar strains in succeeding years in
cases where strains share subtype/lineage. Strain trans-
missibility would be expected to be similar in highly sim-
ilar strains. The model estimated an increase of 13.52%
—46.95% in cases and 15.43%—56.81% in hospitaliza-
tions in strains with the same transmissibility and 40%
—50% cross-immunity (Appendix Table 4, available
online). In the population used for simulation (Alle-
gheny County, PA, synthetic population of 1,218,695)
these values correspond to an increase of 8,225 (95%
CI=2,241, 14,209) to 139,205 (95% CI=98,836, 179,575)
cases and 31 (95% CI=10, 53) to 369 (95% CI=610, 982)
hospitalizations over the influenza season. Cases num-
bers include asymptomatic cases, which make up 25% of
those occurring in the model.

April 2022

DISCUSSION

Agent-based modeling was used to predict the impact of
a light influenza season on infection rates in the follow-
ing season. Results indicate that a light first season (such
as 2020—2021) could result in a large, compensatory sec-
ond season (such as what might occur in 2021—2022).
This increase could be as large as a doubling of cases.
Enhanced vaccine coverage could reduce but not elimi-
nate this predicted severe season. Continuation of inter-
ventions to reduce infectious contacts in the population
could have a larger impact.

Influenza immunity is complex. Strains are highly
variable, with genetic drift antigens contributing to
emergence of new variants that escape immunity and
enable yearly seasonal outbreaks with widely varying
case rates despite population immunity and vaccina-
tion.”* Subtype switching of the predominant circulating
strain is not consistently correlated with increases in
infection rates.”

The northern hemisphere 2020—2021 season lacked
the usual seasonal outbreak, likely because of COVID-19
interventions to reduce transmission. That outcome was
beneficial because healthcare systems were already
strained by the COVID-19 pandemic, but there is con-
cern that the lack of residual immunity resulting from
infection in 2020—2021 will cause a more severe influ-
enza season in 2021—2022. Vaccination is an effective
tool to prevent influenza, but vaccination rates are
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typically suboptimal, and vaccination does not confer
complete immunity to infection.

An agent-based model of influenza was used to help
in understanding the impact of a very low influenza sea-
son on the succeeding season. Reductions in interactions
in a proportion of the population were sufficient to
essentially eliminate influenza. Normal interaction levels
in a second season caused an increase in second-season
cases beyond what was predicted using the same model
with no first-year reduction in interactions.

The model accounts for situations in which highly
related and less related strains circulate in successive sea-
sons. With a low level of cross-immunity, similar to an
influenza A subtype switch, a low first season has limited
impact on second-season cases. If there is a good anti-
genic match between seasons (high level of cross-immu-
nity), the model predicts a large impact on second-
season cases from first-season infections.

Increased vaccination could help offset the reduced pop-
ulation immunity resulting from the lack of influenza in
2020—2021. This could be particularly important for
young children, who may be especially at risk in 2021
—2022. Very few very young children had influenza in
2020—2021, so essentially all immunity in that age group
would be from vaccination, which wanes relatively quickly.

Several factors suggest that although cases may
increase after a very low first season, disease burden will
not reach pandemic levels. The most prevalent influenza
subtype often switches from one season to the next—for
example, HIN1 predominated in the 2013—2014 season,
whereas H3N2 predominated in the 2 preceding seasons
— and these influenza subtype switches do not always
cause increased intensity.’® Immunity owing to infection
is believed to persist for 3—7 years, so substantial immu-
nity can be expected to remain from previous seasons.’
Immunity from exposure to infection early in life is
believed to confer a level of lifetime immunity to related
strains, possibly including some immunity to conserved
epitopes,”” and this could assist in limiting 2021—2022
influenza case rates.

Models are simplified representations of reality and
therefore can never be perfect. Their intent is simply to
provide useful and actionable information. The validity
of a model is determined in part by how closely its
design reflects reality and how accurately the parameters
it uses are estimated. The FRED influenza model was
designed to simulate pandemic influenza and has been
used in previous studies to model influenza interven-
tions, so model validity has been assessed in the past.”’
~** The model now includes previous immunity in the
first season and residual immunity from first-season
infection in the second season and can be expanded to
include an arbitrary number of seasons.

Limitations

Reliable and appropriate sources were used for parame-
ter estimation; however, there are limitations on those
estimates. Previous immunity is based on a CDC-mod-
eled disease burden estimate,”” which may be affected by
fluctuations in disease reporting because of a variety of
factors. Vaccination efficacy is estimated from surveil-
lance data and may be an overestimate or underestimate.
The parameters for the waning of both natural and vac-
cine immunity are based on the literature and expert
opinion. Cross-immunity between strains of influenza is
most difficult to quantitate when the strains differ by
antigenic drift only, and this is a major source of uncer-
tainty. The model uses a range of values to account for
this uncertainty. Parameter uncertainty can cause model
results to be higher or lower than what would be
encountered in reality.

Transmission in this model is caused by the interac-
tion of agents, specifically the geographic proximity of
infectious and susceptible agents, simulating respiratory
transmission. There is no inclusion of fomites or other
nonrespiratory modes of transmission. Rates of interac-
tion between agents are age dependent and were cali-
brated to match data from influenza studies.”'

This set of simulations was designed to address a spe-
cific problem concerning the possible impact of loss of
immunity because of a low influenza season on the fol-
lowing season. It assumes that the second season will
behave as a normal influenza season, having no addi-
tional interventions. Additional simulations were per-
formed to assess the impact of possible continued
interventions and pandemic-induced changes in behav-
ior on transmission. Other circumstances may also
impact the 2021—2022 season. Low levels of circulating
influenza worldwide and in the Southern Hemisphere
may limit the seasonal introduction of influenza to the
U.S., thereby limiting the season. The low level of influ-
enza circulation since March 2020 may have limited
influenza evolution in the interim; however, the circula-
tion of influenza in animal hosts also provides the poten-
tial for the development and introduction of novel
strains. These additional scenarios have not been mod-
eled specifically. Model results must be interpreted in
the context of model design, uncertainty in model
parameters, and limitations of modeling in general.

CONCLUSIONS

Given the light 2020—2021 influenza season, the 2021
—2022 season may see increased case rates of up to 50%,
depending on cross-immunity from past infection and
transmissibility of strains. Enhanced vaccine coverage as
well as continued interventions and behaviors that

www.ajpmonline.org
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decrease population interactions could reduce this high
season. Vaccination in the very young may be particu-
larly important in 2021—2022, given the lack of immu-
nity from previous infections in that age group.
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