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ABSTRACT

Deep sequencing approaches, such as chromatin
immunoprecipitation by sequencing (ChIP-seq),
have been successful in detecting transcription
factor-binding sites and histone modification in the
whole genome. An approach for comparing two dif-
ferent ChiP-seq data would be beneficial for pre-
dicting unknown functions of a factor. We propose
a model to represent co-localization of two different
ChIP-seq data. We showed that a meaningful
overlapping signal and a meaningless back-
ground signal can be separated by this model. We
applied this model to compare ChIP-seq data of
RNA polymerase Il C-terminal domain (CTD) serine
2 phosphorylation with a large amount of
peak-called data, including ChiP-seq and other
deep sequencing data in the Encyclopedia of DNA
Elements (ENCODE) project, and then extracted
factors that were related to RNA polymerase Il
CTD serine 2 in HelLa cells. We further analyzed
RNA polymerase Il CTD serine 7 phosphorylation,
of which their function is still unclear in HeLa cells.
Our results were characterized by the similarity of
localization for transcription factor/histone modifi-
cation in the ENCODE data set, and this suggests
that our model is appropriate for understanding
ChIP-seq data for factors where their function is
unknown.

INTRODUCTION

Chromatin immunoprecipitation (ChIP) is a quantitative
measurement of protein-DNA interactions, but it is site
specific. With the invention of deep sequencing technol-
ogy, ChIP has extended its potential for understanding the
epigenetic state in the whole genome, including histone
modification, transcription factor binding and chromatin
accessibility (1). The epigenome project known as
Encyclopedia of DNA Elements (ENCODE) has
accelerated the accumulation of ChIP by sequencing
(ChIP-seq) data exponentially (2).This accumulation of
ChIP-seq data has enabled the prediction of unknown
protein function by comparing each ChIP-seq data.
Ideally, as genome projects have been used for compara-
tive genomics (3), these epigenomic data should be used
for identifying candidate epigenomic events or identifying
candidate factors for comparison.

However, comparison of different ChIP-seq data has
been severely impaired by ‘background’ noise derived
from various factor (4). This background varies in its
quality and amount by experimental conditions, which is
due to the specificity of antibodies or immunopre-
cipitation efficiency derived from fixation conditions or
immunoprecipitation buffer conditions. Additionally, a
deep sequencer itself also causes noise, such as bias of
sequenced reads (4). Even sequenced reads that potentially
map to multiple sites on the genome can also yield
background (4,5). Identification of signals from a
mixture of specifically immunoprecipitated signal and
background noise is required.
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To pick up signals from this mixture of signal and noise,
various types of software for treating ChIP-seq data
against control data, such as input or no antibody
control, have been designed (6,7). A ‘peak’ is detected as
a binding site of a target protein by evaluating the statis-
tically significant accumulation of reads in this mixture.
This process is called ‘peak calling’. There are several
types of software for call peaks, such as MACS (7) and
PeakSeq (6). These peak-calling methods have been
reported to detect peaks in each sample, while they also
identify different qualities of peaks among various
ChIP-seq data. This difference has been reported as the
sensitivity of a peak caller (8).

The variety of methods for peak calling has resulted in a
variety of the number of peaks as output from the same
data set (4). In most software for peak calling, a parameter
to set a threshold for statistical significance can be
determined by users based on the experimental conditions
(9,10). In the case of well-known factors, users can
evaluate which is the most appropriate parameter by
referencing the data obtained from ChIP-quantitative
polymerase chain reaction or other experimental valid-
ations (10). However, in the case where the function or
localization of a factor is unknown, it is more difficult to
obtain the appropriate threshold because of a lack of ref-
erence data. In either of these cases, it is possible that the
number of called peaks in a public database is
overestimated or underestimated compared with the
number of ‘true’ peaks.

The variation in peak number of ChIP-seq data affects
the comparison of different ChIP-seq data. For example,
to address the molecular function of a transcription
factor, it has recently been reported a change in distribu-
tion, such as histone modification or chromatin accessi-
bility, in two different ChIP/accessibility-seq data (11).
To perform this type of comparison, it is critical to nor-
malize two different called peaks from each data (12,13).
However, there is no effective method to normalize two
different ChIP-seq data. The ideal method to normalize
two ChIP-seq data is to adjust the conditions for
ChIP-seq, including antibodies, cells, controls, such as
input or control antibodies, and IP protocol, and call
peaks by the same peak caller with the same parameter
sets. This approach is effective for comparing ChIP-seq
data in-house, but it limits the data sets for comparison
(in-house only). A practical approach to compare
ChIP-seq data is to ignore the total number of peaks
and then evaluate the change in distribution of the
peaks (11). This type of qualitative evaluation could elim-
inate normalization of called peaks and then the change
in shapes of peak distribution could be evaluated.
However, if the distribution of peaks is similar, for
example, a reduction in factor binding to the genome,
quantitative evaluation is still required.

We report a novel method to compare different
ChIP-seq data. Our method can model the relation
of paired ChIP-seq data and can correct biases
caused by different parameters in the protocol and
software, by using a large amount of ENCODE
ChIP-seq data.
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MATERIALS AND METHODS
Cell culture

HeLa cells were cultured in Dulbecco’s modified Eagle’s
medium supplemented with streptomycin (100 pg/ml;
Nacalai Tesque, Kyoto, Japan) as described in (14).
C2C12 cells were cultured in Dulbecco’s modified
Eagle’s medium supplemented with 20% fetal bovine
serum (Lifetechnology, CA, USA) and streptomycin
(100 pg/ml; Nacalai Tesque, Kyoto, Japan), as described
in (11).

Immunization of rats and production of monoclonal
antibodies

Anti-rat monoclonal antibody HeLa Polymerase II
C-terminal domain (CTD) serine 7 phosphorylation
(S7ph) was generated against the peptide (SPTSP
SYSPTSPSphYSPTSPS), as described by Sado er al
(15). Briefly, WKY/Izm rats (10-week-old females, Japan
SLC, Shizuoka, Japan) were immunized with the peptide.
After 13 days, iliac lymph nodes were isolated and the
separated cells were fused to mouse myeloma Sp2/
0-Agl4 cells in polyethylene glycol (PEG1500, Merck,
Darmstadt, Germany) solution. At 7 days post-fusion
with HAT selection, the hybridoma cells were screened
by an enzyme-linked immunosorbent assay against the
peptide. Positive clones that reacted to S7ph, but not
HeLa Polymerase II CTD serine 5 phosphorylation
(S5ph) peptide (SPTSPSYSPTSphPSYSPTSPS) and
HelLa Polymerase I CTD serine 2 (S2ph) peptide
(SPTSPSYSphPTSPSYSPTSPS), were established
monoclonally. H3.1 monoclonal antibody (1D4F2,
hybridoma supernatant, 1 ug) was used for ChIP-seq, as
described in (11).

ChIP and deep sequencing

Cells were fixed by 1% formaldehyde for 5min at room
temperature. ChIP was performed as described by
Odawara et al. (14). ChIPed DNA was sequenced by the
Genome Analyzer GAIIx (Illumina K.K., CA, USA). The
reads of S7ph were aligned to the human genome (hgl9)
and the reads of H3.1 were aligned to the mouse genome
(mm9) using bowtie (version 0.12.7) software (parameter:
-v 3 -m 1). ChIP-seq data for S2ph, S5ph and H3.3 in
undifferentiated C2C12 cells are obtained from DNA
Data Bank of Japan (DDBJ) (11,14). Peak detection and
identification of binding sites of S7ph and H3.1 were
obtained by MACS (version 1.4.1). The parameters for
MACS were ‘-bw 538’ for S7ph, ‘-bw 292’ for H3.1 and
others were software’s default.

ENCODE data set

Called peaks of all human and mouse ENCODE data sets
were obtained from the MySQL database at UCSC
(mysql.cse.ucsc.edu). All tables in which the name begins
with ‘wgEncode’ were used. Detailed information of the
data was obtained from: http://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC and http://hgdownload.cse
.ucsc.edu/goldenPath/mm9/encodeDCC.
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Each ‘files.txt’ in the directories contains detailed infor-
mation of data, including cells, antibodies, type of data
(e.g. ChIP-seq and FAIRE-seq), laboratory, replicates,
treatment, controls (e.g. IgG, input or none), submitted
date and accession number of the data.

Peak localization plot

In the peak localization plot of ENCODE data, the X-axis
ranged from —0.5 to 1.5. The value of —0.5 is 5kb down-
stream from the transcription start site (TSS). The region
0-1 ranges from TSS to TES. The value of 1.5 is 5kb
downstream from TES. We used 20374 human genes as
the total number of genes of which the definition was
obtained from UCSC’s ‘knownGene’ table.

Co-localization plot

A similar calculation as that for the peak localization plot
was also performed for the co-localization plot. The x-axis
ranged from +5kb from the center of the peaks in the
ENCODE data set. The y-axis shows the total depth of
peaks at each distance. We assumed that all called peaks
had a depth of 1. Therefore, the number of stacked peaks
was the total depth.

The “fitted’ line was calculated from the estimated par-
ameters «, 8 and p. The estimated distribution f is then
multiplied by s(sum of the depths; area) to get the right
side of the fitted shape, and we flipped the curve symmet-
rically against x = 0 to draw the left side.

Computational resource

Our calculations were performed in high-performance
computer at DNA Data Bank in Japan (Mishima,
Japan) and at Research Institute for Information
Technology, Kyushu University (Fukuoka, Japan).

The first calculation step is aggregating target peaks at
reference peaks. There are 1744 human reference data in
ENCODE, and we needed to calculate 1744 pairs with one
target ChIP-seq data. Each process varies in the required
computation time and memory resource from 11.54 to
1164.0s and from 216 to 592MB in case of the S2ph
data. Each calculation process is independent; therefore,
we could completely parallelize all processes over a high-
performance computing system. The computation time is
therefore ~20 min (1164.0s) if we can use sufficient com-
putation nodes to run 1744 processes.

The second calculation step is the regression (curve
fitting) and plotting process. It takes ~2h and requires
12 GB of memory resource for the S2ph data.

Software and all outputs for S2/S5/S7 phosphorylation
and H3.1/H3.3

We uploaded our software and all outputs from the follow-
ing: http://chromatin.med.kyushu-u.ac.jp/pol2encode/.

The outputs of human and mouse data sets contained
plots and tables of 1744 (human) and 248 (mouse) factors
for each analysis.

RESULTS
Co-localization model

To compare two different ChIP-seq data, first, we focused
on methods for evaluating the accumulation of a factor
around the TSS (11). This approach could visualize the
dependency of a factor on transcriptional regulation. It is
also applicable to extend this approach to compare two
different ChIP-seq data. We extended their approach to
estimate signal accumulation around the binding sites of
various factors. In other words, we aggregated ‘peaks’
around ‘peaks’. The ‘peak’ means a detected region of
the occurrence of a biological event resulting from
ChIP-seq data analysis software (6,7,16).

When comparing factor A with the ChIP-seq data of
factor B, it is possible to calculate the accumulation of the
total peaks of factor A at the locations of the peaks of
factor B (Figure 1A ‘distribution’). The accumulation of
approaching peaks in a range of distance can be evaluated
as the dependency of distance from one place to another;
in other words, the probability of occurrence of some
event at a certain distance (‘distribution’). However, if
we compare multiple ChIP-seq data (more than two), ‘dis-
tribution’ itself is not sufficient because it is not able to
evaluate the strength of relationship. For example, there
are some factors that show a similar distribution, such as
H3K27ac and RNA Pol IT S2ph/S5ph (17), or MyoD and
myogenin in myogenic cells (18). Therefore, it is essential
to estimate a reasonable measure for evaluating the rela-
tionship from the shape of the ‘distribution’.

To construct a model for evaluating the relationship
between two factors, we made the following assumption:
if two factors have a relation, their location depends on
the distance between them otherwise they are located on
sites regardless of each distance. A presumable stochastic
property arises from the assumption that the frequency of
detection of factor A tends to be high when it is close to
factor B if there is a cooperative relationship between
them, and conversely, the frequency of detection of
factor A is low when it is close to factor B if there is an
exclusive relation (i.e. one factor is preventing binding or
detecting another factor) as shown in Figure 1A
‘profiling’. Otherwise, random detection of factors A
around factor B results in uniform distribution. We
assumed a uniform background as overlapping of
invalid peaks or overlapping of unrelated peaks. This as-
sumption has been used to evaluate co-localization of nu-
clear factors in the nuclei by immunocytochemistry (19).

To model such a relation between factor A and factor B,
we assumed that the distribution was a mixture of a
uniform distribution to represent a random approach
and a geometric distribution to represent an exponential
approach of two related factors (Figure 1A ‘model’). The
probability mass function is

1
_f(x,‘|0l, :37]7) = Olp(l - p)xq_ﬂﬁ’

where ot+B8=1 to extract the mixture ratio, and
x;=0,1, ..., N—1 is the distance from factor B in base
pairs. f is a mixture distribution that could represent a
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Figure 1. Schematic drawings of the co-localization model. (A) The
concept of co-localization model (1) ChIP-seq data: called peaks of
different ChIP-seq vary in their location (2) ‘distributions’: distribution
of the target ChIP-seq peaks around the center of all peaks in other
ChIP-seqgs (3) model: ‘distribution’ is a mixture of exponential signals
and uniform background. « and B represent a mixture ratio. p repre-
sents the steepness of the shape. (4) Profiling: the model represents the
shape from ‘cooperative’ to ‘exclusive’. (B) Workflows: the model
fitting examples of ‘cooperative’ (upper line) and ‘exclusive’ (lower
line) types of accumulation are illustrated. Peaks were aggregated at
reference peaks and translated into distance from a reference factor
(X-axis) and the probability of peak detection (Y-axis) representation.
Each mixture ratio of valid signal and background was then estimated
as their shape parameter in the co-localization model. Some examples
of parameter p in geometric distribution are also shown in the bottom-
left panel. p affects the steepness of the slope.

shape of an accumulation with parameters «,  and p. The
first term p(1 — p)* is a geometric distribution. A larger p
results in a steeper slope, while a smaller p results in a
gentler slope (Figure 1B). The second term, 1/N, is a
uniform distribution. Its height is constant over the
window (from 0 to N — 1). These two types of distribution
are mixed with the ratio of «: 8 (Figure 1B). We used
N = 5001, which is wide enough to reach a plateau of
distribution. This range is commonly used in the field of
ChIP-seq data analysis (14,20,21). Our model is character-
istic in that it can represent an exclusive relation to allow
for a negative « (i.e. flipped geometric distribution, as
shown at the bottom line of Figure 1B) in contrast to
ordinal distribution. This property comes from the
presence of a uniform background.

To provide a non-negative constraint to the parameters
B and p, we set @ = 1 —w?, B=w? and p = w3 and now
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o = (w1, )" is actually the estimating parameters. The
sum of squared error is

2

Elo) = H%y—f

where y; is the total depth of the peaks at x; and the vector
of each of the total depth of the peaks at edch distance is
y= 01,2, ...,yy)". The formula s = Zl_ Vi is the total
sum of the depth and f= (f{x)),f(x2), ..., flxy))" is the
vector of fitted values (Supplementary Figure S1). We
added a regularization term to obtain stability of the nu-
merical optimization.

E'(®) = E(0)+A]|o])*.

The optimal parameters were obtained to solve:
min E'(o),
(0]

with the Gauss—Newton algorithm. We used A = 0.01,
which was an arbitrarily chosen small value, as a fixed
regularization parameter. It worked well for obtaining nu-
merical stability in our case. As a result, we were able to
distinguish meaningful signals and meaningless signals ac-
cumulation with this model.

We then proposed a score to evaluate the strength of the
relationship between two factors. The estimated param-
eter « represents the percentage of related peaks of
factor A in all peaks around factor B. Therefore, we
defined the co-localization score as

(the number of peaks of factor A within)

N bp from factor B

seore = x (the total number of peaks of factor B) ’

which can be interpreted as the ‘valid’ number of
overlapping peaks per site (Supplementary Figure S2).
The score is intuitively interpreted as follows: when it
becomes a positive value, this indicates a cooperative
relation, and when it becomes a negative value, this indi-
cates an exclusive relation.

a/pB can be used as the signal-to-noise ratio (S/N), but it
can be a negative value. Another parameter, p, affects the
steepness of the distribution’s shape. Therefore, we named
it the ‘concentration’ parameter. p is a variance parameter
of geometric distribution; therefore, a larger p results in a
distribution with a steeper slope, while a smaller p results
in a distribution with a gentler slope. It could be biologic-
ally interpreted as the accuracy of IP techniques or two
different factors having a short-range relation or a
long-range relationship. We further evaluated the effect
on resulting score of selecting the regularization parameter
4 at two different settings and observed that the effect was
small enough to ignore the differences (Supplementary
Figure S3).

We designed a software program, which outputs graphs
of distributions with paired factors, and a table of
estimated parameters for the co-localization model.
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Estimation of parameters in the model using
practical data

We demonstrated how the co-localization model explains
the shape of the distribution and how it was affected by
relaxing the threshold of peak-calling software to evaluate
our model with real data. We used ChlIP-seq data of S2ph
(14). We considered that S2ph is suitable to evaluate in
our model, because Odawara et al. showed that ChIP-seq
peaks of Polll-S2ph accumulate in the active transcrip-
tional region and active transcriptional factors are well-
studied targets. Currently, approximately hundreds of
NGS data of different targets (i.e. histone modification,
transcriptional factors and chromatin structure) are avail-
able in HeLa cells at ENCODE. These public data sets are
useful to compare with Pol II-biding sites and various
events in DNA. Additionally, there are data of already
called peaks of data obtained in ENCODE projects (2)
in UCSC. Parameters of the co-localization model were
estimated from S2ph data paired with all of the data
obtained in ENCODE projects. We named such extracted
parameters of the model from the ENCODE data set
paired with ChIP-seq data as the ‘ENCODE profile’.

We selected three outputs as representatives from our
software. The first output was GCNS5 (Figure 2A), which
had a high score relative to all scores of S2ph (score: 0.611;
concentration: 0.020). The ChIP-seq data of GCNS5 had
1186 peaks, which were relatively small, but 2801 peaks of
S2ph overlapped with them. The fitted curve explained the
exponentially decaying tail. H3K79me2 (Figure 2B) had a
low score, but the peaks of S2ph were tightly concentrated
around the center of H3K79me2 (score: 0.001; concentra-
tion: 0.073). Despite the shape of the background being
uneven, the fitted curve only captured the shape around
the center of H3K79me2. This selective capturing comes
from the simplicity of our model. Figure 2C shows that
S2ph accumulation was suppressed around the center of
H3K36me3. Flipped distribution, which is caused by a
negative «, can represent such a shape. Supplementary
Table S1 shows the results of the estimated parameters
for the ENCODE data set of HelLa ordered by the
co-localization score. We visualized the results as points
on a parameter space spanned by the co-localization score
and concentration parameter (Figure 2D).

The points of each CTCF data came from three differ-
ent laboratories and contained one replication and were
closely located as shown in Figure 2D. It appeared that
these data had a similar relation to S2ph. Some character-
istic shapes of the factors, shown in Figure 2A—-C, can be
easily found by this plot without following each number
shown in Supplementary Table S1.

Consequently, we succeeded in obtaining measurements
of co-localization without a background signal and the
strength of the concentration by our model. However,
we could not conclude that these values are useful for
determining which is the most or more related factor to
S2ph in the ENCODE data set. This is because there was
still the problem of scale variation, as already mentioned,
in any called peaks. Therefore, the values do not directly
reflect the strength of the relation.

Number of called peaks and co-localization score

To correct the problem of variation in scale and to enable
the comparison of co-localization scores directly, we
assessed the effect of enlargement of the total number of
peaks in the S2ph data. We relaxed the threshold param-
eter of peak calling to obtain an enlarged number of
peaks. Figure 2E shows that it was easy to change our
score for the same factor by changing the threshold.
This is why our scoring method depended on the
number of peaks.

The parameter of ‘P-value = le—5’, which is the soft-
ware’s default, yielded 99 487 peaks and ‘P-value = le—2’,
which is a relatively relaxed threshold, yielded 268 060
peaks. There was an ~2.7 times difference between these
values, but the difference in their co-localization scores
was ~1.5 times. The R*value was 0.9937 and there was
a high linear relation. Therefore, all of the scores were
amplified by a constant scaling factor caused by enlarging
the total number of peaks, and it was still possible to view
the relative locations of each point (Figure 2D).
Furthermore, an important property of the scale differ-
ence is that two scores for one factor are only different
regarding the scale caused by the different number of
peaks. Similarly, scores of two different factors with dif-
ferent numbers of peaks are only different regarding the
scale if they have equivalent relations with another factor.
For example, in a situation where there are three different
factors A, B and C, the relations of the pair (A,C) and the
pair (B,C) are considered as equivalent if there is only a
scale difference between the score of (A,C) and (B,C).
Once the variance in scale in the numbers of called
peaks is corrected, the true difference between them can
be estimated. Comparison with two or more factors using
a large ENCODE data set empirically enables correction
of the scale. The situation where there is a lot of unrelated
data in ENCODE with a ‘target’ ChIP-seq data is
expected and these unrelated factors can reveal the scale
difference.

Factors affected by Pol II CTD S2/S5/S7
phosphorylation changes

We discussed how to correct for the variety of scale in the
previous section. We then predicted the functional rele-
vance of unknown protein binding, by attempting to
identify factors, which have changes in their ‘scale-
corrected’ co-localization scores in response to changes
in phosphorylation state, as an application for multiple
sample comparison. We compared HeLa Pol II CTD S2,
S5 and S7 phosphorylation (S2ph, S5ph, S7ph) against the
ENCODE data set of HeLa cells.

S7ph is not well characterized compared with other
types of phosphorylation, including S2ph, which is
involved in active transcription, and S5ph, which is
involved in active and pausing states. The distribution of
S7ph in HeLa cells is still unclear. We and others previ-
ously demonstrated that S2ph preferentially recognizes
active transcription states, while S5ph is localized at
TSSs in HeLa cells (14,22,23). Based on this finding, we
generated an antibody that specifically recognizes the
S7ph state of the RNA Pol II CTD domain
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Figure 2. Evaluation of co-localization model using S2ph with ENCODE data sets. Graphs show paired analysis by our software. The used
antibody/cell of ENCODE data is shown on the top of the graph (upper left). Detailed information on the ENCODE data is described under
the title. Localization of the ENCODE peaks is shown. The displayed region is from 5kb upstream to 5kb downstream for all genes. The y-axis
shows the total count of each peak’s center divided by the number of genes for all genes in humans. Peaks that were outside of the region were noted
as the percentage of the inter-gene region (upper right). The x-axis shows the distance from the center of the ENCODE peaks. Both sides of the
positive and negative distances were plotted. The y-axis shows the total depth of S2ph peaks at each distance. A dotted gray line fitted to the
distribution of the S2ph peaks with our model was also plotted. The shape is relatively symmetric at X = 0 because the orientation of transcription
was ignored here, unlike localization of the ENCODE peaks plot. The percentage of S2ph peaks in the region, which is within 5kb from the center
ENCODE peaks, is noted in the left-top legend (bottom). The rightmost bar consists of black and white rectangles in each panel and is a type of
Venn diagram. The vertical length from the bottom of the white rectangle to the top of the black rectangle indicates the number of ENCODE peaks.
The length from the top of the white rectangle to the bottom of the black rectangle indicates the number of S2ph peaks. The length of the black
rectangle indicates the number of overlaps between peaks of each set of compared data (right). (A) A transcriptional factor with a high score against
S2ph; (B) a histone modification with a low score and high concentration against S2ph; (C) a histone modification with a negative score (exclusively
related) against S2ph; (D) the ENCODE profile for S2ph data paired with 90 types of HeLa data sets. The points in the parameter space, spanned by
the co-localization score and the concentration parameter, were plotted. The x-axis shows the co-localization score. The y-axis shows the value of
concentration parameter. (E) A scatter plot for co-localization scores of S2ph at different threshold parameters of MACS. The x-axis shows the
scores at P-value = le—2 and the y-axis shows the scores at P-value = le—5. The line is derived from linear regression analysis. The R? and estimated
coefficient of the regression are also displayed.

(Supplementary Table S2). Our antibody for S7ph is quite
specific. It does not detect phosphorylated peptides of
S2ph and S5ph (Supplementary Table S2).

We obtained 99 487 peaks for S2ph, 40 355 for S5ph and
24839 for S7ph by MACS, of which the parameters were
defaults of the software, except for S7ph (P-value: le—3).
We then calculated all the ENCODE profiles in HeLa on
each S2/S5/S7ph. First, we created a scatter plot
(Figure 3A) to determine the similarity of each
ENCODE profile.

We found that the scores were all highly correlated.
Although there were some ‘affected’ (i.e. far from the re-
gression line) factors by changes in phosphorylation,
overall, they had a similar relation to factors in the
ENCODE data set. The scale difference caused by the dif-
ference between our data set in the total number of peaks
was still present. However, Figure 3A shows that the

scale difference was easily able to be corrected by simple
linear regression. The estimated ratio of the scale of
co-localization scores S2ph:S5ph:S7ph was 1.00:2.22:0.52
and we divided each score by the ratio to S2ph.

We then placed all scale-corrected scores on the surface
spanned by each difference of the scores between the same
factor to further focus on factors that were affected by
changes in phosphorylation (Figure 3B). Each length of
the points perpendicular to the regression line (Figure 3A)
determines each position.

A factor ‘Pol2 (phosphoS2)’ was clearly located in the
S2ph cooperative region (Figure 3B). The factor is suitable
for validating our results, because it is expected to
co-localize with S2ph. Therefore, our method successfully
demonstrated the specificity of our antibody. Some of the
E2 family (E2F1, E2F6 and HA-E2F1) and Inil were
located in the S7ph exclusive region, which suggested
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Figure 3. Factors co-localized with the phosphorylation state of Pol IT
CTD S2/S5/S7. (A) Scatter plot of co-localization scores of Pol II CTD
S2/S5/S7 phosphorylation pairs. The diagonal panel shows the name of
the data. The names correspond to each data pair of the off-diagonal
panel. The lower triangular panels show scatter plots of co-localization
scores and regression lines of each phosphorylation pair. Their X- and
Y-axes are co-localization scores of the corresponding data labeled by
diagonal panel. The upper triangular panel shows Pearson’s correlation
coefficients of each phosphorylation pair. (B) Three factors variation
plot. This plot shows the surface spanned by the differences between
three variables: three scores of one factor paired with S2ph, S5ph and
S7ph. Each arrow indicates the direction of differences between
scale-corrected co-localization scores. S2ph > S5ph means the direction
of a difference between a co-localization factor paired with S2ph and
with S5ph that is >0 (S2ph — SS5ph > 0). The other axes were labeled in
a similar manner. A factor located between the axes S7ph > S2ph and
S7ph > S5ph is regarded as an S7ph-specific cooperative factor. The
factors that were far from the center were labeled with the names of
antibodies. The center was unaffected by any of the phosphorylation
changes.

that their relation to S7ph was relatively exclusive
compared with the other phosphorylations. E2F4,
GCNS5 and BAF170 were in the S7ph cooperative
region. A factor ‘Pol2’ itself, which is 8WG16, and there-
fore indicates the total amount of Pol II (17), was located
in the high S7ph exclusive region. This might have been
caused by the low fraction of S7ph in whole Pol II, or by a
property of our antibody.

To further evaluate our method, we performed histone
H3.1 ChIP-seq and used the data for the analysis of the
co-localization model. As a control, we also used the pre-
viously obtained histone H3.3 ChIP-seq data (11). We
previously demonstrated that MyoD was preferentially
associated with H3.3, but not with H3.1 in undifferenti-
ated C2C12 cells (11). Our method revealed that the H3.3

signals co-localized with MyoD rather than H3.1
(Supplementary Figure S4), which was consistent with
the previous findings.

Finally, we extracted the affected factors in the
ENCODE data set by the differences of the scale-
corrected co-localization scores, and we could predict
factors related to S7ph.

DISCUSSION

S7ph has been shown to be localized to transcription ini-
tiation sites and promoter regions to which most tran-
scription factors preferentially bind (24,25), which is
consistent with our observation that S7ph cooperates
with the transcription factors such as c-Myc, c-Fos and
STAT3, or chromatin modification enzymes such as
GCNS5, as shown in Figure 3B. On the other hand, S7ph
has been suggested to be not particularly co-localized with
Polll S2ph, which was confirmed by our results. These
observed co-localization patterns suggested that our
method could predict not only the involvement of a
specific factor but also the functions of multiple factors.

The analysis of histone H3.3 was also utilized to
validate our approach. In this case, the reference data
sets were obtained from mouse cells and were completely
different from the data we utilized for Polll S7ph. The
result confirmed the previous finding that H3.3 was pref-
erentially co-localized with MyoD, rather than H3.1. This
result suggested that our method is applicable not only for
human ENCODE data sets but also for other ChIP-seq
data sets.

Comparative analysis for ChIP-seq has been proposed
by some research groups (12,13). There is a need to
develop a more effective approach to comparing
ChIP-seq data upon expansion of the public database of
accumulation of ChIP-seq data. Many studies have
developed methods or algorithms for peak -calling.
However, few reported studies have focused on the
comparative approach itself for multiple ChIP-seq data
sets. Taslim et al. (13) proposed bias-free scoring
(binding quality) with a non-linear normalization. Their
approach is similar to peak calling, as shown in MACS
and PeakSeq and the scoring is based on read counts of
control and of immunoprecipitated samples. On the other
hand, our approach is to compare whole relationships
between different samples after peak calling.

In the term of scale correction, in our model, it was
sufficient to apply the correction by simple linear regres-
sion. Since to the identical transcription factors or histone
modification, the co-localization scores indicated a suffi-
cient linear relation in the various ChIP-seq data in
ENCODE.

There are information-theoretic approaches to estimate
the differences for each shape of distribution, such as
cross-entropy or Kullback—Leibler divergence. These
approaches are helpful to measure the differences
between variable shapes of distribution. However, our
approach focused mainly on obtaining the ‘strength’ of a
relationship by using an accumulated number of peaks.
We took into account the shapes of distribution with



our model, and it was only used for estimating a mixture
ratio of the background and the signal. Therefore, we
applied a simple curve fitting approach (i.e. a non-linear
regression), and it was sufficient to obtain the mixture
ratio of distributions.

Our model assumes that there are sufficiently
overlapped peaks to estimate parameters for the
co-localization model. In the case where data only have
limited overlapping, this may produce unreliable results.
For example, when fewer peaks of factor A were almost
overlapped by peaks of factor B, the resulting scores
became higher. In that case, our model failed to capture
the shape of distribution because of its coarse shape. To
eliminate this misrepresentation of shape, we limited the
comparable data set to have >1000 peaks.

We showed that our co-localization model can split a
signal and background. The definition of background was
an accumulation of randomly distanced peaks within 5 kb
around a certain factor’s binding site. We eliminated such
background. Although there might be contained another
aspect of ‘distance’-dependent meaningful signal, this case
is out of the scope of our model. The distance in base pairs
that we used is not the only factor that determines physical
distance. For example, the higher order structure of
chromosomes would be one of the factors (26).
However, the physical distance can be considered by
comparing it with physical distance-dependent genome-
wide data, such as 4C-seq data (27).

The purpose of our study was to evaluate global rela-
tions between paired data. We used our model to empir-
ically estimate S/N after mixing all peaks, but not for
filtering each peak. Our model is applicable for filtering
each peak by giving each probability of co-localization for
each peak after estimating the co-localization model
parameters.

In Figure 2C, around the center of H3K36me3, there is
a small convex shape of accumulation. H3K36me3 has
been reported to be distributed on active gene bodies
(28); therefore, we expected to observe a certain correl-
ation between S2ph and H3K36me3 (i.e. they are
located on the same active gene). On the other hand,
from the point view of co-localization, signal enrichment
is suppressed around the center relative to enrichment at
>2kb. This could represent best fitting in the sense of
mean-squared error and reflects the concave/exclusive
pattern that we assumed. Thus, a possible interpretation
of our result is that H3K36me3 and S2ph tend to be
located in active genes, according to (28); however, their
positions are somewhat distant from each other.

Some shapes of distribution did not fit our model well.
In the case where the mode of distribution appeared at
~500bp, the shape could be represented by a
negative-binomial distribution, which is more general
than a geometric distribution. The shape of distribution
is thought to be caused by maintaining a certain distance
between two factors. Another case that did not fit the
model is when there was a mixture of three or more dis-
tributions, such as when there were simultaneously differ-
ent types of relations between factors, which were
cooperative at a certain distance and exclusive at
another certain distance. Other fitting approaches, such
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as Bayesian formulation, could also be applicable, but
balance between the model’s accuracy and complexity
with model selection (e.g. AIC or BIC) is required.

It could be important to compare the co-localization
scores across different factors. We focused on the differ-
ences between two scores with the same factor to deter-
mine the change of the functional relationship or the
function of the factor synergistically. We proposed a
method to normalize the differently called peaks. The al-
ternative approach to normalize all data in ENCODE
would estimate the scores of all possible pairs in the
data set and to correct all scales among the scores. This
enables direct comparison across all different factors. This
method has the potential to restrict the data set as
required, but at least a million combinations of calcula-
tions would be required.

Although we used an HelLa data set as an example in
our model, because our aim was to identify synergistic
factors to regulate various types of Pol II recruitment,
comparison between different cells was able to be per-
formed by our method. Our model could be a useful ap-
plication to compare the same histone modifications or
transcription factors between different cells or to deter-
mine changes in co-localization of factors involved in dif-
ferentiation. Since the problem of variation in scale can be
resolved by exhaustive scoring with assorted data sets,
including related and unrelated factors by the
co-localization model, this will enhance potential interest
in ChIP-seq data analysis in the ENCODE project or
future epigenome projects, including International
Human Epigenome Consortium.
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