
Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Dynamic network dysfunction in cocaine dependence: Graph theoretical
metrics and stop signal reaction time

Yihe Zhanga,b, Sheng Zhangb, Jaime S. Ideb, Sien Hub,c, Simon Zhornitskyb, Wuyi Wangb,
Guozhao Donga, Xiaoying Tanga,⁎, Chiang-shan R. Lib,d,e,f,⁎⁎

a Department of Biomedical engineering, School of Life Sciences, Beijing Institute of technology, Beijing, China
bDepartment of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
c Department of Psychology, State University of New York, Oswego, NY, USA
d Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
e Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
f Beijing Huilongguan Hospital, Beijing, China

A R T I C L E I N F O

Keywords:
Substance use disorders
Cocaine
Connectivity
Graph metrics
Response inhibition
Inhibitory control

A B S T R A C T

Graphic theoretical metrics have become increasingly popular in characterizing functional connectivity of neural
networks and how network connectivity is compromised in neuropsychiatric illnesses. Here, we add to this
literature by describing dynamic network connectivities of 78 cocaine dependent (CD) and 85 non-drug using
healthy control (HC) participants who underwent fMRI during performance of a stop signal task (SST).
Compared to HC, CD showed prolonged stop signal reaction time (SSRT), consistent with deficits in response
inhibition. In graph theoretical analysis of dynamic functional connectivity, we examined temporal flexibility
and spatiotemporal diversity of 14 networks covering the whole brain. Temporal flexibility quantifies how
frequently a brain region interacts with regions of other communities across time, with high temporal flexibility
indicating that a region interacts predominantly with regions outside its own community. Spatiotemporal di-
versity quantifies how uniformly a brain region interacts with regions in other communities over time, with high
spatiotemporal diversity indicating that the interactions are more evenly distributed across communities.
Compared to HC, CD exhibited decreased temporal flexibility and increased spatiotemporal diversity in the great
majority of neural networks. The graph metric measures of the default mode network negatively correlated with
SSRT in CD but not HC. The findings are consistent with diminished temporal flexibility and a compensatory
increase in spatiotemporal diversity, in association with impairment of a critical executive function, in cocaine
addiction. More broadly, the findings suggest that graph theoretical metrics provide new insights for con-
nectivity analyses to elucidate network dysfunction that may elude conventional measures.

1. Introduction

Neural phenotypes serve as diagnostic or prognostic marker of
neuropsychiatric illnesses and numerous studies have shown altered
brain activity or connectivity in individuals with cocaine addiction. For
instance, dependent cocaine users demonstrated diminished resting
state functional connectivity (rsFC) of the salience network, seeded
from the insula, as compared to non-drug using controls (Geng et al.,
2017). In a treatment cohort, rsFC between right temporal pole and
medial prefrontal cortex (MPFC) predicted relapse status at 150 days.
Another study demonstrated disrupted interactions between default
mode and salience networks in cocaine addiction (Liang et al., 2015).

RsFC decreased between the orbitofrontal/dorsal PFC and ventral
striatum and increased between dorsal and ventral striatum in abstinent
cocaine users, particularly in those who relapsed to drug use (Berlingeri
et al., 2017). RsFC among executive and salience networks were higher
among individuals who remained abstinent after treatment (McHugh
et al., 2017). Spectral dynamic causal modeling showed altered effec-
tive connectivity of the mesolimbic circuit involving the ventral teg-
mental area, nucleus accumbens and MPFC in cocaine users (Ray et al.,
2016). In our recent study with multivariable pattern analysis, rsFC of
thalamic subregions distinguished cocaine users from non-drug using
controls at a higher accuracy, in comparison with brain regions with
similar volumes (Zhang et al., 2016).
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Other studies addressed task-related functional connectivity. In a
finger tapping task requiring variable speed response, MPFC con-
nectivity with the basal ganglia was decreased in cocaine users, parti-
cularly at higher speed, compared to controls (Lench et al., 2017).
Compared to non-drug using controls, abstinent cocaine users showed
increased left dorsolateral prefrontal cortical (DLPFC) connectivity with
the putamen in response to increasing reward magnitude in a counting
Stroop task blocked with varying monetary rewards (Rosell-Negre
et al., 2016). Current cocaine users demonstrated reduced amygdala
connectivity with the anterior cingulate cortex (ACC) in response to
angry and fearful facial expressions, compared to controls (Crunelle
et al., 2015). In another study cocaine addicted individuals relative to
non-drug using pathological gamblers exhibited enhanced connectivity
between the ventral caudate and subgenual ACC, in link with steeper
delay discounting and relapse to drug use (Contreras-Rodriguez et al.,
2015). Dynamic causal modeling showed altered prefrontal striatal
connectivity during response inhibition in a go/nogo task in cocaine
users (Ma et al., 2015). Combining fMRI of cue-induced craving and a
Bayesian search algorithm to identify the causal circuits of craving,
investigators reported a positive correlation between the strength of the
causal influence of the insula on the DLPFC and craving rating (Ray
et al., 2015b).

Together, these and many other studies highlighted changes in
functional connectivity during resting or task challenges in cocaine
misuse (Adinoff et al., 2015; Albein-Urios et al., 2014; Barros-
Loscertales et al., 2011; Caldwell et al., 2015; Cisler et al., 2013; Hu
et al., 2015c; Konova et al., 2015; Ma et al., 2014; McHugh et al., 2014;
Ray et al., 2015a; Wisner et al., 2013; Zhang et al., 2014). The great
majority of these studies focused on specific regions of interest, and
none examined the dynamic aspects of functional connectivity (Cohen,
2017).

The bulk of connectivity studies assume that functional connectivity
over the data collection period (or chronnectome) is relatively static
(Calhoun et al., 2014). This assumption was challenged in studies of
time-varying connectivities (Sakoğlu et al., 2010). A rationale is that
because of physiological noise, scanner drift, and fluctuation of parti-
cipants' attention, functional connectivity may not be truly static
(Morgan et al., 2015). As also shown in task-based fMRI, brain regions
showed a trend toward decreasing activation as participants continued
to perform on the same task (Menon and Uddin, 2010). These con-
siderations prompted studies to capitalize on the wealth of information
contained within the temporal features of BOLD signals (Hutchison
et al., 2013).

More importantly, the coordination of brain activity between neural
populations is a dynamic and context-dependent process. Brain dy-
namics give rise to variations in complex network properties over time,
possibly achieving a balance between efficient information processing
and metabolic expenditure (Zalesky et al., 2014) and potentially
playing a critical role in supporting cognition (Allen et al., 2014;
Calhoun et al., 2014; Chang and Glover, 2010; Kang et al., 2011;
Thompson et al., 2013). Given sufficient data, a number of metrics
could be used to characterize dynamic connectivity (Hutchison et al.,
2013). For instance, in a study of network connectivity of the insula
using a “sliding window” approach, dynamic states mirrored the cog-
nition-emotion-interoception divisions observed of static networks,
with both overlapping and unique connectivity profiles (Nomi et al.,
2016). The results highlight how dynamic connectivity better char-
acterizes functional connections of insula subdivisions and suggest
more nuanced models of insula function. A study of temporal lobe
epilepsy reported that as seizures progress over the years, dynamic
connectivity measures showed declining functional independence of the
ipsilateral from the midline cingulate network (Morgan et al., 2015).
Thus, dynamic connectivity quantifies widespread network alterations
and their evolution over the duration of the disease, providing a se-
verity or treatment outcome marker of epilepsy. Together, these and
other studies (Damaraju et al., 2014; de Lacy et al., 2017; Kaiser et al.,

2016; Sakoğlu et al., 2010; Yaesoubi et al., 2017) highlight the utility of
dynamic functional connectivity (DFC) in capturing the neural pro-
cesses that may be critical to the etiology of neuropsychiatric condi-
tions.

Here we investigated how whole-brain DFC may be altered in co-
caine addicted individuals in contrast to non-drug using controls.
Specifically, we employed graph theoretical analyses with temporal
flexibility and spatiotemporal diversity as two indices to examine how
networks of brain regions interact over time (Alnaes et al., 2015; Bassett
et al., 2011; Chen et al., 2016; Fornito et al., 2012). Temporal flexibility
characterizes how frequently a brain region interacts with regions
outside its own community across time. Spatiotemporal diversity re-
flects how uniformly a brain region interacts with regions in other
communities over time.

With a within-subject design, we compared these graph theoretical
metrics of imaging data collected during the stop signal task (SST)
between cocaine users and controls. On the basis of previous work (Cai
et al., 2017; Cai et al., 2016; Cai et al., 2014; Duann et al., 2009; Hu
et al., 2016; Zhang and Li, 2010, 2012), we hypothesized that the
medial frontal, frontoparietal task control and salience networks as well
as the default mode network (DMN) demonstrate altered graph metrics
in cocaine dependent individuals, in association with impaired response
inhibition, as compared to non-drug using controls.

2. Materials and methods

2.1. Subjects and behavioral task

Eighty-five healthy control (HC) and 78 cocaine dependent (CD)
adults participated in this study. CD resided in an inpatient treatment
unit and was abstinent between 1 and 2weeks before fMRI scan was
conducted. All participants reported no major medical, neurological, or
other psychiatric illnesses (except nicotine use disorder), denied use of
other illicit substances and tested negative for cannabis, opioids, am-
phetamine, methamphetamine, phencyclidine, benzodiazepine, and
barbiturate on the day of fMRI. All participants signed a written, in-
formed consent in accordance with a protocol approved by the Yale
Human Investigation Committee.

Participants performed a stop signal task or SST, which was de-
scribed in details in our previous studies (Bednarski et al., 2012; Hu
et al., 2014; Winkler et al., 2013; Zhang et al., 2014). Briefly, a “go”
signal set up a pre-potent response tendency in go trials (~75%), and an
additional, less frequent “stop” signal instructed subjects to withhold
their response in stop trials (~25%). Go and stop trials were rando-
mized in presentation, with an inter-trial-interval of 2 s. The time delay
between go and stop signal – stop signal delay (SSD) – was staircased,
increasing and decreasing by 67ms each following a stop success and
error trial. Participants were instructed to respond as quickly as they
could to “go” signal, while watching out for the “stop” signal. In the
scanner, participants completed four 10-minute runs of the SST, with
approximately 100 trials in each run. With the staircase procedure,
participants succeeded in stopping approximately half of time. The stop
signal reaction time (SSRT) – the time needed for one to stop the re-
sponse half of the time, was estimated on the basis of a race model.
Briefly, in the race model, go and stop processes independently race
toward a finish line and whichever finishes first determines the trial
outcome. With the race model, the SSRT can be estimated by sub-
tracting a critical SSD (where subjects would succeed in stopping half of
the time) from the mean go trial RT. The SSRT indexes the capacity of
response inhibition, with shorter SSRT reflecting better ability of in-
hibitory control.

2.2. Imaging protocol

Conventional T1-weighted spin-echo sagittal anatomical images were
acquired for slice localization using a 3-T scanner (Siemens Trio,
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Erlangen, Germany). Anatomical images of the functional slice locations
were obtained with spin-echo imaging in the axial plane parallel to the
anterior commissure–posterior commissure (AC–PC) line with
TR=300ms, TE=2.5ms, bandwidth=300Hz/pixel, flip angle=60°,
field of view = 220×220mm, matrix=256×256, 32 slices with slice
thickness=4mm and no gap. A single high-resolution T1-weighted
gradient-echo scan was obtained. One hundred seventy-six slices
parallel to the AC–PC line covering the whole brain were acquired
with TR=2530ms, TE=3.66ms, bandwidth=181Hz/pixel, flip
angle=7°, field of view=256×256mm, matrix=256×256, 1mm3

isotropic voxels. Functional scans were conducted with the SST. Blood
oxygenation level dependent (BOLD) signals were acquired with a single-
shot gradient-echo echo-planar imaging (EPI) sequence. Thirty-two axial
slices parallel to the AC–PC line covering the whole brain were acquired
with TR=2000ms, TE=25ms, bandwidth=2004Hz/pixel, flip
angle=85°, field of view= 220×220mm, matrix=64×64, 32 slices
with slice thickness=4mm and no gap. There were 10min (three
hundred images) in each run for a total of four runs of the SST.

2.3. Data pre-processing

All data were first analyzed with Statistical Parametric Mapping
(SPM, Wellcome Department of Imaging Neuroscience, University
College London, U.K.). In the pre-processing of BOLD data, images of
each participant were realigned (motion-corrected) and corrected for
slice timing. A mean functional image volume was constructed for each
participant for each run from the realigned image volumes. These mean
images were co-registered with the high resolution structural image and
then segmented for normalization to a Montreal Neurological Institute
EPI template with affine registration followed by nonlinear transfor-
mation (Ashburner and Friston, 1999; Friston et al., 1995). Images were
then smoothed with a Gaussian kernel of 8mm at full width at half
maximum. A multiple linear regression with 12 realignment parameters
(3 translations, 3 rotations, and their first temporal derivatives) was
applied to the smoothed data. Averaged signals from predefined white
matter and cerebrospinal fluid masks were computed, detrended, and
regressed out of the preprocessed data. The first 5 frames of BOLD data
were discarded to enable the signal to achieve steady-state equilibrium
between radio frequency pulsing and relaxation. Finally, for each sub-
ject, data were concatenated across the four runs of SST for analyses.

2.4. Graph model metrics

We largely followed (Chen et al., 2016) in the computation of graph
metrics. The workflow is summarized in Fig. 1.

2.4.1. Node definition
Nodes were defined from Power's atlas with 264 brain regions. The

264 nodes were grouped to form 14 large scale networks, including the
salience network (SN), cingulo-opercular task control network (CON),
fronto-parietal task control network (FPN), dorsal attention network
(DAN), ventral attention network (VAN), subcortical network, default
mode network (DMN), memory retrieval network, visual network, au-
ditory network, sensory-motor networks as well as the cerebellum
network (Power et al., 2011; Power et al., 2013). Voxel signals were
extracted, detrended and averaged for each node. A band-pass filter
(0.008 Hz < f < 0.25 Hz) was applied to remove low-frequency signal
drifts and increase the signal noise ratio.

2.4.2. Time varying functional connectivity
A sliding window with no gap or overlap between windows was

applied to the time series to obtain dynamic functional connectivity
between nodes. Exponentially decaying weights were applied to each
time point within a window (Zalesky et al., 2014). The exponentially
decaying weights were computed as:
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for each window was z-transformed within the subject for subsequent
analysis.

2.4.3. Modularity
Modularity was used to determine the optimal community structure

within the unthresholded connectivity matrix by grouping nodes into
non-overlapping communities or modules that maximize intra-modular
connectivity and minimize inter-modular connectivity (Newman,
2004). Louvain community detection algorithm from the Brain Con-
nectivity Toolbox (Rubinov and Sporns, 2010) was employed to iden-
tify community structure in both static and time-varying connectivity
matrices. The algorithm optimizes a quality function Q, defined as the
difference between the observed intra-modular and inter-modular
connectivity, while penalizing assignment of nodes with negative cor-
relations to the same community. The algorithm was repeated 100
times and the results with the highest Q was extracted as the optimal
community structure, for the computation of group static matrix and
each subject's temporal co-occurrence matrix.

2.4.4. Temporal co-occurrence matrix
To investigate dynamic interactions between nodes, temporal co-

occurrence matrices were computed based on subject's optimal com-
munity structures as obtained from the time-varying connectivity ma-
trix. The community structure within each sliding window was used to
construct an adjacency matrix Aijtk, such that Aijtk=1 if node i and node
j are in the same community within time window t for participantk,
otherwise Aijtk=0. The temporal co-occurrence matrix was thus com-

puted as the temporal mean of the adjacency matrix =
∑ =Cijk

A
T

t
T

ijtk1

(Bassett et al., 2015; Braun et al., 2015; Mattar et al., 2015). Each
element measures the proportion of times that two nodes are part of the
same community. A higher value indicates that the two corresponding
nodes participate in the same community more frequently.

2.4.5. Group static functional connectivity
Two levels of static functional connectivity were defined and com-

puted. At the first level, for each individual, the static connectivity
between nodes was computed by applying Pearson correlations on the
nodes' time-series. At the second level, the resulting correlation ma-
trices from individual subjects were z-transformed and averaged to
form a group averaged connectivity matrix. Modularity analysis was
performed with random initialization for 100 times on group averaged
connectivity matrix to determine the optimal static community struc-
ture, to be used for the computation of node-level metrics.

2.4.6. Node-level metrics
With the temporal co-occurrence matrix Cijk and the group static

community, we characterized the dynamic spatiotemporal properties of
each node using two measures: temporal flexibility and spatiotemporal
diversity.

The temporal flexibility of node i and participant k was computed
as:
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Fig. 1. Analysis workflow. (A) 264 regions (nodes) representing the entire brain and encompassing key (static) large-scale brain networks, including the SN, CON, FPN, DAN, VAN,
subcortical, DMN, memory systems, visual, auditory, sensory-motor, and the cerebellum. (B) Time-varying changes in the community structure of intrinsic functional connectivity were
quantified using a sliding window approach. An optimized community detection algorithm was used to compute a temporal co-occurrence matrix and graph metrics – temporal flexibility
and spatiotemporal diversity – to characterize dynamic functional interactions between brain regions.
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where Cijk is the temporal co-occurrence matrix for individual k, ui is the
community to which node i belongs, and ∑j∉uiCijk measures the total
frequency with which node i interacts with nodes outside its native
community (Mucha et al., 2010). Temporal flexibility of the node
captures the tendency of deviation from its own native community and
interaction with nodes from other community.

The spatiotemporal diversity of node i and participant k was com-
puted as:
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, sik is the degree/strength of node i among all
communities for participant k, sik(u) is the degree/strength of node i in
community u for participant k, m is the total number of communities,
and M is the set of communities (Fornito et al., 2012). Nodes with high
spatiotemporal diversity scores are those that have relatively spatially
varied distribution of time-varying interactions with all communities
and are putative loci for integrating information between communities.

2.4.7. Correlation with behavioral performance
We used both Pearson correlation to examine the relationship be-

tween graph metrics and the stop signal reaction time (SSRT), the
primary outcome measure of the SST. We focused on four networks that
are known to be associated with inhibitory control – the saliency net-
work, default mode network (DMN), cingulo-opercular network (CON),
and fronto-parietal network (FPN) – in Pearson regression with the two
connectivity metrics – temporal flexibility and spatiotemporal diversity.
A corrected p value of 0.05/8= 0.0063 was used to examine the cor-
relation results.

3. Results

3.1. Dynamic functional interactions

For both CD and HC, we used the temporal co-occurrence matrix to
compute dynamic functional connectivity (temporal flexibility and
spatiotemporal diversity) in association with each brain node, with the
findings grouped according to the 14 networks (Fig. 2). Temporal
flexibility is a measure of how frequently a brain region interacts with
regions belonging to other communities across time. High temporal
flexibility indicates that a region predominantly interacts with regions
outside its own community. Spatiotemporal diversity is a measure of
how uniformly a brain region interacts with regions in other commu-
nities over time. High spatiotemporal diversity indicates that interac-
tions are more evenly distributed across communities. Crucially, brain
regions with high temporal flexibility may not have high spatio-
temporal diversity if they predominantly interact with brain regions in
only one community; therefore, spatiotemporal diversity provides
complementary information about the spatial distribution of time-
varying connectivity. Because a total of 14 networks were tested, we
employed a corrected p value of 0.05/14=0.0036 to evaluate the re-
sults of independent sample t-tests. The results showed that temporal
flexibility was significantly decreased for all except auditory
(p=0.1136) and subcortical (p=0.0164) networks in CD, as com-
pared to HC. In contrast, spatiotemporal diversity was significantly
increased for all except sensory motor hand (p=0.9614) and fronto-
paietal (p=0.0485) networks in CD as compared to HC.

To examine whether CD and HC differed in these neural metrics as a
result of disparity in SSRT, we conducted an analysis of variance
(ANOVA) with group (CD vs. HC) and SSRT (short vs. long; median split
in each group) on temporal flexibility and spatiotemporal diversity of
each network. At the corrected threshold (p=0.0036), all except the

subcortical and auditory networks showed a significant group main
effect in temporal flexibility (p's < 3.97e-08). The DMN was the only
network showing a significant SSRT main effect (p=0.0008). There
were not significant group by SSRT interaction effects in temporal
flexibility. For spatiotemporal diversity, all except the saliency, fron-
toparietal task control, and somatomotor mouth networks showed a
significant group main effect (p's < 0.0009). There was not significant
SSRT main effect or group by SSRT interaction effects. The statistics
were shown in the Supplement.

3.2. Dynamic parameters of the default mode network (DMN) are
correlated with SSRT

We compared SST outcome measures of CD and HC. The result
showed that, compared to HC, CD was prolonged in SSRT (236 ± 53
vs. 225 ± 44ms; t=2.0334, p < 0.05; independent sample t-test).

We performed pairwise Pearson regression on SSRT and each of the
eight network connectivity metrics (four networks× two metrics) and
examined the results with a corrected p=0.0063, each for CD and HC.
In CD the temporal flexibility of the DMN negatively correlated with
SSRT (r=−0.4492; p < 0.000037). Also in CD the spatiotemporal
diversity was negatively correlated with SSRT (r=−0.3338;
p < 0.0029). Fig. 3 shows scatter plots of the DMN graph measures in
linear regression with SSRT. No other correlations were significant
under the corrected threshold (Table 1). Notably, the Pearson r values
were negative for all correlations, indicating that greater temporal
flexibility and spatiotemporal diversity of these networks are associated
with shorter SSRT or better inhibitory control. Without considering
correction for multiple comparisons, the temporal flexibility of the
DMN and salience network was negatively correlated with SSRT in HC,
and the spatiotemporal diversity of the frontoparietal network and
salience network was negatively correlated with SSRT in HC and CD,
respectively (all p's < 0.05).

4. Discussion

4.1. Network dysconnectivity in cocaine addiction

Temporal flexibility of the default-mode network (DMN) decreased
in cocaine dependent (CD) as compared to healthy control (HC) parti-
cipants. Compared to HC, CD showed prolonged stop signal reaction
time (SSRT), reflecting an impairment in the capacity of response in-
hibition. Temporal flexibility of the DMN correlated negatively with the
SSRT in CD and, less significantly, in HC. Thus, higher temporal flex-
ibility of the DMN is associated with better inhibitory control across CD
participants. This finding suggests that a greater extent at which the
DMN interacts with nodes from other communities is associated with
expedient response inhibition, particularly for CD. These findings are
broadly consistent with earlier reports of disrupted DMN activity and
connectivity in association with altered self-referential functions,
emotion and memory, and coordination between internal and external
stimuli in cocaine addiction (Bednarski et al., 2011; Geng et al., 2017;
Konova et al., 2015; Liang et al., 2015; Matuskey et al., 2013).

To consider whether the two graph metrics varied between CD and HC
independent of task performance, we conducted a group by SSRT ANOVA.
The results confirmed that temporal flexibility and spatiotemporal di-
versity of the great majority of networks remained significantly different
and that there were no significant interaction effects. The results suggest
that these connectivity measures are altered in cocaine addiction in-
dependent of task performance. On the other hand, as expected, the DMN
showed a significant SSRT main effect in temporal flexibility. The latter
finding along with a lack of interaction effect suggests that one cannot
rule out the possibility that differences in DMN connectivity to some ex-
tent reflect disparity in the capacity of inhibitory control.

Compared to HC, CD showed increased spatiotemporal diversity of
the DMN. Further, spatiotemporal diversity of the DMN was negatively
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correlated with SSRT in CD but not HC. Broadly in accord with earlier
work demonstrating both decreased and increased functional con-
nectivity (Ray et al., 2015a), this finding likely reflects a compensatory
process in CD. As spatiotemporal diversity measures how uniformly a
brain region interacts with regions in other communities over time,
with higher spatiotemporal diversity indicating more evenly distributed
interactions across communities, CD may compensate by recruiting
interactions across multiple networks to support stop signal perfor-
mance (Barros-Loscertales et al., 2011; Ide et al., 2016; Ide et al., 2015;
Li et al., 2008; Zhang et al., 2014; Zhang et al., 2016). These networks
likely cover an extensive array of brain regions to support all of the
individual component processes of cognitive control, such as attention,
response inhibition, error monitoring and post-error behavioral ad-
justment. Along with temporal flexibility, spatiotemporal diversity
captures the network dynamics critical to response inhibition and how
the network functions may be disrupted in cocaine addicted in-
dividuals.

4.2. Dynamic connectivity metrics as an additional etiological feature

As described earlier, in addition to the DMN, brain regions of the
saliency, fronto-parietal and cingulo-opercular networks have shown
activity and connectivity responses in relation to executive control
dysfunction in cocaine addiction. In contrast to the largely localized
findings, the current results of graph metrics of dynamic connectivity
highlight a distinct role of the DMN in relation to response inhibition
impairment. The capacity of response inhibition, as indexed by the stop
signal reaction time (SSRT), has conventionally be conceptualized as a
reactive control process – the SSRT quantifies the time needed to in-
terrupt the motor response as instructed by the stop signal. However,
more recent studies have described an elaborate neural network, in-
cluding the DMN, for proactive control and how proactive control in-
teracts with reactive processes to support response inhibition (Hu et al.,
2015a; Hu et al., 2015b; Ide et al., 2013). In addition, earlier studies
showed that fluctuation in activity of the perigenual anterior cingulate
cortex (pgACC), an important node of the DMN, may reflect moment-to-
moment changes in attention and is critically linked to stop signal
performance, with higher pgACC activities predicting an impending
stop error (Bednarski et al., 2011; Li et al., 2007). These additional
dimensions of cognition understandably have not been routinely con-
sidered in work of response inhibition. Along with these earlier studies,

the current findings highlight the complexity of cognitive processes and
the utility of dynamic connectivity measures in capturing some of these
interactive processes that may conduce to inhibition function and
dysfunction.

Similar cases can be made of other neuropsychiatric illnesses. For
instance, studies of patients with Lewy bodies dementia demonstrated
changes in dynamic functional connectivity in the occipito-parieto-
frontal and medial occipital networks in addition to the right fronto-
parietal circuit, suggesting the importance in characterizing visual and
visuomotor dysfunction for the illness (Sourty et al., 2016). In an
electroencephalographic study of social anxiety disorder, graphic ana-
lysis of a weighted phase lag index demonstrated increased clustering
coefficient and decreased characteristic path length in theta-based
whole brain functional organization in patients as compared to controls
(Xing et al., 2017). Further, the theta-dependent interconnectivity was
associated with state anxiety and an increase in information processing
efficiency, highlighting a new aspect of attention function, in social
anxiety disorder. In a first study of dynamic functional connectivity of
Parkinson's disease, the occurrence of sparse within-network con-
nectivity decreased whereas that of the stronger between-network
connectivity increased in patients as compared to controls (Kim et al.,
2017). The changes reflected a reduction in functional segregation
among networks and were correlated with the clinical severity of Par-
kinson's disease. Again, these findings described vulnerability of net-
work dynamics that have eluded studies focusing solely on the dopa-
minergic midbrain.

Fig. 2. Temporal co-occurrence matrix and time-varying graph model metrics of CD and HC. (A) Temporal co-occurrence matrix for the 264 brain nodes ordered and labeled according to
the 14 networks. (B) Temporal flexibility, averaged across nodes, of each network. (C) Spatiotemporal diversity, averaged across nodes, of each network. All data bars show
mean ± standard deviation.

Fig. 3. Linear regression between DMN graph metrics and SSRT. (A) temporal flexibility; (B) spatiotemporal diversity. Both measures negatively correlated with SSRT in CD.

Table 1
Correlation between network graph measures and SSRT.

DMN SN CON FPN

Temporal flexibility
vs. SSRT

HC r −0.27603 −0.25036 −0.19099 −0.19621
p 0.01056 0.02083 0.07995 0.07190

CD r −0.44916 −0.18400 −0.15531 −0.18429
p 3.71e-5⁎ 0.10683 0.17453 0.10628

Spatiotemporal
diversity vs.
SSRT

HC r −0.20607 −0.20384 −0.19115 −0.22420
p 0.05847 0.06131 0.07971 0.03914

CD r −0.33376 −0.26794 −0.18621 −0.20924
p 0.00282⁎ 0.01771 0.10261 0.06598

Note: p values < 0.05 are in bold. DMN: default mode network; SN: saliency network;
CON: cingulo-opercular network; FPN; frontoparietal network.

⁎ Significant at a corrected p < 0.0063.
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4.3. Limitations of dynamic connectivity analysis and conclusions

Interpreting temporal variations in functional connectivity (FC)
metrics computed from fMRI time series is not necessarily straightfor-
ward. Low signal-to-noise ratio, changing levels of non-neural noise
(e.g. from hardware instability), as well as variations in the BOLD signal
mean and variance over time, all lead to variations in FC metrics
(Hutchison et al., 2013). In addition, since functional networks may
overlap spatially (i.e., the time series of a single node may have partial
correlations with that of multiple networks), the FC between two re-
gions that is attributed to their involvement in one particular network
can appear to change if the time series of overlapping networks are not
appropriately separated (Xu et al., 2013). Another issue concerns the
definition of neural networks. Various atlases defined the networks that
are only broadly congruent. It is to be seen whether the current findings
would replicate with alternative network definitions. Finally, it remains
unclear to what extent dynamic FC is best conceptualized as a multi-
stable state space wherein multiple discrete patterns recur, akin to fixed
points of a dynamic system, or whether it simply varies along a con-
tinuous state space (Smith et al., 2012).

By demonstrating changes in network connectivity, the current
findings may have implications for future research, including those
employing electrical and magnetic stimulation and pharmacological
interventions (Farr et al., 2014; Kline et al., 2016; Liang et al., 2014). In
addition to interrogating how these manipulations may influence re-
gional activity and connectivity, studies can examine graph metrics as
neural markers of disease severity and treatment efficacy.

To conclude, analysis of dynamic functional connectivity of fMRI
data of the stop signal task characterized changes in network dynamics
in relation to impairment in response inhibition in cocaine dependent
individuals. The findings highlighted a critical role of the default model
network in mediating cognitive control dysfunction in cocaine addic-
tion.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.nicl.2018.03.016.
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