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ABSTRACT The human skin surface harbors huge numbers of microbes. The skin
microbiota interacts with its host and forms a skin microbiome profile that is specific
for each individual. It has been reported that the skin microbiota that is left on an
individual's possessions can act as a sort of “fingerprint” and be used for owner
identification. However, this approach needs to be improved to take into account
any long-term instability of skin microbiota and contamination from nonspecific bac-
teria. Here, we took advantage of single-nucleotide polymorphisms (SNPs) in the
16S-encoding rRNA gene of Cutibacterium acnes, the most common and abundant
bacterium on human skin, to perform owner identification. We first developed a
high-throughput genotyping method based on next-generation sequencing to char-
acterize the SNPs of the C. acnes 16S rRNA gene and found that the genotype com-
position of C. acnes 16S rRNA is individual specific. Owner identification accuracy of
around 90% based on random forest machine learning was achieved by using a
combination of C. acnes 16S rRNA genotype and skin microbiome profile data. Fur-
thermore, our study showed that the C. acnes 16S rRNA genotype remained more
stable over time than the skin microbiome profile. This characteristic of C. acnes was
further confirmed by the analysis of publicly available human skin metagenome
data. Our approach, with its high precision, good reproducibility, and low costs, thus
provides new possibilities in the field of microbiome-based owner identification and
forensics in general.

IMPORTANCE Cutibacterium acnes is the most common and abundant bacterial spe-
cies on human skin, and the gene that encodes its 16S rRNA has multiple single-
nucleotide polymorphisms. In this study, we developed a method to efficiently de-
termine the C. acnes 16S rRNA genotype composition from microbial samples taken
from the hands of participants and from their possessions. Using the C. acnes 16S
rRNA genotype composition, we could predict the owner of a possession with
around 90% accuracy when the 16S rRNA gene-based microbiome profile was in-
cluded. We also showed that the C. acnes 16S rRNA genotype composition was
more stable over time than the skin microbiome profile and thus is more suitable
for owner identification.

KEYWORDS Cutibacterium acnes, 16S rRNA genotype, skin microbiome, next-
generation sequencing, owner identification
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arious microbes are found in and on our bodies, including the gut, the oral cavity,

and our skin. The microbiota is site specific in and on our bodies and is unique to
each individual (1). The human skin surface contains a complex microbial ecosystem,
which is known as the skin microbiota (2). Skin microbiota interacts with its host
through the host immune system and forms personally unique skin microbiome
profiles in individuals (2-4). The skin microbiota persists on surfaces that come into
contact with human skin (5). For example, the microbiota on an individual’'s computer
keyboard is similar to that of the skin microbiota of his/her fingers (5). Therefore, the
skin microbiome profile could be used as a personal identification tool, similar to
fingerprinting (5). In addition to the skin microbiome profile, other methods for skin
sample-based personal identification have been proposed such as the use of skin
metagenomic data (6, 7), skin microbiome minor populations (8), and even skin surface
metabolites (9). However, the skin surface of the hand is easily contaminated during the
activities of daily life (8), and the biomass of skin microbes is very small (10). In addition,
within the skin microbiota, the major populations account for a large amount of the
total biomass, whereas the less-abundant taxa, which may be more specific to each
individual, represent a much smaller amount (6). These characteristics of skin microbes
may make the skin microbiota easy to perturb (6). Furthermore, the metagenomic and
metabolomic approaches mentioned above are costly and time-consuming and require
large amounts of samples. There is thus plenty of room for improvement among the
technologies that use skin samples for owner identification.

The use of single-nucleotide polymorphisms (SNPs) of one of the most common and
abundant bacteria on human skin, the Gram-positive bacterium Cutibacterium acnes
(former name, Propionibacterium acnes) (11-15), in such analyses may overcome these
shortcomings. C. acnes begins to colonize the skin of prepubertal children at a very low
level and increases in number throughout the teenage years until the individual is
~20years old (16). C. acnes, which prefers anaerobic conditions, accounts for 89% of
the bacterial biomass in the human pilosebaceous units (12) and is widely known as the
bacterium associated with acne (17). C. acnes species are divided into several distinct
phenotypes (18-20). Studies that included skin metagenome analyses of various body
parts suggested that the composition of C. acnes strains is individual specific and
temporally stable (21, 22). A subsequent study using those skin metagenome data sets
suggested that the presence or absence of features of the C. acnes pangenome may
have the potential to predict its host (7). More importantly, the gene that encodes C.
acnes 16S rRNA has many SNPs, which can be used to generate a strain-specific
ribotype (12). C. acnes ribotype profiles from pilosebaceous units are diverse across
individuals as revealed by full-length capillary sequencing analyses of the gene encod-
ing 16S rRNA (12). Furthermore, there is a correlation between the C. acnes ribotype and
the whole-genome genotype of C. acnes (23). Thus, we hypothesized that the ribotype
of C. acnes may also be individual specific and may have the potential for personal
identification.

Whereas capillary sequencing costs are much lower than those associated with
metagenomic analysis, the former method is not suitable for analyzing large numbers
of samples, as the process of cloning takes a substantial amount of time. As an
alternative, we have developed a next-generation sequencing (NGS)-based high-
throughput method for genotyping C. acnes 16S rRNA. This method enabled us to
obtain the C. acnes ribotype profile of a large number of samples in a short period of
time at low cost. In addition, we were able to detect the gene encoding C. acnes 16S
rRNA by PCR from a small sample and to avoid the effects of the surrounding
environment. We characterized the C. acnes ribotypes of healthy volunteers and
examined these ribotypes over time with this method. We also used the C. acnes
ribotype composition to carry out owner identification using the random forest ma-
chine learning. Finally, we confirmed our findings by using publicly available skin
metagenomic data sets.
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FIG 1 Experimental design. (A) PCR procedures to amplify the C. acnes 16S rRNA gene are shown. The blue and
red arrows indicate the two sets of primers used for the gene-specific and variable-region-specific amplification
reactions, respectively. (B) Schematic image of NGS-based skin microbiome and C. acnes 16S rRNA genotype

analysis. Skin bacterial 16S rRNA gene amplification and amplification specifically for the C. acnes 16S rRNA gene
were performed individually from the same DNA sample and analyzed by NGS.

RESULTS

Development of an NGS-based C. acnes 16S rRNA genotyping method. We used
an lllumina MiSeq sequencer to carry out the C. acnes 16S rRNA genotype analysis. As
the MiSeq sequencer is unable to analyze the full-length C. acnes 16S rRNA gene, we
chose a specific region of this gene for NGS analysis. In the C. acnes 16S rRNA gene,
many nucleotide changes have been described that lead to the various ribotypes, and
the area around V6 to V7 shows especially high nucleotide diversity (12). In this study,
6 of the 10 most abundant ribotypes contained one or two mutations within this region
(12). Therefore, we designed primers that would specifically amplify the V6-V7 region
of the C. acnes 16S rRNA gene (Fig. 1A). Then, the PCR products were used for library
preparation, and NGS was performed. We used the extracted DNA not only for
ribotyping of C. acnes strains but also for analysis of the 16S rRNA genes of the entire
microbiome in the skin DNA samples (Fig. 1B).

Analysis of the C. acnes 16S rRNA genotype from samples taken from hands
and possessions. We collected microbial samples from hands, keyboards, laptop touch
pads, and smartphone screens from 10 volunteers (Fig. 2A) and performed both
microbiome and C. acnes 16S rRNA genotype analyses. The microbiome analysis
indicated that the microbiome profiles determined for skin samples and the corre-
sponding possessions of each individual had a low degree of similarity (Fig. 2B). The
similarity distribution of microbiome profiles between corresponding skin samples and
possessions was further evaluated by using principal-coordinate analysis (PCoA) of
Bray-Curtis distances (Fig. 2C). The distances among an individual’s possessions and
hands were not much smaller than those between individuals and did not form clusters
(Fig. 2C and D). This suggested that the similarity of the microbiome profiles of an
individual’s hands and possessions is low. Qualitative and quantitative analysis using
unweighted and weighted UniFrac distances showed similar results (see Fig. S1A to D
in the supplemental material).

Next, we examined the 16S rRNA genotype composition for C. acnes with our
method. As our sequencing approach could analyze only about a 400-bp region of the
C. acnes 16S rRNA gene, the C. acnes ribotypes detected by this method were referred
to as NGS-detected ribotypes (NRTs). BLAST analysis showed that, as expected, >93.7%
of the operational taxonomic units (OTUs) detected were C. acnes (Fig. S2A and B). The
OTUs that did not correspond to C. acnes were removed, and each unique 16S rRNA
gene sequence of C. acnes was defined as an NRT. As this genotyping methodology is
based on the many SNPs of the 16S rRNA gene, very high numbers of NRTs (n = 11,631)
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FIG 2 Skin microbiome and C. acnes NRT composition on hands and possessions. (A) Experimental design for the skin
microbiome and C. acnes NRT composition analysis of 10 healthy volunteers. (B) Skin microbiome profile. The boxes above

(Continued on next page)
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were detected by this method, indicating that this method is suitable for genotyping
(Fig. S2C). We numbered each NRT according to its abundance among all the hand and
possession samples, with the most abundant NRT referred to as NRT1. NRT1 through
NRT3 accounted for >70% of the C. acnes NRT composition (Fig. S2D). Analyzing only
the top 20 NRTs, their distribution patterns suggested similarities between the hand
and possession samples for each individual (Fig. 2E). The similarity of the distributions
among all C. acnes NRTs between skin samples and possessions was further evaluated
by a PCoA using Bray-Curtis distances. Compared with the microbiome data, the
samples for each individual formed clusters, and the distances between an individual’s
possessions and hands were much smaller than those among individuals (Fig. 2F and
G), indicating that the C. acnes NRT composition of an individual’s possessions
resembles that of their owner. The qualitative and quantitative analysis performed
using binary Euclidean distances and Spearman distances showed a similar result
(Fig. S1E to H).

Because PCoA plots show only the two-dimensional information from each sample
(Fig. 2C and F; see also Fig. S1A, C, E, and G), we further compared the component
similarities of the 16S rRNA-based skin microbiome profile and the C. acnes NRT
composition within each individual by analysis of similarity (ANOSIM) using Bray-Curtis
distances. ANOSIM is an analysis method used to test whether there are significant
differences among several groups of samples by using all dimensions of a PCoA (5). As
a result, the correlation coefficient value (R) representing results of comparisons of C.
acnes NRT composition between the hands and possessions of each individual was
higher than for the skin microbiome profile, which indicated that the similarity of the
C. acnes NRT compositions between the hands and possessions of each individual was
higher than that of the skin microbiome profile (Fig. 3). These results demonstrated that
the C. acnes 16S rRNA genotype composition of an individual has the potential of
identifying owners of solid-surface, nonbiological samples.

Owner identification using skin microbiota profile and C. acnes NRT composi-
tion. On the basis of the results described above, we next attempted to use the C. acnes
NRT composition of each individual for owner identification. We used the random
forest algorithm with the skin microbiome profile and the C. acnes NRT composition to
compare their accuracy rates. The accuracy rate determined using the skin microbiome
profile was 71.7% (Fig. 4A and B). Using the C. acnes NRT composition, the accuracy
increased slightly to 78.3% (Fig. 4A and C). Using a combination of C. acnes NRT
composition and skin microbiome, the accuracy was increased to 93.3% (Fig. 4A and D).
We performed cross-validation of the model accuracy, and the results were similar to
those shown in Fig. 4A to D (see also Fig. S3). Therefore, it is unlikely that overfitting
occurred. The top 20 components from the Mean Decrease Gini data from the random
forest analysis, which represent the factors that contribute most to accuracy, are shown
(Fig. 4E to G). The minor genera of an individual's microbiome contributed to the
accuracy of owner identification using the skin microbiome profile data (Fig. 4E),
whereas both the major and minor members of the C. acnes NRT contributed to the
accuracy of owner identification using the C. acnes NRT composition (Fig. 4F). Consis-
tently, the minor genera of the skin microbiome and both the major and minor NRTs
of C. acnes contributed to the accuracy of owner identification using the combination
of microbiome data and C. acnes NRT composition (Fig. 4G). The Z-score heat map of
the Mean Decrease Gini top 20 OTUs for this combination analysis showed that the
abundances of those bacteria and of C. acnes NRTs occurred in a unique pattern in each
individual, which likely contributed to the high accuracy (Fig. 4G).

FIG 2 Legend (Continued)

the graph represent sampling sites as shown in the key in panel A. (C and D) Bray-Curtis distances were used (C) to generate
a PCoA of microbiome profiles and (D) to analyze the distances between and within individuals, which are shown as box
plots. (E) Composition of the top 20 C. acnes NRTs among the hand and possession samples. Boxes above the graph indicate
the sampling sites described in the panel B legend. (F and G) Bray-Curtis distances were used (F) to generate a PCoA of the
whole C. acnes NRT compositions and (G) to analyze the distances between and within individuals, which are shown as box

plots. *** P < 0.001 (Mann-Whitney U test).
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FIG 3 ANOSIM of skin microbiome and C. acnes NRT compositions between individuals and their
possessions. (A and B) ANOSIM of (A) skin microbiome and (B) C. acnes NRT composition for each
individual. Box plots were made using the Bray-Curtis distance matrix. The gray horizontal line shows the
boundary of the lowest value of the 95% confidence interval from the all-samples data. In each box plot,
the box represents the first and third quartiles, the diamond shows the entire range of the 95%
confidence interval corresponding to the average value, the white line shows the average, and the black
line shows the median value for each data set. The whiskers extend from the minimum value to the
maximum value within each data set. In each graph, the box plot for the data representing distances
between samples of different individuals was compared with that for each individual. Individuals for
which the diamond (the entire range of the 95% confidence interval corresponding to the average value)
is lower than the gray line (95% confidence interval corresponding to the data of distances between
samples of different individuals) show similarity within that data set. The R value for the data shown in
panel B was larger than that for the data shown in panel A, which indicates that the similarity of the C.
acnes NRT compositions within each individual was higher than that of the microbiome. P values are also
shown.

Temporal stability of the skin microbiome profile and C. acnes NRT composi-
tion. We compared the stability of the skin microbiome and C. acnes NRT composition
over time using sampled DNA from the hands of individuals. To assess the temporal
stability of skin bacteria, we analyzed the microbiome profile and C. acnes NRT
composition using DNA samples collected from the hands of individuals 5 months
before (presampling point), the main sampling time point assessed above, and 2.5 years
later (postsampling time point) (Fig. 5A). DNA samples were collected from three
individuals (individuals 1 to 3) at the presampling time point and from four individuals
(individuals 2 to 5) at the postsampling time point (Fig. 5A). The skin microbiome
analysis suggested that the microbiome profiles at each sampling point varied for each
individual (Fig. 5B). The similarity distribution of these skin microbiome profiles was
further evaluated by a PCoA of Bray-Curtis distances (Fig. 5C and D). The plot from the
PCoA shows that the samples collected at the pre- and postsampling time points for a
given individual were separated from his/her main samples, which indicated that the
components of the skin bacterial species were not stable over time (Fig. 5C). Distances
between an individual’'s long-term samples and main samples were not much smaller
than those between individuals and did not form clusters (Fig. 5C and D), confirming
that the similarity between an individual’s main samples and long-term samples was
low. The unweighted and weighted UniFrac analyses showed similar results (Fig. S4A to
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FIG 4 Owner identification based on the skin microbiome and C. acnes NRT composition using random forest machine learning. (A) Comparison of the
accuracy results using the skin microbiome profile, the C. acnes NRT composition, and both sets of data. (B to D) Accuracy heat maps of owner identification
using (B) the skin microbiome profile, (C) the C. acnes NRT composition, and (D) both sets of data are shown. Rows indicate the input data (fingers of both
hands), and columns indicate the model accuracy results. (E to G) The Mean Decrease Gini of owner identification using (E) the microbiome profile and (F)
the C. acnes NRT composition with a heat map of the average abundance of OTUs and using (G) both sets of data with a heat map showing the Z-scores is
presented. In the Z-score heat map, gray rectangles indicate that the particular OTU was not detected in that sample. In panels E and F, the OTUs with an
average abundance of >1% are shown in magenta, and the relative abundance value for each OTU is shown inside the boxes of the heat map.

D), which were consistent with a previous finding (6). Next, we evaluated the C. acnes
NRT composition over a long-term interval. The composition of the top 20 NRTs
suggested that the overall NRT data were similar among the main samples and the
presampling and postsampling time points within the same individual (Fig. 5E). In a
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FIG 6 Prediction of owners using skin microbiome and C. acnes NRT composition data from different time points. (A) Comparison of the accuracy of the
predictions using presampling data (from 5 months before the main sampling) from individuals 1 to 3. (B to D) Individual heat maps of owner prediction
accuracy with presampling data using (B) the skin microbiome profile, (C) the C. acnes NRT composition, and (D) the two combined are shown. (E) Comparison
of the accuracy of the prediction using postsampling data (2.5 years after the main sampling) from individuals 2 to 5. (F to H) Individual heat maps of owner
prediction accuracy with postsampling data using (F) the microbiome profile, (G) the C. acnes NRT composition, and (H) the two combined are shown. Rows
indicate the input data (from fingers of both hands), and columns indicate the prediction results.

further evaluation with a PCoA of Bray-Curtis distances, the samples from each indi-
vidual formed clusters, and the distances among an individual’s long-term samples and
main samples were much smaller than those between individuals (Fig. 5F and G). The
PCoA using binary Euclidean distance and Spearman distance analysis showed similar
results (Fig. S4E to H). Therefore, the C. acnes NRT composition might be more stable
than the skin microbiome profile within each individual.

On the basis of our findings that the C. acnes NRT composition profile is more
suitable for owner identification over time than the skin microbiome profile, we thus
carried out owner identification by using the long-term hand samples to predict the
owner of sampled possessions. The accuracy rate of prediction using C. acnes NRT
composition from presampling data was much higher than that of the microbiome
profile (Fig. 6A to C and E to G). We also performed owner identification by using the
combination of the C. acnes NRT composition and the skin microbiome profile from
presampling data. Similarly to the findings with the main sampling data sets, the
accuracy improved compared with the accuracy seen using C. acnes NRT composition

FIG 5 Legend (Continued)

microbiome profile of main sampling and pre- and postsampling of individuals 1 to 5. The boxes above the graphs represent
the sampling sites as shown in panel A. (C and D) Bray-Curtis distances were used (C) to generate a PCoA of microbiome profiles
and (D) to analyze the distances between and within individuals, which are shown as box plots. (E) Top 20 NRTs that make up
the C. acnes NRT composition in the main sampling and pre- and postsampling of individuals 1 to 5. The boxes above the
graphs represent the sampling sites as shown in panel A. (F and G) Bray-Curtis distances were used (F) to generate a PCoA of
the whole C. acnes NRT compositions and (G) to analyze the distances between and within individuals, which are shown as box
plots. ** P < 0.01; *** P <0.001 (Mann-Whitney U test).
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only (Fig. 6A and D). Next, we carried out owner identification using postsampling data.
As we had found with the presampling samples, the accuracy using C. acnes NRT
composition was much higher than that of the skin microbiome profile (Fig. 6E to G).
Using both the C. acnes NRT composition and the skin microbiome profile from
postsampling data for owner identification, however, the accuracy was the same as that
found by using C. acnes NRT composition only (Fig. 6E and H). These data suggested
that the C. acnes NRT composition has greater potential for owner identification after
a long period of time (up to 2.5 years) and that use of the combination of the C. acnes
NRT composition and the skin microbiome profile may, under certain conditions, lead
to increased accuracy.

Owner identification using public data set of C. acnes 16S rRNA gene SNPs.
Finally, we examined the extent to which the long-term stability of C. acnes 16S rRNA
gene SNPs is universal using publicly available skin metagenome data sets from Oh et
al. (22). These data sets consist of skin samples from 17 body sites of 12 healthy
volunteers that were collected at three time points over short (5-to-10-week) to long
(10-to-30-month) sampling durations. In this analysis, we used the data sets corre-
sponding to samples from the hypothenar region of the palm and extracted the C.
acnes 16S rRNA gene reads to analyze the SNPs in each individual.

As this metagenomics data set contained not only reads from the region of the C.
acnes 16S rRNA gene that we used here for owner identification but also reads from
other regions, we decided to use the SNPs in the full-length 16S rRNA sequence of C.
acnes to do the analysis. We used the full-length 16S rRNA gene sequence of C. acnes
strain ATCC 6919 as the reference sequence. As several samples had a low number of
reads after the mapping process, we included data only from individuals whose
samples from all three time points had >1,500 reads in the following analysis. The PCoA
of Euclidean distances and comparisons of the distances between and within individ-
uals suggested that each individual had a unique and stable SNP pattern over time
(Fig. 7A and B). Five of the 10 most abundant SNPs were found in the area amplified
by the nested PCR primers that targeted the C. acnes 16S rRNA gene used in our
analysis (Table S1 in the supplemental material), which suggested that this area may
have a high mutation frequency. To further examine the long-term stability of these
SNP patterns, we used the SNP patterns from all three time points from each individual
to carry out owner identification by the random forest method. The model accuracy
was 100% (Fig. 7C). The cross-validation of the model accuracy showed the same result
(data not shown). Additionally, 9 of the top 20 SNPs that contributed to the Mean
Decrease Gini were found in the area of C. acnes 16S rRNA amplified by our nested PCR
primers (Fig. 7D), suggesting that this area is important for setting the criteria for each
individual. The analysis described above further confirms that the C. acnes NRT com-
position is specific for each individual and has long-term stability.

DISCUSSION

We have developed an NGS-based C. acnes 16S rRNA genotype-targeted approach
to carry out owner identification. This method enabled us to determine the C. acnes
NRT composition of individuals in a high-throughput manner and to obtain skin
microbiome profile information simultaneously. Our analyses of C. acnes NRT compo-
sition from 10 individuals here and from publicly available skin metagenomic data
confirmed the specificity at the individual level and the long-term stability of C. acnes
16S rRNA sequence SNPs. This specificity may be universally shared among different
ethnic groups, as the healthy volunteers in our study were Japanese and the partici-
pants in the previous work were American (22). C. acnes is localized not only on the skin
surface but also in the sebaceous glands, hair follicles, and pores (12). In addition, C.
acnes bacteria form biofilms (24). Therefore, it is suggested that there might be tight
cross talk between C. acnes and the host environment. Among all the human com-
mensal microbes, it has been widely reported that gut microbiomes have long-term
stability, which is due in part to the interaction with the host immune system (25-27).
Similarly to the gut microbiota, the skin microbiota also maintains its homeostasis
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FIG 7 Owner identification using C. acnes 16S rRNA gene SNPs from publicly available metagenomic data sets. (A) PCoA of Euclidean
distances and (B) comparisons of the distances between and within individuals for the C. acnes 16S rRNA gene SNPs. T1, T2, and T3
represent three different sampling points. From T1 to T2, the period was 10 to 30 months; from T2 to T3, the period was 5 to 10 weeks.
(C) A heat map of owner prediction accuracy based on publicly available skin metagenomic samples using C. acnes 16S rRNA gene SNPs.
(D) Mean Decrease Gini of owner identification using C. acnes 165 rRNA gene SNPs and a heat map of Z-scores are presented. The SNPs
in red represent the SNPs within the area that was amplified by our nested PCR primer sets. In the Z-score heat map, gray rectangles
indicate that the particular SNP was not detected in that sample. *** P < 0.001 (Mann-Whitney U test).

through interactions with the host immune system (4). Therefore, there is a possibility
that these characteristics of C. acnes contribute to maintaining the similar C. acnes SNP
compositions across samples from the same individual.

Recent studies have attempted personal identification using bacteria from human
skin. In those studies, the skin microbiome was evaluated using 16S rRNA gene
sequencing or metagenomic analysis (5, 6, 8). In a previous study using skin meta-
genome data, the accuracy rate was between 69% and 85% (6). In another report using
minor components of the skin microbe population, the accuracy was between 78% and
95% (8). In a study that used the presence and absence of features of the C. acnes
pangenome or the nucleotide diversities of clade-specific markers that were obtained
from skin metagenome data from various body parts, the accuracy was between 30%
and 100% (7). In our study, random forest machine learning-based owner identification
was performed using both C. acnes and skin microbiome data. The accuracy rates using
the microbiome and C. acnes NRT composition individually were 71.7% and 78.3%,
respectively (Fig. 4A to Q). In contrast, using both data sets increased the accuracy to
93.3% (Fig. 4A and D). The lower accuracy of the microbiome-based approach could
have been due to the fact that the skin microbiota is more unstable over a long time
period than C. acnes populations (Fig. 5) and that it has a low microbial biomass and
is susceptible to contamination from nonspecific bacteria (8, 10). Although meta-
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genome and metabolome analyses can be highly accurate (6, 7, 9), many pretreatment
steps are needed and a computer server is necessary for the analysis of large numbers
of samples. Furthermore, both of the methods require a large sample amount. The cost
of sequencing 16S rRNA-encoding gene amplicons is much lower than the cost of
metagenome and metabolome analyses, and the analysis procedure is much simpler
and faster. It is, however, difficult to overcome the risk of contamination. With our C.
acnes NRT analysis, we amplified specifically a region of the 16S rRNA gene of C. acnes,
which helped us to obtain data from low-biomass samples and to overcome the risk of
contamination without increased costs. In fact, the left side of the keyboard of indi-
vidual 1 seems to have been contaminated with unspecific bacteria (i.e., Bifidobacte-
rium), which resulted in a microbiome profile for this sample that was much different
from that of its owner (Fig. 2B). Also, many samples seem to have had the previously
reported kit contaminant OTUs in their microbiome profile (Fig. 2B; see also Fig. 5B)
(28). Nevertheless, the C. acnes NRT composition from those samples remained highly
similar to that from its owner (Fig. 2E; see also Fig. 5E), which suggests that this C. acnes
NRT-targeted analysis has the potential to overcome bacterial contamination from daily
life. In addition, this C. acnes NRT-targeted analysis may overcome the issue of long-
term instability of skin microbiota, as the accuracy of owner prediction using the C.
acnes NRT composition of long-term samples was much higher than that obtained
using the skin microbiome profile (Fig. 6).

Interestingly, the accuracy of owner identification using the skin microbiome profile
from each individual at the main time point was only slightly lower than that obtained
using the C. acnes NRT composition, despite the PCoA and ANOSIM results showing
that the differences between the microbiome data from the skin and possessions of the
same individual were greater than the differences in the data determined for the C.
acnes NRT composition. We believe that this was due to the contribution of the
individual-specific minor bacterial population in each individual (Fig. 4E). As previously
suggested, the minor population of skin bacteria may function as an individual-specific
signature and may thus contribute to owner identification (8, 22). On the basis of the
Z-score heat maps, the minor abundant bacteria/NRTs such as NRT353 and NRT387 in
individual 10 or Comamonas in individual 4 and Moraxella in individual 6 may work as
personal signatures, whereas the ratio of the major abundant bacteria/NRTs such as
Acinetobacter and NRT1 to NRT3 in each individual may work together as the criteria to
determine the individuals and may contribute to owner identification (Fig. 4G).

In conclusion, our results indicated that C. acnes 16S rRNA genotypes are unique
within individuals and are relatively stable over time, both of which might contribute
to owner identification of solid-surface, nonbiological samples. These findings suggest
that, like fingerprints, the C. acnes 16S rRNA genotype has the potential to be a tool of
forensic identification. As skin bacteria are easily obtainable from possessions, our
approach is considered to be a useful tool for developing methods using bacterial
samples from skin for owner identification.

MATERIALS AND METHODS

Sample collection. In this study, samples were collected from 10 healthy Japanese volunteers 20 to
24 years of age. All volunteers were informed of the purpose of this study and signed a consent form.
Samples were collected from four men and six women. There were two skin sites for sample collection
(the fingers of the right hand and the fingers of the left hand) and four possession sites (the right side
of the keyboard and the left side of the keyboard, the laptop touch pad, and the smartphone screen),
all of which were sampled from each volunteer. The skin surface and possessions were sampled using
sterilized swabs premoistened with TE10 buffer (10 mM Tris-HCl, 10 mM EDTA, pH 8) for 30s, and the
swab tips were transferred to sampling tubes filled with TE10 buffer and were shaken for 5 s; the swab
tips were then discarded. Long-term samples were collected 5 months before and 2.5 years after the
main sampling point. All samples were stored at —80°C until DNA extraction.

DNA extraction. Samples were first incubated with 15 mg/ml lysozyme (Wako Ltd.) at 37°C over-
night. Next, the lysates were further incubated with achromopeptidase (Wako Ltd.) at a final concen-
tration of 600 U/ml at 37°C for 8 h. Then SDS and proteinase K (Merck Millipore Ltd.) were added to reach
final concentrations of 1% and 1 mg/ml, respectively, and the samples were incubated at 55°C overnight.
After that, bacterial genomic DNA was purified from each sample according to the standard phenol-
chloroform/isoamyl alcohol protocol as previously described (29).
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Microbiome 16S rRNA gene sequencing. 165 rRNA genes from the skin surface and possession
samples were analyzed using a MiSeq sequencer (lllumina Inc.) and a previously described method (29).
Briefly, to analyze the microbiome, PCR using DNA from each sample was performed with Tks Gflex DNA
polymerase (TaKaRa Bio Inc.) and primers SP1-27Fmod and SP2-338R, which correspond to bacterial
universal primer set 27Fmod/338R and contain the Read1/Read2 sequencing primer (Rd1/Rd2 SP)
sequence (see Table S2 in the supplemental material) and amplify the V1 and V2 regions of 16S rRNA
genes (30). The amplification process consisted of one denaturation step at 94°C for 1 min, followed by
28 cycles of 98°C for 10's, 55°C for 15 s, and 68°C for 30's, with a final extension step at 68°C for 3 min.
The resulting reaction product was purified using Agencourt AMPure XP (Beckman Coulter Ltd.) and
further amplified using the forward primer and reverse primer, which contain a unique 8-bp barcode
sequence for each sample (indicated with an “N” in Table S2) and Rd1/Rd2 SP (16). After purification
using Agencourt AMPure XP, a mixed sample was prepared by pooling equal amounts of PCR amplicons
from all samples to make a final concentration of 4 nM. Libraries were then sequenced with 2 X 300-bp
paired-end reads on the MiSeq sequencer.

C. acnes 16S rRNA genotyping sequencing. Genotyping of C. acnes 16S rRNA genes from the skin
surface and possession samples was carried out with the MiSeq sequencer. Using a method identical to
that used for the microbiome analysis, PCR using DNA from each sample was performed with Tks Gflex
DNA polymerase. First, the C. acnes 16S rRNA gene-specific PCR was run using primers CA_F (31) and
CA_R, which target the region of C. acnes 16S rRNA corresponding to bp 414 to 1445 (Table S2). The PCR
consisted of one denaturation step at 94°C for 5 min, followed by 30 cycles of 96°C for 10's, 64°C for 15s,
and 68°C for 1 min, with a final extension step at 68°C for 2 min. The PCR products were diluted 300-fold
in TE buffer, and then nested PCR was performed using primers CAV_F and CAV_R to amplify the variable
region around V6 to V7 (bp 948 to 1334) from the specific PCR products. The nested PCR consisted of one
denaturation step at 94°C for 2 min, followed by 20 cycles of 96°C for 10 s, 64°C for 15 s, and 68°C for 30's,
with a final extension step at 68°C for 2 min. Then, to incorporate the sample-specific 8-bp barcode
sequences and perform NGS analysis of the microbiome samples simultaneously, Rd1/Rd2 SP sequences
were added to the 5’ and 3’ ends of the nested PCR products by an additional round of PCR using
SP1-950F and SP2-1334R primers. The PCR consisted of one denaturation step at 94°C for 2 min, followed
by five cycles of 96°C for 10's, 64°C for 15 s, and 68°C for 30 s, with a final extension step at 68°C for 2 min.
Finally, the forward primer and reverse primer containing unique 8-bp barcode sequences were added
by PCR using the same procedure as described above for the microbiome PCR. After that, all products
were processed using the same method for the analysis of 16S rRNA gene sequences.

Analysis of microbiome profile. Sequencing for the microbiome profiles generated 3,241,784
paired-end reads obtained from 74 DNA samples. For the analysis of microbiomes, Fast Length Adjust-
ment of Short Reads (FLASH) (v1.2.11) (32) was used to assemble the paired-end reads. For quality
control, 30 bp of the 3’ end sequences were deleted before FLASH was used, and sequences that had a
mean quality score of <25 and were >1,000 bp or <200 bp were discarded after FLASH by the use of
an in-house script. Among the NGS samples, the maximum number of sequences was 48,512 reads per
sample and the minimum number of sequences was 12,281 reads per sample. Therefore, for the
microbiome analysis, 12,281 reads were selected randomly from each sample that had =12,281 reads,
and these were processed using the Quantitative Insights Into Microbial Ecology (QIIME) (v1.9.1) pipeline
(33). The reads were clustered into OTUs using 97% sequence similarity for the microbiome analysis, and
they were then assigned using the UCLUST method (34).

Analysis of C. acnes NRT composition. In the C. acnes 165 rRNA genotyping sequencing, 2,969,625
paired-end reads were obtained from 74 DNA samples. FLASH and the same quality control procedures
as described above were also used for assembling the C. acnes 16S rRNA genotyping sequencing data.
For the C. acnes NRT analysis, reads that passed the quality check were selected randomly from each
sample by the use of an in-house script and processed using the QIIME pipeline. Reads were then
clustered into OTUs using 100% sequence similarity and were assigned to taxonomy with the Basic Local
Alignment Search Tool (BLAST+) (v2.6.0) (35, 36). OTUs that did not correspond to C. acnes were
removed, and singletons were removed to avoid sequencing errors. The number of reads that passed
BLAST analysis per sample ranged from 31,900 to 10,000. Therefore, 10,000 reads were selected randomly
from each sample again. These reads were finally clustered into OTUs, again using 100% sequence
similarity. NRTs were then named according to their abundance across all samples, with the most
abundant NRT referred to as NRT1.

Owner identification. For owner identification analyses, C. acnes NRTs and microbiome OTUs with an
abundance of >0.01% were extracted from each sample. A random forest method was then implemented
with the randomForest function in randomForest package v4.6-14 in R (37). In each test, 50,000 decision trees
were generated. For the owner identification from the main time point samples, all samples from an individual
were used. The classification model included data from the fingers of both hands and from the possessions,
and the model accuracy was calculated from the out-of-bag (OBB) error rate. In cross-validation, five samples
from each individual were used for model construction, which was then used to predict the owner of the
remaining sample. The model construction and prediction were run upon all samples for each individual (six
times in total per individual), and the average of the accuracy rates was calculated. For owner identification
from the long-term samples, the classification model included data from the fingers of both hands and from
the possessions of the owners from the main time point, and then the model was used to identify owners
based on the presampling or postsampling data and the prediction accuracy was calculated. For the owner
identification analysis performed using the publicly available skin metagenomic samples, the classification
model included data from the samples collected from the hypothenar region of the palm for all three time
points and the model accuracy was calculated from the OBB error rate. In the cross-validation of the publicly

November/December 2019 Volume 4 Issue 6 e00594-19

mSystems’

msystems.asm.org 13


https://msystems.asm.org

Yang et al.

available data set, two samples from each individual were used for model construction, and then the
remaining sample was used to predict the owner. The model construction and prediction were carried out
with all samples from each individual (three times in total per individual), and the average of the accuracy rates
was calculated.

Processing of skin metagenomic data sets. The data sets from the hypothenar region of the palm
from the work performed previously by Oh et al. (22) (216 fastq files from 37 samples, 4,011,677,552
reads) were obtained from the National Center for Biotechnology Information Sequence Read Archive
(NCBI SRA) using the SRA toolkit (https://www.ncbi.nlm.nih.gov/books/NBK158900/). The adaptor se-
quences were removed, and the reads with a Q score of <20 or with a length of <20 bp were excluded
by the use of Trim Galore! (v0.4.4 dev) (https://www.bioinformatics.babraham.ac.uk/projects/trim
_galore/). The remaining reads were mapped to the 16S rRNA gene sequence from the C. acnes strain
ATCC 6919 using the Burrows-Wheeler alignment tool (BWA v0.7.17-r1188; option: BWA MEM with
default parameters) (38), and the SNPs were analyzed by the use of SAMtools (v1.9) (38, 39). Each
nucleotide that differed from C. acnes strain ATCC 6919 16S rRNA gene sequence was identified as a SNP.
After that, taxonomy assignment was carried out with BLAST+ (v2.6.0) (E value, <1e—10) (35, 36); reads
that contained insertions or deletions and reads that were soft or hard clipped as determined by
SAMtools were removed. Finally, the individuals whose samples from all three time points contained
>1,500 reads (five individuals, 15 samples) were chosen. From each sample, 1,845 reads were selected
randomly and were included in the downstream analysis.

Statistical analysis. Distances among samples based on the Bray-Curtis, UniFrac, and binary Euclid-
ean analyses were calculated by QIIME, and Spearman and Euclidean distances were calculated by R. The
scatter plots and the box plots were drawn by R. ANOSIM was performed with the anosim function in
vegan package v 2.5-1 in R (v3.4.2) (37).

Use of human subjects. This study was approved by the Ethics Committee of Keio University Shonan
Fujisawa Campus (approval number 194).

Data availability. The C. acnes NRT and microbiome analysis data have been deposited in the DNA
Data Bank of Japan (DDBJ) Sequence Read Archive (http://trace.ddbj.nig.ac.jp/dra/). The accession
number for the C. acnes NRT analysis data is DRA008106. The accession number for the microbiome
analysis data is DRA008105.
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