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Fragile X syndrome (FXS) is one of the most common forms of hereditary intellectual
disability. It is also a well-known monogenic cause of autism spectrum disorders
(ASD). Repetitive trinucleotide expansion of CGG repeats in the 5′-UTR of FMR1 is the
pathological mutation. Full mutation CGG repeats epigenetically silence FMR1 and thus
lead to the absence of its product, fragile mental retardation protein (FMRP), which is an
indispensable translational regulator at synapsis. Loss of FMRP causes abnormal neural
morphology, dysregulated protein translation, and distorted synaptic plasticity, giving
rise to FXS phenotypes. Non-coding RNAs, including siRNA, miRNA, and lncRNA, are
transcribed from DNA but not meant for protein translation. They are not junk sequence
but play indispensable roles in diverse cellular processes. FXS is the first neurological
disorder being linked to miRNA pathway dysfunction. Since then, insightful knowledge
has been gained in this field. In this review, we mainly focus on how non-coding RNAs,
especially the siRNAs, miRNAs, and lncRNAs, are involved in FXS pathogenesis. We
would also like to discuss several potential mechanisms mediated by non-coding RNAs
that may be shared by FXS and other related disorders.

Keywords: non-coding RNA, Fragile X syndrome, RNAi mediated epigenetic silencing, microRNA mediated
translational regulation, potential converging mechanisms

INTRODUCTION

Non-coding RNA is a kind of transcript from DNA but not meant for protein translation.
Accumulating evidence has shown that non-coding RNA molecules play indispensable roles
in diverse cellular processes. Understanding mechanisms mediated by these non-coding RNAs
are of great importance for understanding the pathogenic process of relevant diseases.
Functional molecules classified into this category have included micro-RNA (miRNA),
long non-coding RNA (lncRNA), small-interfering RNA (siRNA), transfer RNA (tRNA),
ribonucleoprotein RNA (rRNA), and piwi- interacting RNA (piwi-RNA), etc. (Cao et al., 2006;
Beermann et al., 2016; Treiber et al., 2018).

Fragile X syndrome (FXS) is one of the most common forms of hereditary intellectual disability.
It is also a well-known monogenic cause of autism spectrum disorders (ASD) (Wang et al.,
2012). FMR1 is the responsible gene. The repetitive trinucleotide expansion of CGG repeats in
the 5′-untranslated region (5′-UTR) of FMR1 is the pathological mutation. Normal individuals
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usually bear CGG repeat expansion ranging from 6 to 55,
while in FXS patients, this expansion often reaches beyond
200, known as the full mutation (Santoro et al., 2012). The
FMR1 gene was first cloned in 1991, rendering FXS the first
discovered disease caused by trinucleotide expansion mutation
(Verkerk et al., 1991). In addition to this mutation, conventional
mutations including gross deletions, small indels, and missense
or nonsense mutations have also been reported (Luo et al.,
2014, 2015; Myrick et al., 2014). Over the last decade, FXS
caused by the full mutation CGG repeat expansion receives
the most intense attention. The full mutation CGG repeats
lead to epigenetic silencing of FMR1 and absence of its
product, fragile mental retardation protein (FMRP) (Xie et al.,
2016). FMRP is a complex RNA binding protein which plays
indispensable roles in synaptic plasticity. It has four important
RNA binding motifs including one arginine-glycine-glycine
(RGG box) and three K homology domains (KH0, KH1, and
KH2), recognizing special RNA secondary structures, such
as the kissing complex and G quadruplex (Darnell et al.,
2001, 2005; Myrick et al., 2015). By binding with target
mRNA, FMRP mainly functions as a translation repressor at
synapsis, regulating local translation spatially and temporarily
to shape synaptic structure and plasticity (Nakamoto et al.,
2007; Bassell and Warren, 2008; Huang et al., 2014). Most
of FXS patients’ phenotypes could be attributed to the
loss of FMRP. Clinically, the most common symptom is
intellectual retardation. Other neurological symptoms include
ASD, attention deficit hyperactivity disorder (ADHD), and
epilepsy. Non-neurological symptoms include macroorchidism,
distinct facial features (elongated faces, protruded ears, and
big forehead), and connective tissue abnormalities (mitral valve
prolapse, flat fee, joint hyperextensibility, and high arched palate)
(Jacquemont et al., 2007).

FXS is the first neurological disorder found to be linked to the
miRNA pathway (Jin et al., 2004a). In this review, we mainly focus
on how non-coding RNAs, especially the siRNAs, miRNAs, and
lncRNAs, are involved in FXS pathogenesis. We would also like
to discuss several potential mechanisms mediated by non-coding
RNAs that may be shared by FXS and other related disorders.

NON-CODING RNA MEDIATED
MECHANISMS IN FXS
PATHOPHYSIOLOGY

How RNAi Is Involved in the Epigenetic
Silencing of FMR1?
RNA interference (RNAi) refers to the process of mRNA
degradation or translation inhibition mediated by small
RNAs. It is a mechanism regulating gene expression at the
post-transcriptional level in eukaryotic cells. siRNA and
miRNA are the two most important types of small RNAs
involved. Although their origins are different, they share similar
downstream machinery when encountered with Dicer, an RNase
III-like enzyme initiating RNAi. Precursors of siRNA or miRNA
are cleaved by Dicer to be short double-stranded RNAs (dsRNAs).

In these duplexes, only one functional strand is kept, while the
other one is degraded. The functional strand is the mature siRNA
or miRNA that finally assemblies with Argonaute proteins (AGO)
to form the RNA-induced silencing complex (RISC). A major
difference lies in that siRNA requires perfect base-pairing with
the target sequence to guide AGO to the targeted locus while
miRNA could tolerate several mismatches. AGO associated with
siRNA usually induces mRNA degradation, in contrast, AGO
loaded with miRNA tends to cause translation inhibition (Ha
and Kim, 2014; Holoch and Moazed, 2015; Hu et al., 2017).

Full mutation CGG expansion triggers extensive DNA
methylation, repressive histone modification, and chromatin
condensation in the 5′-UTR of FMR1, transcriptionally silencing
the gene and leading to loss of FMRP (Coffee et al., 1999;
Biacsi et al., 2008; Alisch et al., 2013). How are the abnormal
epigenetic markers triggered and maintained? Although this
epigenetic silencing process has been the focus of study over the
last two decades, detailed mechanisms are still mysterious. The
consensus is that full mutation CGG repeat is the prerequisite
trigger to initiate and maintain the repressive epigenetic changes
of FMR1. Several models have been indicated to date, albeit it
is still difficult to form an integrated one. The first model is
DNA based. Secondary structures formed by the CGG repeats
serve as substrates for DNA methyltransferase to initiate de
novo DNA methylation, or as targets bound by repeat binding
proteins to recruit repressor complexes (Smith et al., 1994; Bulut-
Karslioglu et al., 2012). The second model is RNA based, where
hairpin structures in mRNA formed by CGG repeats exceeding a
certain threshold trigger the RNAi pathway to deposit repressive
epigenetic markers (Kim et al., 2006; Usdin et al., 2014). The third
model is a blended one, where the DNA:RNA hybrid is at play.
During transcription, hybridization of the nascent RNA to its
unzipped DNA template forms a special R-loop, which may act
as a structural block or nucleosome analogy to induce epigenetic
silencing (Colak et al., 2014; Groh et al., 2014). Our discussion
below is focused on the RNA based model. What may be the role
of RNAi in the epigenetic silencing of FMR1?

RNAi has been suggested as a conservative mechanism
participating in the formation of heterochromatin in fission
yeast. In this scenario, the siRNA serves as a localizer for the
RISC complex to achieve site-specific epigenetic modulation.
RISC is associated with Ago1 (the yeast argonaute homolog),
Chp1 (a protein required for methylation of H3K9), and Tas3
(a protein required for localization of the chromatin). This
RISC-like heterochromatin-targeting complex is termed RITS
(Reinhart and Bartel, 2002; Volpe et al., 2002; Verdel et al., 2004).

In the context of FXS, it was observed that stable
hairpin-structured RNAs containing pre-mutation CGG repeats
could be processed by Dicer to generate small RNAs. Based on
this observation and the role siRNA has in heterochromatin
formation. A model for the RNAi mediated methylation of full
mutation CGG repeats was proposed in 2004. In early embryo
development, FMR1 gene containing the full mutation CGG
repeats is being transcribed actively. Bi-directional transcription
of the DNA template generates dsRNAs bearing full mutation
CGG repeats. Dicer further cleaves these dsRNAs to produce
small RNAs. After being incorporated into the RITS complex,
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similar to siRNAs, these small RNAs guide RITS to the
CGG expansion region, recruiting epi-effectors, such as histone
methyltransferase and DNA methyltransferase, to induce FMR1
silencing epigenetically (Jin et al., 2004a; Figure 1). Thus,
RNAi may play a critical role in the epigenetic silencing
process of FMR1.

How miRNA Is Involved in FMRP
Mediated Translational Regulation?
miRNA is a short non-coding single-stranded RNA molecule
consisting of 20–25 nucleotides. Its biogenesis experiences
a series of events. The Primary microRNA (pri-miRNA)
was first converted to the precursor microRNA (pre-miRNA)
by a microprocessor comprising of DGCR8 and DROSHA
proteins. Next, Dicer cleaves the pre-miRNA to generate short
dsRNAs, the functional strand of which further assemblies with
AGO proteins (also known as PIWI/PAZ-domain proteins)
to form the RISC complex. This functional strand is the
mature miRNA. It functions as a localizer as well as a
translation repressor by binding to the 3′-untranslated region
(3′-UTR) of the mRNA targets (Carthew and Sontheimer, 2009;
Holoch and Moazed, 2015).

FXS is the first neurological disease being linked to miRNA
pathway dysfunction (Jin et al., 2004a). FMRP is a RNA binding
protein which mainly functions as a translational repressor.
Studies from several groups suggested that FMRP is associated
with critical components of the miRNA pathway. Loss of FMRP
may cause aberrant miRNA profiling (Caudy et al., 2002; Ishizuka
et al., 2002). The hippocampus of post-natal day 7 FMR1
knockout mice showed significantly different miRNA expression
profiles compared to the WT (Liu et al., 2015). In drosophila,

dfmr1 is associated with Ago1. Absence or partial loss of Ago1
impairs FMRP-mediated regulation of neural development and
synaptogenesis (Jin et al., 2004b). Recently, in a FXS mice
model, FMRP was shown to participate in pri-miRNA processing
by upregulating DROSHA expression at the translational level.
Loss of FMRP was associated with accumulation of specific
pri-miRNAs and reduction of pre-miRNAs (Wan et al., 2017).

Efforts have been made to clarify detailed mechanisms of how
FMRP regulates protein translation via the miRNA pathway. For
example, FMRP could stabilize the binding of miRNA to its
target mRNA via the KH domain (Plante et al., 2006). Besides,
partly dependent on miR-125b, FMRP negatively regulates the
expression of NR2A, a NMDA receptor subunit affecting synaptic
plasticity (Edbauer et al., 2010). Moreover, FMRP regulates axon
guidance gene via the miRNA pathway by repressing the RE-1
silencing transcription factor (REST) (Halevy et al., 2015). FMRP
and miR-181d cooperatively regulate the axon elongation process
by repressing translation of Map1 (a microtubule-associated
protein) and Calm1 (a calcium signaling regulator). Upon nerve
growth factor stimulation, Map1 and Calm1 mRNAs are released
from granules suppressed by FMRP and miR-181d to translate
actively for axon elongation (Wang et al., 2015; Figure 2A).

Later studies in succession provided further insight into
how FMRP represses target mRNA translation via RNAi.
A possible mechanism is FMRP interacts with MOV10, a RNA
helicase implicated in miRNA pathway. MOV10 has a dual
function in translational control. It assists the miRNA-mediated
translational repression for specific RNAs but inhibits others. In
the former case, MOV10 binds to the 3′-UTR of target mRNA,
unwinds specific RNA secondary structures, and exposes the
miRNA recognition elements (MRE) to facilitate the interaction
between MRE and RISC. In the latter scenario, both FMRP

FIGURE 1 | RNAi mediated FMR1 epigenetic silencing. In early embryo development, FMR1 gene containing the full mutation CGG repeats is being transcribed
actively. Bi-directional transcription of the DNA template generates dsRNAs bearing full mutation CGG repeats. Dicer further cleaves these dsRNAs to produce small
RNAs. After being incorporated into the RITS complex, similar to siRNA, these small RNAs guide RITS to the CGG expansion region, recruiting epi-effectors, such as
histone methyltransferase and DNA methyltransferase, to induce epigenetic silencing of FMR1 (the CGG expansion region is light blue colored).
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FIGURE 2 | miRNA mediated translational regulation in FXS. (A) FMRP and miR-181d cooperatively regulate the axon elongation process by repressing translation
of Map1and Calm1. Upon nerve growth factor stimulation, Map1 and Calm1 mRNAs are released from granules suppressed by FMRP and miR-181d to translate
actively for axon elongation. (B) MOV10 has a dual function in translation regulation. For translational activation, MOV10 unwinds RNA secondary structures to
expose the miRNA recognition element (MRE). The association between MRE and RISC is facilitated. For translational inhibition, FMRP and MOV10 bind to the
target mRNA in proximity. The association between MRE and RISC is disrupted. (C) Phosphorylation of FMRP promotes assembly between miR-125a-AGO2
complex and PSD-95 mRNA. Upon mGluR stimulation, dephosphorylation of FMRP facilitates disassembly between miR-125a-AGO2 complex and PSD-95 mRNA.
(D) The c.∗746T > C variant abolishes the binding between HuR and FMR1 mRNA. Instead, miR-130b binds to the 3′-UTR of FMR1 mRNA, resulting in decreased
FMRP expression and FXS phenotypes (the c.∗746T > C variant was in red color).

and MOV10 bind to the target mRNA in proximity. The
association between MRE and RISC is disrupted (Kenny et al.,
2014; Figure 2B). Another mechanism is that FMRP utilizes
miRNA to control translation at synapses temporally and
spatially. For example, phosphorylation of FMRP promotes
assembly between miR-125a-AGO2 complex and PSD-95 mRNA.
Upon mGluR stimulation, dephosphorylation of FMRP facilitates
disassembly between miR-125a-AGO2 complex and PSD-95
mRNA (Muddashetty et al., 2011; Figure 2C).

Endogenous FMRP expression level is also regulated by the
miRNA pathway. For example, the expression level of miR-130b
was negatively correlated with the FMRP level in mice embryonic
neural precursor cells (NPC) (Gong et al., 2013). In humans,
miR-130b also seems to be a negative regulator of FMRP.
Utilizing a patient-derived cell line, researchers identified a
RNA binding protein HuR which may function as a RISC
antagonist, as its binding site overlaps with that of miR-130b.
This patient has no full mutation, however, the c.∗746T > C
variant in 3′-UTR renders him with significantly decreased
FMRP level and FXS phenotypes. A likely mechanism is that the
c.∗746T > C variant abolishes the binding between HuR and

FMR1 mRNA. Instead, miR-130b binds to the 3′-UTR of FMR1
mRNA, resulting in decreased FMRP expression (Suhl et al., 2015;
Figure 2D). Additionally, in a zebrafish FXS model, researchers
transgenically overexpressed rCGG (CGG trinucleotide repeats)
motif via high titer retroviral delivery. As the expression level
of rCGG increased, the level of FMR1-miRNA was increased,
oppositely, the level of FMR1 transcription was decreased,
indicating that rCGG derived-miRNA participated in FMR1
transcription suppression (Lin, 2015).

In sum, miRNA facilitates the FMRP mediated translational
regulation via diverse mechanisms to shape synaptic plasticity
and morphology, to achieve translational control temporally and
spatially, and to regulate endogenous FMRP level (Figure 2).

lncRNA Participates in FXS
Pathophysiology
Long non-coding RNA (lncRNA) is a genome transcript
longer than 200nt. As a major category of non-coding RNA,
lncRNA participates in formation of RNA-protein complexes,
gene regulation, modulation of protein localization, and X
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chromosome inactivation (Wu R. et al., 2016). In FXS, lncRNA
may affect the cell proliferation process and may serve as novel
clinical biomarkers. Similar to miRNA and siRNA, its role in FXS
pathogenesis should not be ignored.

FMR4 is a 2.4 kb lncRNA, which is primate-specific and
plays an anti-apoptotic role in human cells. It is transcribed
from FMR4, which resides upstream FMR1. FMR4 and FMR1
a bi-directional promoter. In FXS, both of them are silenced
due to the CGG repeat expansion, which may contribute
to FXS pathogenesis (Khalil et al., 2008). FMR4 is also a
trans-acting element which regulates hundreds of genes involved
in neural development. By altering chromatin state epigenetically,
FMR4 selectively modulates the cellular proliferation of human
NPC (Peschansky et al., 2016). Later on, combining the
technology of rapid amplification of cDNA ends (RACE) and
next generation sequencing, researchers investigated the FMR1
gene locus systemically and found two novel lncRNAs, FMR5,
and FMR6. FMR5 is transcribed in the sense direction, the
transcription start site (TSS) of which resides upstream the
FMR1 TSS. FMR6 is transcribed in the antisense direction,
beginning from the 3′-UTR of FMR1. FMR5 and FMR6 may
be novel clinical biomarkers due to their distinct expression
patterns between full mutation and premutation patients (Pastori
et al., 2014). A recent study provides new clues in how
lncRNA is involved in FXS pathophysiology. TUG1 is a lncRNA
which prevents axonal growth by negatively regulating the
SnoN-Ccd1 pathway. In WT mice, FMRP directly binds with
TUG1 to decrease its stability. However, in FXS mice, absence
of FMRP leads to TUG1 overexpression. TUG1 interacts with
SnoN, a crucial transcriptional regulator which controls axonal
growth via regulating the actin-binding protein Ccd1. By
affecting the transcriptional activity of SnoN, overexpression
of TUG1 decreases the level of Ccd1 mRNA and protein,
leading to abnormal axonal growth (Guo Y. et al., 2018).
Albeit reference regarding this section is scarce, the importance
of lncRNA is non-negligible, as evidenced by the research
findings described above.

miRNA Links FMRP to Glia Function
Glutamate is a major excitatory neurotransmitter in brains.
Dysregulation of glutamate in neurons participates in various
neuropsychiatric disorders by affecting synaptic plasticity.
Interestingly, abnormal regulation of glutamate in cells
surrounding neurons may also be an important pathogenic
process. For the encircled neurons may become more exciting.
For example, in the astrocytes isolated from the cortex of
FMR1-deficient mice, the GLT1 expression, a major glutamate
transporter of glia, is significantly reduced compared to the WT,
so is the uptake of glutamate. Additionally, treating the cortical
slices with GLT1 inhibitors results in significantly enhanced
neuronal excitability in FMR1-deficient mice but not in controls.
Moreover, based on an astroglia-specific conditional FMRP
knockout and restoration mice model, researchers found that
selective re-expression of FMRP in astrocytes of FMR1-deficient
mice rescues phenotypes of the decreased GLT1 expression
in cortical astrocytes and the abnormal spine morphology in
cortical pyramidal neurons. Upregulation of GLT1 expression

alleviates enhanced neuronal excitability and corrects spine
abnormality in FMR1-deficient mice. These results together
indicate that absence of FMRP may impair the ability of
astrocytes, via dysregulated GLT1, to remove excessive glutamate
from neurons and thus lead to neuronal hyperexcitability in FXS
(Higashimori et al., 2013, 2016).

Notably, the regulation of GLT1 may be mediated by
exosomes. Exosomes are membrane vesicles secreted by
cells. They contain various signaling molecules including
miRNAs. After being secreted into extracellular space,
exosomes could be fused into surrounding cells to assist
intercellular communication (Xiao et al., 2017). miR-124a
has a positive effect on the expression level of GLT1 both
in vivo and in vitro. Transfer of miR-124a from neurons to
astrocytes via exosomes selectively increases the astroglial GLT1
protein level without affecting the mRNA level, suggesting the
exosome-derived miR-124a is a regulator of the GLT1 expression
(Morel et al., 2013).

It is likely that absence of FMRP may cause aberrant miRNA
function in the neuron/astroglia interaction and thus affect GLT1
expression and glutamate uptake ability of astrocytes. More
studies are needed to shed light on this topic.

NON-CODING RNA MEDIATED
MECHANISMS SHARED BY FXS AND
RELATED DISORDERS

miRNA of FXTAS May Also Be Pivotal
to FXS
Fragile X tremor ataxia syndrome (FXTAS) is an aging-related
neurodegeneration disorder, featured by progressive tremor,
ataxia, and cognition decline. In FXTAS, FMR1 containing
the premutation CGG repeat expansion (60–200 repeats) is
not silenced. Instead, it is transcribed actively, resulting in
significantly higher mRNA level than normal but less FMRP
protein. It is thought that the gain-of-function RNA toxicity
is to blame, of which the miRNA pathway is at play. For
instance, in neuronal cells and brain tissues from FXTAS patients,
RNA aggregates containing pre-mutation CGG repeats decrease
mature miRNA levels by sequestering RNA-binding proteins
which are crucial to miRNA biogenesis, such as DGCR8 and
DROSHA (Sellier et al., 2013). In olfactory neurons of C. elegans,
expression of the expanded CGG repeats weakens the olfactory
plasticity formation by interacting with the C. elegans specific
argonaute ALG-2 (Juang et al., 2014). Additionally, miRNA-277,
424, 101, 129-5p, and 221 have also been indicated in the
pathogenesis of FXTAS (Tan et al., 2012; Alvarez-Mora et al.,
2013; Zongaro et al., 2013).

FXTAS is the neurodegenerative disorder most closely
related to FXS. FXTAS and FXS may have overlapping
mechanisms in the earlier neurodevelopmental stage or the
later neurodegenerative stage, as either the premutation or
the full mutation FMR1 is transcribed actively at the very
beginning, and both of them could lead to cognition impairment
in late-life. miRNAs that are critical to FMRP function in

Frontiers in Genetics | www.frontiersin.org 5 March 2019 | Volume 10 | Article 139

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-10-00139 February 27, 2019 Time: 16:35 # 6

Zhou et al. Non-coding RNA in FXS

FXTAS may also be pivotal to FXS. Discovery of such
miRNAs is necessary.

miRNA Regulating mTOR Activity Might
Play a Role in FXS
Synaptic plasticity refers to the adaptability of synaptic
transmission in an activity-dependent manner. Long-term
potentiation (LTP) and long-term depression (LTD) are the
two most common forms of synaptic plasticity. When the
transmission is being strengthened for more than 1 h, it is termed
LTP. When the transmission is being weakened for more than
1 h, it is termed LTD. LTP and LTD is the basis for learning and
memory, the mGluR-LTD of which plays a central role in FXS
pathogenesis (Heller et al., 2014).

Normally, the mGluR-LTD consists of two phases. In the early
phase, when mGluR is stimulated, PP2A is instantly activated
to dephosphorylate FMRP, derepressing mRNAs targeted by
FMRP to cause a rapid synaptic translation burst. In the late
phase, the mammalian target of rapamycin (mTOR) is activated.
mTOR inhibits PP2A but activates S6K1, which phosphorylates
FMRP again to counterbalance the previous translation burst.
The overall effect of mGluR stimulation on the surface AMPA
receptor is internalization (Nakamoto et al., 2007; Narayanan
et al., 2007, 2008; Bassell and Warren, 2008).

In FXS, on the one hand, the signaling cascade from mGluR
stimulation to mTOR activation comprises of homer, PIKE, PI3K,
PDK1/2, AND Akt, etc. (Santoro et al., 2012). Since FMRP
represses the activity of PIKE and PI3K, loss of FMRP results
in increased mTOR signaling activity (Sharma et al., 2010).
On the other hand, the translation repression at basal state
mediated by phosphorylated FMRP is abolished due to FMRP
deficiency. As a result, no matter whether there is a stimulus
or not, mRNAs targeted by FMRP are always being transcribed
actively. The temporarily released translation burst described
above is lost, resulting in persistent and increased AMPA
receptor internalization. Collectively, the mGluR/mTOR/LTD
signaling is exaggerated in FXS (Bassell and Warren, 2008;
Santoro et al., 2012).

Theoretically, any miRNA regulating components along
the mGluR/mTOR/LTD pathway might play a role in FXS
pathogenesis. As described below, accumulating evidence has
suggested a bunch of miRNAs could either increase or decrease
the activity of mTOR signaling. Although most of them
are not directly linked to the pathophysiology of FXS, it
is still worth noting that some of them might help unveil
novel clues for studying overlapping mechanisms between FXS
and other disorders.

Firstly, some miRNAs increase mTOR activity. For example,
MiR-125b is an oncogenic miRNA inhibiting the tumor
suppressor p53. An important downstream target of p53 is
PIK3CA, which encodes the p110α subunit of PI3K. As the
negative regulation of PIK3CA via p53 is weakened by miR-125b,
the mTOR activity is increased (Astanehe et al., 2008; Zeng
et al., 2012). miR-451 is also an oncogenic miRNA, which has
been implicated in glioma. It may activate the mTOR pathway
by inhibiting AMPK signaling in glioma and colorectal cancer

cells (Godlewski et al., 2010; Chen et al., 2014). Additionally, both
miR-21 and miR-93 are oncogenic and manifest significantly
differential expression profiling in ASD. They may increase the
mTOR activity by inhibiting the putative target PTEN which is a
negative regulator of PI3K (Sarachana et al., 2010; Kawano et al.,
2015; Wu Y.E. et al., 2016; Guo X. et al., 2018).

On the contrary, miR-7 and miR-155 are miRNAs
downregulating mTOR activity. miR-7 is a tumor suppressor
targeting PIK3CD, Akt, and mTOR. PIK3CD is an integral
catalytic subunit of PI3K. By inhibiting PI3K, Akt, and mTOR
itself, the overall impact of miR-7 on mTOR pathway is
suppression (Kefas et al., 2008; Fang et al., 2012). miR-155 is
a negative regulator of mTOR via targeting multiple signals
including RHEB. It has been implicated both in cancer and
autism (Wan et al., 2014; Wu Y.E. et al., 2016).

Moreover, miR-199 seems to play a dual role in mTOR
signaling. In cancer cells, it usually acts as a tumor suppressor by
downregulating the mTOR pathway activity. In Rett syndrome,
miR-199 is a positive regulator of the mTOR pathway activity.
However, the MeCP2 deficiency hinders generation of the
precursor-miR-199a. As a result, the positive regulation of
mTOR signaling via miR-199 is weakened by MeCP2 deficiency,
leading to decreased mTOR pathway activity and Rett syndrome
phenotypes (Tsujimura et al., 2015).

Last but not least, in turn, the mTOR signaling pathway also
regulates the biogenesis and activity of miRNAs. For instance,
miR-21 is positively regulated by mTOR, while miR-125b is
negatively regulated by mTOR (Ge et al., 2011; Bornachea et al.,
2012; Ye et al., 2015).

miRNAs described here are mainly linked to cancer, ASD,
and Rett syndrome. Although there is no evidence supporting
a direct relationship between them and FXS pathophysiology,
it is still possible that several of them may have aberrant
functions in FXS. By increasing or decreasing mTOR activity,
they might participate in the regulation of mGluR/mTOR/LTD
signaling, and further contribute to the shaping of synaptic
plasticity (Figure 3). More research on this topic is needed to
clarify the linkage between miRNAs and mTOR pathway activity
in FXS pathogenesis.

miRNA May Function as a
Broad-Spectrum Therapeutic Agent
The increased mTOR pathway activity is a central pathogenic
mechanism shared by FXS, aging, and several other neurological
disorders such as autism and tuberous sclerosis, evidenced by
reproducible results from yeast to mammalian animal models
(Fabrizio et al., 2001; Jia et al., 2004; Johnson et al., 2013;
Ebrahimi-Fakhari and Sahin, 2015; Kilincaslan et al., 2017). It
is hopeful that the progress of mTOR activity regulation in one
disorder may shed light on others.

The mTOR inhibitor has the potential to be a broad-spectrum
therapeutic agent. For example, in FMR1 KO mice,
pharmacological inhibition of mTOR pathway rescues multiple
FXS phenotypes, including excessive synaptic protein synthesis,
persistent AMPA receptor internalization, and increased spine
density (Gross et al., 2010). Optimistically, mTOR inhibitors have
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FIGURE 3 | Schematics shown miRNAs which might regulate mGluR/mTOR/LTD signaling. The mGluR/mTOR/LTD consists of two phases. In the early phase, when
mGluR receptor is stimulated, the downstream phosphatase PP2A is activated instantly, dephosphorylating FMRP to allow translational burst (arrows are blue
colored). In the late phase, activation of the mTOR signaling cascade activates the S6K1 kinase but inhibits the PP2A. FMRP is phosphorylated again,
counterbalancing the previous translational burst (arrows are orange colored). miRNAs which might regulate components along the mGluR/mTOR/LTD pathway are
classified into three categories. miR-125b, 21, 93, and 451 increase mTOR activity (dashed arrows are red colored). miR-7 and miR-155 decrease mTOR activity
(dashed arrows are green colored). miR-199a has a dual function, increasing or decreasing mTOR activity in certain situations (dashed arrows are purple colored).

spawned several clinical trials for FXS (Luo et al., 2016). In aging
mice, rapamycin, a classic mTOR inhibitor, was able to slow
the aging process in multiple organs (Wilkinson et al., 2012). In
tuberous sclerosis patients, everolimus was capable of controlling
refractory epilepsy and alleviating autistic symptoms by
inhibiting the mTOR pathway activity (Kilincaslan et al., 2017).

Theoretically, miRNAs that inhibit mTOR activity may have
therapeutic effects similar to the chemicals described above. In
this sense, understanding miRNA mediated mTOR regulation in
FXS may help develop new therapeutic agents not only for FXS
but also for other disorders where the mTOR dysregulation is an
essential pathogenic mechanism.

miRNA Links FMRP to Alzheimer’s
Disease
Alzheimer’s disease (AD) is pathologically featured by
the Aβ plaques and neurofibrillary tangles containing
hyperphosphorylated tau protein (Zhang et al., 2016). miR-
132 and miR-125b are well established FMRP-associated
miRNAs regulating synaptic structures and functions (Edbauer
et al., 2010). Intriguingly, they are also involved in AD
pathogenesis. miR-132 has protective effects on neurons both
in vivo and in vitro, the mechanisms of which include reducing
Aβ production and glutamate toxicity, targeting tau modifiers
to decrease hyperphosphorylated tau proteins, inhibiting cell
apoptosis, and strengthening hippocampal LTP (Smith et al.,
2015; Hernandez-Rapp et al., 2016; Salta et al., 2016; Wang
et al., 2017; El Fatimy et al., 2018). The expression level of
miR-132 in cholinergic nucleus basalis Meynert is stable at early
stages but decreases significantly as the disease course develops,

suggesting miR-132 may be a facilitator of neurodegeneration
(Zhu et al., 2016). In contrast, miR-125b was shown to be a
deleterious factor in AD pathogenesis. miRNA profiling of
AD brains showed that miR-125b was significantly increased
in the hippocampus (Lukiw, 2007). In vitro overexpression
of miR-125b was shown to induce cell apoptosis, enhance
oxidative stress, and promote tau hyperphosphorylation in
the cell and animal models of AD (Banzhaf-Strathmann et al.,
2014; Jin et al., 2018). As aforementioned, miRNAs assist FMRP
mediated translational repression in FXS. Suboptimal ratio
and assembly between FMRP, miRNA, and mRNA results in

TABLE 1 | Non-coding RNA involved in FXS pathogenesis.

Type Mechanism Reference

miR-125b Facilitate FMRP to regulate NMDA
receptor subunit expression

Edbauer et al., 2010

Increase mTOR activity Astanehe et al., 2008;
Zeng et al., 2012

miR-181d Regulate axon elongation Wang et al., 2015

miR-130b Regulate FMRP expression Gong et al., 2013; Suhl
et al., 2015

FMR4 lncRNA with anti-apoptotic function Khalil et al., 2008

Modulate NPC proliferation Peschansky et al., 2016

FMR5,6 lncRNA may be used as biomarkers Pastori et al., 2014

TUG1 lncRNA prevents axonal growth Guo Y. et al., 2018

miR-124a Regulate astroglial glutamate
transportation

Morel et al., 2013

BC1 lncRNA may serve as an adaptor
molecule of FMRP

Zhang et al., 2018
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translation dysregulation. Meanwhile, mRNAs of Aβ precursors
and Aβ receptors, including NMDARs, mGluR5, and PSD-95,
are classic targets negatively regulated by FMRP. Therefore,
establishing AD animal models lacking or overexpressing FMRP
may help elucidate how FMRP interplays with miR-132 or
miR-125b to regulate Aβ related proteins at different disease
stages in specific brain regions.

FMRP is also implicated in AD pathogenesis by interacting
with lncRNA. It has been controversial whether the BC1 RNA,
a lncRNA, functions as an adapter molecule for FMRP in FXS.
Some researchers support the view that BC1 directly binds with
FMRP to increase its affinity to target mRNAs (Zalfa et al., 2003,
2005; Napoli et al., 2008). Others argue that FMRP directly binds
to the target mRNA. The interaction between FMRP and BC1 is
non-specific. These two molecules act independently (Iacoangeli
et al., 2008; Zhong et al., 2010). Notably, in the context of AD,
this controversial issue seems to be reconciled to some extent. In
the Tg2576 AD mice model, when FMRP binds to APP mRNA,
APP translation is suppressed, subsequently producing less Aβ
protein. However, when BC1 binds to FMRP, the interaction
between FMRP and APP mRNA is disrupted, resulting in active
APP translation and increased Aβ production, which further
causes the spatial learning and memory deficits (Zhang et al.,
2018). This study is a good example where FMRP indeed binds
directly with either BC1 RNA or target mRNA. However, this
binding does not necessarily include BC1 RNA and target mRNA
simultaneously. Therefore, investigating how BC1 and other
lncRNAs, APP, and FMRP interact with each other at synapsis
may help understand the pathogenesis of both AD and FXS.

FMRP Regulates Stem Cell Fate via
miRNA
The first evidence indicating FMRP may regulate germline stem
cell fate via the miRNA pathway came in 2007. In drosophila, The
interaction between FMRP and Ago1 may facilitate maintenance
but suppress differentiation of the germline stem cells (Yang
et al., 2007). FMRP may also function via the bantam miRNA
to regulate the germline stem cell fate (Yang et al., 2009).
In testicle cells, FMRP was found to be associated with a
bunch of miRNAs including miR-383, which is mainly expressed
in spermatogonia. miR-383 is negatively regulated by FMRP
during spermatogenesis, failure of which may contribute to male
infertility (Tian et al., 2013). In the brain, miR-510, located
near the fragile site on X chromosome, was associated with
CGG expansion into full mutation in the neurons derived from
mesenchymal stem cells. Bioinformatics analysis indicated that
enhanced miR-510 expression might facilitate CGG expansion
via regulating target genes such as VHL and PPP2R5E (Fazeli

et al., 2018). In mice embryonic NPC, the upregulation of
miR-130b associates with decreased FMRP level and increased
NPC proliferation tendency (Gong et al., 2013). The expression
level of miR-181a, which translationally represses the expression
of GluA2, a subunit of AMPA receptors, was increased in human
NPCs derived from induced pluripotent stem cells. Since cells
lacking the GluA2 subunit were more prone to differentiation,
miR-181a may affect cell fate by interacting with the AMPA
signaling pathway (Achuta et al., 2018). According to these data,
it is fair to say that the FXS stem cell model provides an excellent
monogenic platform for studying how miRNAs are involved in
stem cell fate regulation, especially in testis and brain.

CLOSING REMARKS AND OUTLOOK

In summary, Non-coding RNA participates in FXS
pathophysiology via multiple aspects. The RNAi mechanism
provides a RNA-based model for explaining the epigenetic
silencing of FMR1. The miRNA mainly facilitates FMRP’s role as a
translational repressor, controlling axon growth, shaping synaptic
plasticity, and regulating endogenous FMRP level. The lncRNA
also plays non-negligible roles (Table 1). Besides, understanding
how non-coding RNA functions in FXS may help uncover
converging mechanisms shared by FXS and related disorders.
This list may well include FXTAS, ASD, Rett syndrome, AD,
tuberous sclerosis, infertility, cancer, and aging, etc. In the future,
studies dissecting the non-coding RNA profiling temporally and
spatially are needed to identify the non-coding RNA regulation
pattern in specific neurodevelopmental or neurodegenerative
stages. The non-coding RNA that may function as a nexus
between FXS and related disorders should be given more
attention. As such research findings will help unveil converging
mechanisms shared by different diseases and further contribute
to the development of a broad-spectrum non-coding RNA
therapeutic agent.
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