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Abstract

Macrophages respond to signals in the microenvironment by changing their functional phe-

notypes, a process known as polarization. Depending on the context, they acquire different

patterns of transcriptional activation, cytokine expression and cellular metabolism which col-

lectively constitute a continuous spectrum of phenotypes, of which the two extremes are

denoted as classical (M1) and alternative (M2) activation. To quantitatively decode the

underlying principles governing macrophage phenotypic polarization and thereby harness

its therapeutic potential in human diseases, a systems-level approach is needed given the

multitude of signaling pathways and intracellular regulation involved. Here we develop the

first mechanism-based, multi-pathway computational model that describes the integrated

signal transduction and macrophage programming under M1 (IFN-γ), M2 (IL-4) and cell

stress (hypoxia) stimulation. Our model was calibrated extensively against experimental

data, and we mechanistically elucidated several signature feedbacks behind the M1-M2

antagonism and investigated the dynamical shaping of macrophage phenotypes within the

M1-M2 spectrum. Model sensitivity analysis also revealed key molecular nodes and interac-

tions as targets with potential therapeutic values for the pathophysiology of peripheral arte-

rial disease and cancer. Through simulations that dynamically capture the signal integration

and phenotypic marker expression in the differential macrophage polarization responses,

our model provides an important computational basis toward a more quantitative and net-

work-centric understanding of the complex physiology and versatile functions of macro-

phages in human diseases.

Author summary

As essential regulators of the immune system, macrophages can be polarized to acquire

distinct phenotypes in response to a wide range of signals in the tissue microenvironment,

such as bacterial products, endogenous cytokines, cell damage and stress. Decades of
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research has shown that a number of signaling pathways can regulate this process and

determine the functional phenotypes of macrophages in physiology as well as various dis-

ease scenarios, and recent studies suggest that macrophage polarization is indeed a

dynamic process and that the canonical dichotomous notion with only classical (M1) and

alternative (M2) activation states is oversimplifying the continuous spectrum of polarized

macrophage phenotypes observed in health and disease. To investigate the mechanistic

and therapeutic aspects associated with differentially polarized macrophages, we formu-

lated and calibrated a multi-pathway computational model based on literature knowledge

and quantitative experimental datasets to systematically describe the integrative regulation

of macrophage transcriptional programs and phenotype markers under different stimuli

combinations. Our systems-level model is a key building block of a potential “virtual mac-

rophage” simulation platform that can enable researchers to efficiently generate mecha-

nistic hypotheses and assess macrophage-based therapeutic strategies for human diseases.

Introduction

Macrophages are a class of innate immune cells that play essential roles in the progression and

resolution of inflammatory responses, which are key to a variety of major human diseases [1].

As monocyte-derived macrophages that are recruited to the site of disease from the circulation

or as local tissue-resident macrophages, these phagocytic cells perform versatile biological

functions in addition to clearing out dying cells and tissues. They interact with other cellular

components within the tissue (e.g. T cells, fibroblasts, endothelial cells, cancer cells), through

the expression and secretion of various cytokines and signals, to modulate crucial cell-level

responses (e.g. proliferation, T-helper type 1/2 polarization, antigen presentation) that collec-

tively regulate tissue-level events such as inflammation, tissue remodeling, angiogenesis, arter-

iogenesis, tumor growth and metastasis [1, 2]. A wealth of studies has investigated the

differential phenotypes and corresponding regulatory functions of macrophages in disease set-

tings including in major human diseases such as cancer, infectious and inflammatory disease,

cardiovascular disease, and metabolic disease; evidence from in vitro and in vivo experiments

confirmed the highly plastic nature of monocytes-macrophages, which suggest that cells of this

lineage can be flexibly programmed by disease-driven environmental cues to exhibit a wide

spectrum of activation and functional states [1–5]. Pursuing this idea, in the last decade there

have been tremendous efforts from both academia and pharmaceutical industry to develop

therapeutics that aim to treat human diseases by modulating and reversing the polarized mac-

rophage phenotypes induced by the disease pathology, most notably in a multitude of cancer

indications; besides, rich preclinical and clinical evidence also suggested that cardiovascular

disease may be another promising field that can benefit from similar strategies [6–10].

The concept of differential macrophage polarization and phenotypes can be described in

terms of the activation of different signaling pathways and transcription factors, together with

the expression and secretion of a set of markers and cytokines. The canonically activated mac-

rophages (CAM, or M1) and the alternatively activated macrophages (AAM or M2) represent

the extremes of the total macrophage polarization spectrum, while in physiology and pathol-

ogy most macrophages display “M1-like” or “M2-like” phenotypes. M1 (or M1-like) pheno-

types are often induced by pro-inflammatory cytokines such as IFN-γ (interferon gamma),

TNF-α (tumor necrosis factor alpha) and IL-1β (interleukin 1 beta) as well as certain patho-

gen- and damage-associated molecular patterns (PAMP, DAMP) such as LPS (lipopolysaccha-

rides) from gram-negative bacteria and HMGB1 (high mobility group box 1) which is a
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nuclear protein highly secreted by damaged or necrotic cells [11, 12]. M1-like macrophages

are typically characterized by their antibacterial and antitumor functions, along with the high

production of various pro-inflammatory cytokines as well as reactive nitrogen and oxygen spe-

cies (RNS, ROS). On the other hand, cytokines such as IL-4/IL-13, IL-10 and TGF-β (trans-

forming growth factor beta) will contribute to M2 (or M2-like), anti-inflammatory phenotypes

which are broadly involved in immunosuppression, angiogenesis, and tissue repair [1, 13].

Quite a large number of signal transduction details in the major M1-M2 ligand-induced

pathways have been characterized by the numerous biochemical and biophysical studies over

the past two decades. A major family of transcription factors that controls the M1-M2 polari-

zation is the STAT proteins (signal transducer and activator of transcription), which are gener-

ally activated by ligand-receptor induced mechanisms through the associated JAKs (Janus

kinases) in response to a number of M1 and M2 inducers such as type I and II interferons and

several interleukins [14]. IFN-γ is known to drive STAT1 activation and downstream M1

marker expression such as iNOS (inducible nitric oxide synthase) [15], IL-12 [16] and TNFα
[17], while IL-4/IL-13 will primarily induce STAT6 activation and M2 markers such as Arg-1

(arginase 1) [18], MRC1 (CD206) and IL-10 [19, 20]. Other STATs such as STAT2 (activated

by IFN-α/β), STAT3 (by IL-10), and STAT4 (by IL-12 plus IL-18) also participate in the polari-

zation of macrophages [21, 22], and it was shown that certain STATs can directly (e.g. via

binding and sequestration) or indirectly (e.g. via induction of SOCS proteins–suppressor of

cytokine signaling) influence the activation of other STATs, thereby forming positive and neg-

ative feedback loops during the programming of M1-M2 phenotypes [23, 24]. Apart from the

STATs, various other transcription factors and signaling hubs such as NF-κB, MAPKs (mito-

gen-activated protein kinases), AKT, and HIFs (hypoxia inducible factors) as well as post-tran-

scriptional regulators including a number of microRNAs (miRs), can also direct the M1-M2

polarization process in response to pathological stimuli [25]. Plus the findings that sequential

autocrine induction and signaling of certain M1 and M2 cytokines such as interferons and IL-

10 were critical for the phenotypic functions of polarized macrophages [26–28], it again points

to the continuum hypothesis that simultaneous and sequential activation of multiple cellular

pathways, instead of a single stimulus activating a single pathway, is more likely the underlying

biological mechanisms of the dynamic macrophage phenotypes observed experimentally [1,

29, 30]. Therefore, a systems-level approach which allows investigation of both the complex

multi-modal signal transduction and cross-talks as well as the temporal expression of pheno-

typic cytokines and markers is key to the integrative understanding of macrophage polariza-

tion and functions in health and disease.

To address this complexity at the cell level, previous modeling studies have primarily uti-

lized Boolean networks to evaluate the gene expression outcomes modulated by multiple

ligand-induced signaling pathways during macrophage polarization in a general context [29,

31–33]. Due to the discrete nature of Boolean models, a detailed, quantitative description of

the time-course activation of key intermediate signaling hubs and transcription factors within

the M1-M2 spectrum, especially in pathological contexts, is still lacking. In addition, the influ-

ence of hypoxia and metabolic changes, which are crucial drivers and signatures in major dis-

eases such as peripheral arterial disease (PAD), myocardial infarction, and cancer [34], on the

polarization of macrophage functions has not been systematically characterized as a core com-

ponent within the M1-M2 signaling network. Therefore, in this paper, we computationally for-

mulate and analyze a novel mass-action based mechanistic model that can dynamically and

quantitatively describe the complex pathway regulation and phenotypic marker expression ini-

tiated by M1 (IFN-γ), M2 (IL-4) and cell stress (hypoxia) inducers. This data-driven model not

only can reproduce experimental time-course observations relating to different macrophage

phenotype perturbations (e.g. 70+ conditions), but also suggested novel insights regarding the
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hierarchical and temporal control of M1-M2 features through an integrative analysis of direct

cytokine signaling, hypoxic response, transcriptional and post-transcriptional regulation, and

autocrine feedbacks. In addition, we simulated the model in contexts that mimicked pathologi-

cal signatures in tissue ischemia and tumor and tested different strategies to modulate thera-

peutically favorable macrophage polarization against these conditions. The mechanistic

development of our in silico model itself, together with the findings presented in this study,

serves as an important basis towards a more advanced, quantitative systems-level understand-

ing of macrophage polarization and macrophage-based therapeutic interventions in human

disease settings.

Results

Overview of the computational model and its mechanistic formulation

The basic framework of our computational model (Figs 1 and S1) provides a physiology-based

and literature data-driven description of macrophage polarization, which can be divided into

three subparts: (i) IFN-γ-driven pathway, (ii) IL-4-driven pathway, and (iii) hypoxia-driven

pathway. IFN-γ is known as a potent activator of the T-helper type 1 (Th1) immune response

and it also strongly induces the inflammatory phenotypes in macrophages, as characterized by

the high production and secretion of an array of pro-inflammatory cytokines and chemokines

[35]. The model describes the mechanistic activation of two major signaling mediators down-

stream of IFN-γ mediated receptor activation, STAT1 and IRF-1 (interferon regulatory factor

1), which further leads to direct transcriptional activation and subsequent protein production

of canonical M1 markers including iNOS, TNFα, IL-12, CXCL9 (C-X-C motif chemokine

ligand 9) and CXCL10 [11]. The Th2 cytokine IL-4, on the other hand, skews macrophages

toward anti-inflammatory and pro-angiogenic phenotypes primarily through the activation of

STAT6 and IRF-4: STAT6 was shown to influence IRF-4 abundance in macrophages upon IL-

4 stimulation, while both factors can contribute to the production of key M2 markers (e.g.

Arg-1) [18, 36]. STAT6 also upregulates the cellular expression of PPARγ (peroxisome prolif-

erator-activated receptor γ) which is a signature of oxidative metabolism and transcriptional

regulation associated with M2-like macrophages [37, 38], and STAT6 can counteract the IFN-

γ-induced upregulation of IRF-1 by directly suppressing STAT1 transcriptional activities [39].

In addition, IL-4 mediated receptor signaling in macrophages is capable of switching on the

phosphoinositide 3-kinase (PI3K)/AKT pathway, which in turn would promote IRF-4 and

PPARγ activation as well as IL-10 and VEGF (vascular endothelial growth factor) synthesis to

reduce inflammation and enhance angiogenesis [36, 40, 41]. On the contrary, IFN-γ signaling

would reduce AKT activation presumably by inducing the negative regulator PTEN (phospha-

tase and tensin homolog) through post-transcriptional regulation (e.g. via miR-3473b) [42].

IFN-γ and IL-4 can signal through the associated STATs (STAT1 for IFN-γ, STAT6 for IL-4)

to transcriptionally induce the expression of SOCS proteins, which in turn will negatively feed-

back to deactivate both STATs [24]. Details of the signal transduction and regulation discussed

above are described mechanistically in the model subparts (i) and (ii).

Hypoxia, an essential pathological feature in numerous human diseases, can potently drive

macrophage phenotypic polarizations, and in our model the influence of hypoxia is assumed

to be represented through its two major effectors, HIF-1 and HIF-2 (Fig 1) [43]. The oxygen

sensing module is an adapted version of a previous model developed by our group [44]; in the

current model, the synthesis of HIF-2α is further linked to the IL-4 axis and is controlled by

PPARγ [45], while the synthesis of HIF-1α is positively modulated by TNFα [46]. The HIF-1/2

alpha subunits, when stabilized in hypoxia and associated with HIF-1β in the nucleus, can

upregulate the production of both M1 and M2 markers including IFN-γ, iNOS, Arg-1 and the
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pro-angiogenic factor VEGF [47–49]. As described by the model, miR-93 can directly inhibit

HIF-1α at the mRNA level [50, 51], while its cellular abundance is negatively regulated by pro-

inflammatory stimuli, namely IFN-γ and TNFα [52]. IRF-9 mRNA is also directly targeted by

miR-93 [53], and IRF-9 together with IRF-1 will upregulate IRG-1 (immunoresponsive gene

1/aconitate decarboxylase 1) which then leads to increased production and accumulation of

itaconate (or itaconic acid), an endogenous metabolite in macrophages with immune-modula-

tory functions [54, 55]. High levels of itaconate was shown to limit ROS production, and in

Fig 1. Multiple signaling axes regulate macrophage phenotype and polarization. Macrophage polarization is dynamically

controlled by different receptor-mediated signaling pathways, cell stress, transcriptional and post-transcriptional regulators

(e.g. miRs), which collectively lead to differential expression of a panel of macrophage phenotype markers (including both

intracellular and secreted proteins). Arrow indicates activation,–| symbol indicates inhibition. Green shapes indicate

intracellular proteins, orange shapes indicate secreted products. This figure is an overview of model formulation; full

mechanistic details of the computational model are presented in S1 Fig and S1 and S2 Tables. It should also be noted that this

figure only describes a subset of the M1- and M2-related pathways and markers.

https://doi.org/10.1371/journal.pcbi.1007468.g001
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turn this is linked to the decreased production of HIFs as our model assumed that ROS would

block PHD (prolyl hydroxylase) activity [56, 57].

As discussed above, the overall model is comprised of 34 “unique” species (including func-

tionally unique mRNA, miR and protein products, plus non-gene compounds such as oxygen

and itaconate) divided into three interconnected subparts/pathways. To present the model

results, we will first focus on the immediate model behaviors specifically under the influence of

the three pathways, followed by a systematic analysis of the macrophage signaling network in

disease-related pathological contexts (in both cases, all model components and reactions are

active simultaneously during simulations, instead of single subparts being isolated and tested

for each scenario). More mechanistic details about the model formulation can be found in the

Materials and Methods section and in S1 and S2 Tables and S1 Fig (including a comprehensive

list and diagram with all model nodes and biochemical reactions).

Calibration and analysis of model subparts

To reflect the physiology of unpolarized macrophages, the initial concentrations of most mod-

eled species (e.g. proteins, mRNAs, miRs), which equal to the model-generated equilibrium

levels without any external treatment, are calibrated (through parameter optimization) against

absolute copy number measurements from literature. From there, the model generates simula-

tions in response to various stimuli and is calibrated extensively against literature experimental

data, including a total of more than 70 sets of experimental measurements (both time-course

and single timepoint) with over 300 datapoints. Details about model calibration are described

in the following modules (and also in Materials and Methods and S2–S4 Figs).

IFN-γ-driven pathway. The simulated dynamics of various nodes within the IFN-γ path-

way agree well with quantitative literature experimental data (Figs 2 and S2). In macrophages,

binding of IFN-γ with its receptors on the cell surface (Fig 2A) will lead to rapid activation

(e.g. by phosphorylation) of receptor-associated JAK proteins (Fig 2B), and this in turn will

activate STAT1 through phosphorylation, which tends to peak transiently early on and then

decay rapidly (Figs 2C and S2A–S2C). Activated STAT1 proteins dimerize and translocate

into the nucleus where they, at the transcriptional level, upregulate IRF-1 (Figs 2D and S2F)

and subsequently several downstream M1 phenotypic markers (Figs 2E–2J and S2G); the

time-course expression of these targets is more sustained over a prolonged period compared

to that of phosphorylated STAT1. Activation of IFN-γ/STAT1 axis also induces the protein

expression of two negative feedback regulators SOCS1 and SOCS3 (S2D–S2E Fig), which lasts

rather briefly given their short half-lives [58]. In the meantime, IFN-γ signaling significantly

inhibits the expression of miR-3473b (Fig 2K), which in turn would de-suppress its target

PTEN (Fig 2L) to downregulate AKT activation. In addition, IFN-γ stimulation induces signif-

icant HIF-1α stabilization in macrophages even in normoxia (the induction is further boosted

in hypoxia, Fig 2M), while its influence on HIF-2α expression is much less evident (S2I Fig).

IL-4-driven pathway. Similar to STAT1 under IFN-γ treatment, when macrophages are

treated with high doses of IL-4, simulation and data both show early phosphorylation peaks

followed by rapid dephosphorylation for intracellular STAT6 (Figs 3A and S3A–S3C); the

dynamics of phosphorylated STAT6 within the nucleus also follows the trend (S3D Fig). Other

signaling mediators activated by IL-4 such as IRF-4 (Figs 3B, 3C and S3E), PPARγ (Fig 3E)

and AKT (Figs 3D, S3F and S3G), together with STAT6, will promote the expression and

secretion of M2 markers including Arg-1 (Figs 3F, 3G, S3H and S3I), IL-10 (Figs 3H and S3J)

and VEGF (Figs 3I and S3K). SOCS1, but not SOCS3, is a transcriptional target of STAT6 and

is therefore upregulated transiently upon IL-4 stimulation (S3L Fig). IL-4 signaling can also

downregulate M1-like features such as TNFα secretion (Figs 3J and S3M), and IL-4 selectively
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induces HIF-2α protein expression in normoxia and hypoxia (Fig 3K) with minimal impact

on HIF-1α (S3N Fig).

Hypoxia-driven pathway. In hypoxia, HIF-1 and HIF-2 proteins are rapidly stabilized

(Figs 4A–4C and S4A) due to decreased hydroxylation and degradation. The sustained expres-

sion of HIFs would lead to transcriptional activation and synthesis of both iNOS and Arg-1

(Fig 4D and 4E) in macrophages, and as described by the model, HIFs can significantly induce

the production and secretion of pro-inflammatory cytokines TNFα and IFN-γ (Fig 4F–4G) as

well as the pro-angiogenic factor VEGF (Figs 4H and S4D) through both direct and indirect

mechanisms. The drastic rise in intracellular HIFs would also trigger feedback mechanisms

such as increased PHD expression (S4B Fig) to prevent unrestrained HIF-mediated signaling.

Fig 2. IFN-γ-mediated signaling controls macrophage phenotype. In response to different doses of IFN-γ treatment, the model simulations are compared

with corresponding literature time-course data including (A) degradation of receptor-bound IFN-γ [59], (B) phosphorylation of receptor-associated JAK [15],

(C) phosphorylation of STAT1 [60], (D) expression of IRF-1 [61], (E) expression of iNOS [62], (F) levels of secreted TNFα [17], (G) levels of secreted IL-12

[16], (H) levels of secreted CXCL-9 [16], (I) intracellular mRNA expression of CXCL-10 [63], (K) expression of miR-3473b [42], plus single timepoint

measurements including intracellular levels of (J) itaconic acid at 18 h [64], (L) PTEN at 36 h (in response to miR-3473b mimic transfection, see also S2H Fig)

[42], and (M) HIF-1α (in response to IFN-γ with or without hypoxia) [48]. (A-M) All literature data are measured in macrophage cell lines and values are for

protein levels unless noted otherwise. Y-axes show normalized expression respectively (A-E, G-I, K: simulations and data are normalized to the maximum

expression; F, L: normalized to the no-treatment/time 0 expression; J: normalized to the expression at 18 h; M: normalized to the expression under IFN-γ
treatment with hypoxia). S–simulation, D–literature data, Utr–untreated, Trd–IFN-γ treated, Hyp–hypoxia.

https://doi.org/10.1371/journal.pcbi.1007468.g002
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For hypoxia-driven post-transcriptional regulation, an example is that hypoxia can cause

downregulation of miR-93 (Fig 4I) in macrophages which in turn would free IRF-9 from

Fig 3. IL-4-mediated signaling controls macrophage phenotype. Comparison between model simulations and literature experimental data on IL-4 induced

(A) STAT6 phosphorylation [65], (B-C) IRF-4 upregulation (time-course and at 24 h) [66, 67], (D) AKT activation [68], (E) PPARγ expression at 18 h [69, 70],

(F-G) Arg-1 expression (time-course and at 24 h) [67, 71], (H) IL-10 secretion at 24 h [72], (I) VEGF secretion at 24 h [73], (J) downregulation of TNFα
secretion at 24 h [72], and (K) HIF-2α stabilization (in response to IL-4 with or without hypoxia) [48]. (A-K) All literature data are measured in macrophage

cell lines and values are for protein levels unless noted otherwise. Y-axes show normalized expression respectively (A, B, D, F: simulations and data are

normalized to the maximum expression; C, G: normalized to the expression at 24 h post-treatment; E, H, I, J: normalized to the no-treatment/time 0

expression; K: normalized to the expression under IL-4 treatment with hypoxia). S–simulation, D–literature data, Utr–untreated, Trd–IL-4 treated, Hyp–

hypoxia.

https://doi.org/10.1371/journal.pcbi.1007468.g003
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translational inhibition (S4E Fig), and IRF-9 plus hypoxia-induced IRF-1 (S4C Fig) can subse-

quently potentiate the expression of IRG-1 (S4F Fig), which is a highly expressed gene particu-

larly in M1-like, pro-inflammatory macrophages [74]. Following this axis, introduction of

miR-93 mimic would decrease the cellular expression of IRF-9 which would lead to downregu-

lation of IRG-1 (S4G and S4H Fig). Overexpression of miR-93 by mimic transfection is also

capable of suppressing the hypoxia-driven secretion of pro-inflammatory cytokines such as

IFN-γ and TNFα (Figs 4J and S4I) by macrophages.

Pathway feedback through SOCS proteins and IL-4/IFN-γ mutual

antagonism

SOCS proteins are considered key regulators of JAK/STAT signaling and therefore contribute

profoundly to the dynamic polarization of macrophages [81]. Fig 5A and 5B show that overex-

pression of SOCS1 and SOCS3 can potently suppress the activation (e.g. phosphorylation) of

STAT1 (when stimulated with IFN-γ) and STAT6 (when stimulated with IL-4), and model

simulations indicate that SOCS1 is a stronger inhibitor than SOCS3 in both cases, which agrees

Fig 4. Hypoxia promotes M1 and M2 marker expression. Model simulation and literature experimental data from macrophages on hypoxia-induced (A)

time-course stabilization of HIF-1α and (B) HIF-2α under 3% O2 [75, 76], (C) sustained stabilization of HIF-1/2α at 24 h under 0.5% O2 [77], (D) upregulation

of iNOS and (E) Arg-1 proteins at 8 h under 1% O2 [78], (F) increase in TNFα secretion at 24 h under 0.3% O2 [79], (G) increase in IFN-γ secretion over time

under 1% O2 [47], (H) increase in VEGF secretion at 24 h under 1% O2 [80], and (I) inhibition of miR-93 abundance at 12 h under 2% O2 [53]. (J) Enforced

overexpression of miR-93 (see also S4G Fig) leads to decreased IFN-γ secretion at 12 h under 2% O2 [53]. (A-J) All literature data are measured in macrophage

cell lines and results are for protein levels unless noted otherwise. Y-axes show normalized expression respectively (A, B: simulations and data are normalized to

the maximum expression; C: normalized to the expression at 24 h under hypoxia; D-I: normalized to the normoxic/time 0 expression; J: normalized to the

hypoxia-induced expression at 12 h without miR-93 mimic treatment). S–simulation, D–literature data, Utr–normoxia/untreated, Trd–treated with miR-93

mimic, Hyp–hypoxia, O2 –oxygen.

https://doi.org/10.1371/journal.pcbi.1007468.g004
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qualitatively with previous experimental observations [24, 82]. Silencing either SOCS1 or

SOCS3, on the other hand, will selectively augment STAT1 and STAT6 activation (S5A and

S5B Fig). These simulations also suggest that different levels of SOCS proteins seem to affect

the peak level but not the long-term activation of STAT1 and STAT6, except for the case of

SOCS1/3 silencing in IL-4-induced STAT6 activation (S5B Fig); a possible mechanistic expla-

nation is that both SOCS1 and SOCS3 are inducible by IFN-γ and thus act redundantly as reg-

ulators of STAT1, while only SOCS1 is inducible by IL-4 so it becomes the dominant regulator

of STAT6 upon IL-4 stimulation [24]. Following this reasoning, we simulated the influence of

SOCS3 deficiency on the production of several macrophage phenotype markers (Fig 5C and

5D). The absence of SOCS3 markedly increases M1 marker expression in response to IFN-γ
(Fig 5C), while changes in the level of M2 markers in response to IL-4 are relatively minimal

(Fig 5D), which is consistent with experimental findings by Qin et al. that showed macro-

phages without SOCS3 are likely more sensitive to M1 stimuli (e.g. LPS, IFN-γ) but not the M2

phenotype inducer IL-4 [83]. Additional simulations on SOCS1 suggest that knockdown of

SOCS1 would boost IL-4-driven M2 marker expression (e.g. Arg-1) which agrees with previ-

ous macrophage studies [24, 84], but it could have a mixed impact on the expression of M1

markers upon IFN-γ stimulation (S5C and S5D Fig). We also explore the potential utility of

our model beyond in vitro conditions, since the cytokine doses used to stimulate macrophages

in vitro often vastly exceed the physiological tissue concentrations. The dose response simula-

tions using iNOS and Arg-1 as examples (Fig 5E) suggest evident induction of iNOS (by IFN-

γ) and Arg-1 (by IL-4) in macrophages (compared to baseline) even under very low levels of

cytokine stimulation (high pg/ml to low ng/ml range), which is consistent with prior experi-

mental findings [15, 85] and this dose range also agrees well with the reported tissue concen-

trations of cytokines in health and disease [86]. Therefore, our model can also be used to offer

mechanistic insights for the investigation of macrophage polarization and function in vivo.

In addition to SOCS proteins and STATs, the mutually antagonistic regulation of macro-

phage polarization by IL-4 and IFN-γ involves the tuning of several other key signaling modu-

lators. According to model simulations, induction of IRF-1 expression in IFN-γ-stimulated

macrophages would be strongly downregulated by the addition of IL-4 (Fig 5F), which is sup-

ported by literature evidence [87]. Similarly, AKT activation (e.g. phosphorylation) would be

impaired by IFN-γ in IL-4-polarized macrophages (Fig 5G). It is also suggested that despite

the antagonistic effect on IRF-1 and AKT by IFN-γ/IL-4, there are no obvious changes in the

respective activation of STAT1 (by IFN-γ versus IFN-γ followed by IL-4) and STAT6 (by IL-4

versus IL-4 followed by IFN-γ) (S5E and S5F Fig). Furthermore, model simulations (Figs 5H,

5I and S5G) show that delayed exposure to IFN-γ could antagonize the expression pattern of

Fig 5. Pathway feedbacks and cross-talks in M1-M2 regulatory network. Overexpression of SOCS1 and SOCS3 in macrophages can downregulate

activation of (A) STAT1 by IFN-γ and (B) STAT6 by IL-4. Silencing of SOCS3 promotes (C) IFN-γ-induced M1 marker expression while it minimally affects

(D) IL-4-induced M2 marker expression (relative fold changes are labeled). (A-D) Overexpression is modeled as 50x initial level with normal (1x)

production, and silencing is modeled as 0 initial level with 0 production. (E) Simulated dose response of iNOS and Arg-1; relative protein levels measured at

12 h are plotted and labeled (the baseline condition is represented by the 0.01 ng/ml case). (F) Upon IFN-γ stimulation followed by the addition of IL-4 (at 4

h), cellular IRF-1 level is downregulated compared to IFN-γ only; (G) Upon IL-4 stimulation followed by the addition of IFN-γ (at 1 hr), cellular activation of

AKT is downregulated compared to IL-4 only. (H) The addition of a second stimulus IFN-γ (after 24 h of IL-4 stimulation) would antagonize the expression

pattern of M1 and M2 markers induced by IL-4 (see also S5G Fig). (I) Similarly, IL-4 added after 24 h of IFN-γ stimulation would antagonize the marker

expression pattern induced by IFN-γ. When macrophages are stimulated with IFN-γ and IL-4 simultaneously, the simulated expression of (J) M1 and M2

markers as well as (K) the activation of a number of M1 and M2 signature proteins (see also S5I Fig) are collectively induced with distinct temporal profiles.

(L) Dynamic protein expression patterns (after 12, 24 and 48 h of stimulation) of M1 and M2 markers in macrophages under seven different stimulation

conditions (A+B means simultaneous stimulation, expression levels are normalized to the untreated/time 0 levels and then log2 transformed). (A-L) All

simulation results are protein levels (except CXCL10 is mRNA level). (C-E, H-K) Y-axes show relative expression respectively (C-D, H-K: normalized to

untreated/control/time 0 levels; E: normalized to maximum levels at 50 ng/ml). Simulated treatment doses are 10 ng/ml IFN-γ and 10 ng/ml IL-4 for (A-D),

10 ng/ml IFN-γ and 20 ng/ml IL-4 for (F-G), 20 ng/ml IFN-γ and 20 ng/ml IL-4 for (H-I), 10 ng/ml IFN-γ and 5 ng/ml IL-4 for (J-L). Utr–untreated, hyp–

hypoxia (2% oxygen for L).

https://doi.org/10.1371/journal.pcbi.1007468.g005
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M1 and M2 markers that are induced by IL-4 in the first place (similarly, delayed exposure to

IL-4 can antagonize the effect of IFN-γ on marker expression), which is corroborated at the

mRNA level by our experimental data in THP-1 cells (S5H Fig) and aligns with the argument

that macrophage polarization is dynamic and reversible [1, 25]. In addition, when a macro-

phage is stimulated with IFN-γ and IL-4 simultaneously, Arg-1 and iNOS are both upregu-

lated, but the duration of high iNOS expression is relatively short while Arg-1 expression is

elevated in a more prolonged manner; the changes in TNFα production seem to be opposite to

that of IL-10 throughout the simulated timespan, and VEGF remain modestly upregulated

(Fig 5J). Simulations from our systems-level model suggest that, when exposed to a combina-

tion of M1 and M2 stimuli (e.g. IFN-γ and IL-4), macrophages at the single-cell level tend to

activate multiple signaling modules (Figs 5K and S5I) and upregulate both M1 and M2 mark-

ers (Fig 5J) with differential expression strengths and temporal patterns, instead of being polar-

ized exclusively toward one end or the other. We further explored the cell level response of

macrophages in seven different conditions with single and combined stimulation (Fig 5L), and

the simulated expression of a set of M1 and M2 markers suggest that not only the different

stimulation strategies but also the temporal aspect itself (e.g. time) are determinants of the

observed dynamic phenotypic variability in the response, which is also reflected in the activa-

tion patterns of various M1 and M2 signature transcription factors (S5J Fig). This could have

important implications for the mechanistic understanding of the macrophage polarization

spectrum in vitro and particularly in vivo, since physiological and pathological environments

usually contain a multitude of M1 and M2 drivers, thus the dynamic profiles of not just one or

two but an array of relevant M1 and M2 markers should be systematically taken into account

in order to fully evaluate the phenotypic function of macrophages under such conditions.

Model sensitivity analysis and potential strategies to direct therapeutic

macrophage polarization in diseases

In order to identify the parameters that most significantly influence the model outputs of inter-

est (e.g. M1 and M2 marker expression) and thereby propose novel targets that can therapeuti-

cally repolarize macrophages under disease conditions, we performed global sensitivity

analysis (see Materials and Methods section for more details) using the PRCC algorithm (par-

tial rank correlation coefficient) [88]. We first focus on PAD, a highly-prevalent cardiovascular

problem characterized by reduced blood flow and ischemia that most commonly affects the

lower limbs [89]. Under in vitro hypoxia, which is a plausible reflection of the adverse cellular

environment found in ischemic tissue in PAD [53, 90], sensitivity analysis shows that the most

influential parameters are closely related to the activation (mostly through direct control of

phosphorylation, binding and synthesis) of IFN-γ/STAT1/IRF-1 axis, IL-4/STAT6 axis and

O2/HIF-1 axis, as expected (Fig 6A and 6B). Since hypoxia can induce M1-like phenotypes in

macrophages which may thwart angiogenesis and perfusion recovery in the ischemic limb tis-

sue [53, 91], we simulated several therapeutic interventions that are potentially translatable

based on the processes described by the high-sensitivity parameters, namely to inhibit the syn-

thesis (through miRs or siRNAs) of IFN-γ, IRF-1, HIF-1α and activation of STAT1 (through

selective inhibitors) in order to revert the M1-like phenotypes. Our simulations show that hyp-

oxia alone can upregulate the expression of a number of M1 and M2 markers (Fig 6C and 6D),

while inhibition of either IFN-γ (Fig 6E and 6F), HIF-1α (Fig 6G and 6H) or STAT1 (Fig 6I–

6K) can potently limit the upregulated expression of all M1 markers and further boost Arg-1

production in hypoxia. The overall impact of IFN-γ inhibition is stronger than that of HIF-1α
inhibition, and in the latter scenario VEGF production is reduced (Fig 6H) compared to con-

trol (hypoxia only, Fig 6D), while inhibiting IFN-γ (S6A Fig) or STAT1 (Fig 6K) can both
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Fig 6. Global sensitivity analysis and simulated therapeutic strategies to repolarize macrophages in hypoxia. (A-B) Sensitivity indices (top 25 positive and

negative PRCC values with p<0.05) of model parameters that control M1 and M2 marker expression in terms of the M1/M2 score (a ratio-based estimate of

M1 phenotypes relative to M2 phenotypes, see Materials and Methods for more details) in hypoxia (2% O2). In the parameter descriptions, ‘X_RC’ means

receptor complex formed by ligand X, receptor and JAK, ‘X/Y’ means complex formed by X and Y. Simulated time-course expression of M1 and M2 markers

when macrophages are subjected to (C-D) hypoxia, (E-F) hypoxia with IFN-γ inhibition, (G-H) hypoxia with HIF-1α inhibition, (I-K) hypoxia with STAT1

inhibition, and (L-M) hypoxia with IRF-1 inhibition. Inhibition of IFN-γ, HIF-1α and IRF-1 is simulated by setting the respective production rates to 10% of

their original values (STAT1 inhibition is simulated as a 90% decrease in the binding rate between STAT1 and activated IFN-γ receptor complex). Species name

denoted with � means expression in hypoxia plus treatment (species name without � means expression in hypoxia alone). (C-M) Marker expression levels are
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promote IL-10 and VEGF production in hypoxia as a result of enhanced baseline activation of

IL-4 pathway (S6B and S6C Fig) due to downregulation of SOCS proteins (S6D and S6E Fig).

In contrast, simulations suggest that inhibition of IRF-1 can only suppress part of the six M1

markers examined (in addition to its positive influence on Arg-1 production) (Fig 6L and

6M), which can be explained by the topology of IRF-1 within the M1-M2 signaling network.

Although the potential functions of IFN-γ/STAT1/IRF-1 axis have not been assessed so far in

experimental PAD models, prior research has reported that PAD patients have significantly

higher levels of circulating IFN-γ, and that silencing of STAT1 as well as IRF-1 has been associ-

ated with increased outcome and recovery following ischemic injury in other vital organs (e.g.

kidney, brain, liver) [92–95]. HIF-1α is an inducible gene following tissue ischemia in PAD

and our model suggests that it can also contribute to the pro-inflammatory, M1-like pheno-

types in macrophages [96, 97]. Therefore, its regulation of the M1-like macrophage response,

in addition to its well-established effect on cellular VEGF production, might provide another

mechanistic explanation for the clinical failure of prior therapies that aimed to treat PAD by

overexpressing HIF-1α [98, 99].

We also explored different strategies in silico to elicit pro-inflammatory macrophage polari-

zation when IL-4 levels are abnormally elevated, a feature often observed in the tumor micro-

environment and associated negatively with patient survival [100–102]. Since high IL-4

production and signaling skew macrophages toward M2-like, anti-inflammatory phenotypes

which could be pro-tumorigenic (Fig 7A and 7B), based on the parameter sensitivities calcu-

lated in this pathological scenario (S7A and S7B Fig), several therapeutic targets were com-

pared in terms of their effects on the promotion of M1 markers and inhibition of M2 markers.

Direct blockade of the interaction between IL-4 and its receptor can most effectively achieve

this goal (Fig 7C and 7D) by completely reverting the original expression pattern (decreased

M1 markers plus increased M2 markers) induced by high IL-4 production. However, targeting

the downstream nodes, namely STAT6 (Fig 7E and 7F), HIFs (through PHD) (Fig 7G and 7H)

and AKT (S7C and S7D Fig), failed to exert consistent repolarizing effects on the expression of

both M1 and M2 markers, which can be mechanistically explained by the pathway topology as

well as the activation of compensatory signaling (S7E Fig). Taken together, our model simula-

tions suggest the value of targeting IL-4 axis in tumor, especially the therapeutic blockade of

IL-4/receptor interaction (e.g. inhibiting IL-4Rα, a receptor subunit utilized in both IL-4 and

IL-13 signaling) as a potential approach to modulate macrophage-mediated immune response

to combat tumor progression.

As a continuation of the sensitivity analysis, we further performed uncertainty analysis

using bootstrap procedures (S8 Fig) with a focus on the identifiability of a subset of model

parameters that have the highest sensitivity values [103]. With the large amount of experimen-

tal data used in model calibration and the relatively small degree of freedom allowed, the

results suggested relatively good clustering of those high-sensitivity parameters (S8 Fig). How-

ever, we acknowledge that practical unidentifiability associated with the model parameters

would likely emerge once we take into account all the parametric freedom and uncertainty

embedded in the mechanistic details of our model (with the current dataset), and thus addi-

tional experimental measurements on the rates of relevant reaction processes and trajectories

of model species behaviors would further empower the model predictions.

normalized to their respective t = 0 values (e.g. normoxia, unstimulated). (A-B) More details about the parameters listed can be found in S1 Table using the

labels (positive–k127, kf63, kr70, kf64, kf17, k33, k61, k77, k45, kf44, kf42, k37; negative–k99, kr42, k78, kf8, kr44, kf95, k71, kf13, ka77, kf7, kf52, kf70, kr64;

order is from top to bottom as displayed). (C-M) All simulation results are protein levels (except CXCL10 is mRNA level).

https://doi.org/10.1371/journal.pcbi.1007468.g006
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Fig 7. Targeting IL-4 signaling axis in macrophages in tumor. Simulated time-course expression of M1 and M2

markers when macrophages are subjected to (A-B) high IL-4 production (10x of original value), (C-D) high IL-4

production with IL-4/receptor blockade (90% decrease in the binding rate between IL-4 and its receptor), (E-F) high

IL-4 production with STAT6 inhibition (90% decrease in the binding rate between STAT6 and activated IL-4 receptor

complex), and (G-H) high IL-4 production with PHD inhibition (90% decrease in the binding rate between PHD and

O2). Species name denoted with � means expression in high IL-4 production plus treatment (species name without �

means expression in high IL-4 production alone). (A-H) Marker expression levels are normalized to their respective

t = 0 values (e.g. normoxia, unstimulated). All simulation results are protein levels (except CXCL10 is mRNA level).

https://doi.org/10.1371/journal.pcbi.1007468.g007
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Materials and methods

Model formulation and simulation

The model was constructed based on ordinary differential equations (ODEs) with a total of 80

model nodes (from the 34 “unique” species) and 130 reactions (more details about reaction

descriptions, equations, parameter and initial condition values are summarized in S1 and S2

Tables). For IL-4 and IFN-γ receptor dynamics, we coarse-grained the entire process into key

sequential steps such as receptor ligation, phosphorylation, receptor complex internalization

(only for IL-4 but not IFN-γ), degradation and recycling [104, 105]. For the activation cascades

of STAT1 and STAT6, both proteins undergo phosphorylation, dimerization and dimer trans-

location (from cytoplasm into nucleus) in the model in order to transcriptionally regulate

downstream genes. For SOCS-mediated feedback, SOCS1/3 can bind with both internalized

and uninternalized receptor complexes to induce JAK inhibition and sequestration (followed

by JAK degradation) as well as receptor complex degradation [106]. AKT activation is modeled

as a one-step process downstream of IL-4 receptor activation, and in the current version we do

not distinguish between the effects by different phosphorylation sites (this also applies to

STAT1 and STAT6). The current hypoxia module is based on a previous model and we further

simplified the PHD activation and HIF hydroxylation steps, added HIF de-ubiquitination, and

lumped PHD and FIH (factor inhibiting HIF-1) into one species (under transcriptional con-

trol by HIF-1/2) [44]. For miR functions, we simplified the description from previous models

so that miRs will directly bind mRNAs and induce target mRNA degradation [107–109]. Addi-

tional rationale regarding model formulation is described in S1 Protocol. All model data (e.g.

reaction rules, species and nodes, parameters values) are compiled in MATLAB SimBiology

Toolbox (MathWorks, Natick, MA) and we used the ode15s solver in MATLAB for model

simulations. All model reactions are encoded in deterministic mass action and Hill-type alge-

braic kinetics; although stochasticity could play an important role in gene transcription which

is part of the model, we have demonstrated that the simulated average behaviors of model out-

puts of interest (e.g. expression of various proteins) agree reasonably well with experimental

data, therefore we believe that the deterministic approach would be sufficient for our major

purposes. For the comparisons between simulation and experimental data in response to IL-4/

IFN-γ stimulation at different doses, we calculated average exposure per cell (using dose infor-

mation from the experimental source, plus molecular weight and unit conversion information

supplied by R&D Systems, with the assumption that macrophages are plated at a million cells

per ml of culture media [110]) and set the computed values as the new initial conditions for

IL-4/IFN-γ. For experimental sources that used a combination of IL-4 and IL-13, we made a

simplification by assuming functional equivalence between the two cytokines and considered

both as IL-4 during model calibration. We used ImageJ software (NIH) to perform blot densi-

tometry analysis and other image measurements in order to quantify the experimental data

which are subsequently used in model calibration. Model SBML code is also submitted with

the Supporting Information to ensure reproducibility.

Model initialization and calibration

Since our mechanistic model is the first kinetics-based computational platform to describe the

complex dynamics of macrophage polarization under the influence of M1 and M2 inducers

and hypoxia, we conducted extensive literature search to collect relevant experimental data for

parameter estimation and model calibration. We used several sources that globally measured

absolute copy numbers and half-lives of different proteins and RNAs (in macrophages and

other cell lines) to confine the initial conditions and degradation rates of most model species
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[111–115], and this is also complemented by various literature studies that individually mea-

sured the properties of specific proteins that are described in the model. In addition, we also

derived the numerical values for a handful of parameters associated with other reactions such

as receptor binding, protein phosphorylation and transport from published quantitative data.

A detailed summary of all the parameter and initial condition values with corresponding

sources is shown in S1 and S2 Tables.

As shown in Figs 2–4 and S2–S4, we were able to compile over 70 pieces of relevant quanti-

tative experimental data from literature (summarized in S3 Table) that comprehensively

described the kinetics of almost all the functionally “unique” species in the model (for data dis-

play, means ± SEM or SD were calculated and used when possible). While all these data are fed

into model calibration simultaneously to ensure that they are in good agreement with their

simulation counterparts, a second check is that when the model is simulated under the control

condition (normoxia without externally added stimuli) to acquire the physiological states of

unpolarized macrophages (the initial conditions), the final output copy numbers at steady

state for all the “unique” species should be within reasonable ranges (e.g. 0.5x-2x) of literature

reported values (as described above). We used the patternsearch function provided in

MATLAB for model parameter optimization (the algorithm runs iteratively to minimize the

weighted sum of square errors between simulations and experimental data as well as to pass

the initial condition check). For the calculations of square errors, experimental datasets are

normalized and averaged to obtain mean and standard deviation values when possible. More

technical detail regarding model calibration is described in S1 Protocol.

Model sensitivity and uncertainty analyses

Sensitivity analysis was performed using the PRCC method [88]. We introduced the M1/M2

score which is the multiplication of six M1 marker levels divided by the multiplication of three

M2 marker levels to quantify the relative changes within the M1-M2 spectrum over time (as

outlined in Figs 6 and 7), and the M1/M2 score (e.g. evaluated at 24 hours) was used as the out-

put of interest for the sensitivity calculations together with a sample size of 5000 for the results

shown in Figs 6A, 6B, S7A and S7B. Bootstrapping was used to resample all the calibration

data and we re-optimized the model repeatedly to obtain 50 sets of new parameter estimates. A

subset of 11 parameters was chosen for the 50 optimization runs (based on the overall pattern

of parameters with the highest sensitivity indices in the cases of IL-4 stimulation, IFN-γ stimu-

lation, and hypoxia) (S8 Fig). More technical detail regarding model sensitivity analysis and

uncertainty quantification is described in S1 Protocol.

THP-1 polarization and quantitative reverse transcription PCR

THP-1 cells were maintained at 37˚C in RPMI supplemented with 10% FBS, L-glutamine, pen-

icillin/streptomycin, and 55 μM β-mercaptoethanol. For polarization experiments, 1�106 cells

were transferred into wells of a 6-well plate in 5 ml of growth media and induced into macro-

phages with 150 nM phorbyl-12-myristate-13-acetate (PMA; Sigma). After 24h the media was

replaced with fresh growth media without PMA for another 24 hours. The media was then

replaced with additional growth media containing polarization factors for the indicated

amounts of time. M1-type polarization was induced using 20 ng/ml IFN-γ (Peprotech) and

M2-type with 20 ng/ml IL-4 (Biolegend). For dual treatments, cells were treated with the first

factor for 24 hours followed by the addition of the second for another 24 hours without chang-

ing media. The RNA was then extracted using an RNeasy kit (Qiagen) according to the manu-

facturer’s protocol. For lysis, cells were lysed in 350 μl of the supplied kit lysis buffer per well

and transferred to QIAshredders (Qiagen) before continuing with the rest of the protocol.
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cDNA was synthesized from 750 ng of RNA using the High Capacity cDNA Reverse Transcrip-

tion kit (Applied Biosystems) according to the manufacturer’s protocol. qPCR was performed

using the Taqman Gene Expression Mastermix (Applied Biosystems), 25 ng of cDNA, and Taq-

man assay (Applied Biosystems) probes with FAM labels described below. Data were collected

and analyzed using the Quantstudio 12K Flex instrument and software with untreated cells as

treatment controls and GAPDH and β-actin as internal expression controls. The Taqman assays

that were used in this study are as follows: IL-10 (Assay#: Hs00961622_m1); TNF (Assay#:

Hs00174128_m1); GAPDH (Assay#: Hs02786624_g1); β-actin (Assay#: Hs01060665_g1).

Discussion

In this study, we have developed and presented the first kinetics-based, mechanistic multi-

pathway computational model of macrophage polarization in the context of hypoxia and

canonical M1-M2 stimulation (IFN-γ, IL-4). Within this scope, our systems-level integrative

model based on the current knowledge is calibrated extensively against quantitative experi-

mental data and captures the dynamical regulation and expression of essential transcription

factors and markers that are associated with macrophage phenotypes in response to physiolog-

ical and pharmacological perturbations. Motivated by the fact that prior attempts that used

systems-level approaches to model multi-pathway cancer signaling have generated crucial

insights for the integrative understanding of cancer cell dynamics and drug targeting [116,

117], we consider the current model an important first step toward a more comprehensive

characterization of a “virtual macrophage” assembled through systems-level modeling tech-

niques that is able to suggest translational insights for cardiovascular and cancer research. The

goal of the “virtual macrophage” is to quantitatively describe the continuous spectrum of mac-

rophage polarization in terms of cross regulation and activation within a network of multiple

pathways leading to time-dependent up- and down-regulation of an array of phenotypic mark-

ers which are able to reflect real macrophage physiology. Therefore, our current model setup

can be expanded to further incorporate the autocrine effects by other key cytokines secreted by

macrophages (in addition to IFN-γ and IL-4 as described in this work). For example, IL-1β
and TNFα are both macrophage products that can potentially function through autocrine and

paracrine signaling to regulate macrophage-mediated inflammatory responses in disease set-

tings [118–120]. Activation of pro-inflammatory pathways (e.g. TLR4, toll-like receptor 4) in

macrophages can also trigger delayed synthesis of IL-10 through sequential signaling and this

could negatively affect the production of various pro-inflammatory cytokines in the long run

[28, 121]; furthermore, IL-10 can induce its own production through the autocrine IL-10/

STAT3 axis which could help to sustain an immuno-suppressive phenotype [122]. Recently, it

has also been discovered that the pro-angiogenic factor VEGF may contribute to M2-like

polarization through receptor-mediated signaling (e.g. via VEGFR1) on macrophages, and

that the two isoforms of VEGF-A (165a and 165b) can differentially regulate macrophage phe-

notypes to influence perfusion recovery in PAD [91, 123]. Such evidence again points to the

demanding mechanistic complexity of macrophage polarization at the cell level, which sug-

gests that a systems-level description of macrophage signaling pathways and marker regula-

tion, like we proposed through this work, should be the appropriate angle to devote future

modeling efforts to provide a better understanding of the therapeutic values behind the full

M1-M2 spectrum. In addition, a few computational models that focus on macroscopic, tissue-

level macrophage dynamics and phenotypic patterns have also been developed, which are ideal

in silico platforms that can be potentially merged with and enriched by the mechanistic

insights from our multi-pathway model to demonstrate greater model utilities in the investiga-

tion of macrophage-disease interactions [124, 125].
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While we formulated our model based on the decades of scientific knowledge derived from

experiments done in macrophages in general, it is important to recognize that different macro-

phage cell lines are far from being equivalent with respect to their genetic background and

innate cellular dynamics. Macrophages from human and mice are known to differ in their sig-

nature genes that represent the canonical M1 and M2 phenotypes (e.g. the controversy on

iNOS and Arg-1 expression in human versus mouse macrophages) [126]. Macrophages

derived from BALB/c and C57BL/6 mice are shown to secrete vastly different amounts of IFN-

γ at rest and they also respond differently to IFN-γ and LPS in terms of the induction strengths

and temporal trends of iNOS production [127, 128]. Likewise, common human macrophage

cell lines such as monocyte-derived macrophages, THP-1, and U937 cells can show inconsis-

tent marker expression patterns (e.g. increased, decreased, unchanged) following canonical

M1 and M2 stimulation [129, 130]. In addition, agents such GM-CSF (granulocyte-macro-

phage colony-stimulating factor) and M-CSF (macrophage colony-stimulating factor) which

are widely used in experimental preparations for monocyte-to-macrophage differentiation

and proliferation are able to pre-condition macrophages towards amplified M1 and M2

responses respectively [131]. Tissue-resident macrophages, compared to monocyte-derived

macrophages, may also respond differently to cellular perturbations given their distinct func-

tional states shaped by the tissue microenvironments [132]. Therefore, given the above reason-

ing and the fact that the majority of our model calibration data were obtained from mouse

bone marrow derived macrophages, it makes sense to acknowledge that sometimes the qualita-

tive aspects of our model simulations might weigh more than the predicted quantitative fold

changes, especially when the simulations are tested experimentally across different types of

macrophages. Still, our mechanistic model is formulated in a way that can be easily adapted to

accommodate the genetic background of more than one macrophage cell line, provided that

the cell-line specific gene and protein expression data are available.

Our model included two signature molecular species of macrophages metabolism that have

been previously associated with the M1-M2 phenotypes (itaconate– M1-like, PPARγ–

M2-like) [133]. Although the current model, given its scope, considered both species primarily

as marker outputs downstream of IFN-γ and IL-4 with limited regulatory functions, research

has shown that they do play critical roles in macrophage metabolic processes to influence

phagocytosis and inflammatory cytokine production [134]. Recent studies have discovered

that itaconate, besides its pro-inflammatory properties in bacterial infection and hypoxic set-

tings, can exert anti-inflammatory effects in M1-like macrophages by limiting succinate oxida-

tion, a critical step in the citric acid cycle, to inhibit mitochondria ROS production and

downstream M1-like marker expression; itaconate can also induce cysteine alkylation and acti-

vate Nrf2 (nuclear factor erythroid 2-related factor 2), a sensor of oxidative stress, to suppress

transcription of pro-inflammatory genes in macrophages [53, 135–137]. On the other hand,

accumulation of PPARγ in response to IL-4 can affect the production of itaconate and various

macrophage cytokines, presumably through the control of glutamine metabolism and other

signal transduction mechanisms that have not yet been fully elucidated [133]. Furthermore,

the downstream metabolic products regulated by itaconate such as succinate and ROS can also

modulate the stabilization of HIFs through distinct mechanisms [57, 138], which again con-

nects the macrophage metabolic reprogramming initiated by itaconate with hypoxia- and

HIF-mediated signal transduction. Taken together, more knowledge needs to be gained in

order to fully decode the mechanistic wiring between macrophage metabolism and phenotypic

M1-M2 signal transduction, and we believe that our model as well as future efforts that further

expands our work (e.g. the “virtual macrophage”) can potentially speed up this process by effi-

cient hypothesis generation and testing in parallel with targeted experimental validation and

feedback.
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