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A LINE-1 insertion situated in the promoter
of IMPG2 is associated with autosomal
recessive progressive retinal atrophy in
Lhasa Apso dogs
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Mike Boursnell1, Ellen C. Schofield1, David Sargan2 and Cathryn S. Mellersh1

Abstract

Background: Canine progressive retinal atrophies are a group of hereditary retinal degenerations in dogs
characterised by depletion of photoreceptor cells in the retina, which ultimately leads to blindness. PRA in the
Lhasa Apso (LA) dog has not previously been clinically characterised or described in the literature, but owners in
the UK are advised to have their dog examined through the British Veterinary Association/ Kennel Club/
International Sheep Dog Society (BVA/KC/ISDS) eye scheme annually, and similar schemes that are in operation in
other countries. After the exclusion of 25 previously reported canine retinal mutations in LA PRA-affected dogs, we
sought to identify the genetic cause of PRA in this breed.

Results: Analysis of whole-exome sequencing data of three PRA-affected LA and three LA without signs of PRA did
not identify any exonic or splice site variants, suggesting the causal variant was non-exonic. We subsequently
undertook a genome-wide association study (GWAS), which identified a 1.3 Mb disease-associated region on canine
chromosome 33, followed by whole-genome sequencing analysis that revealed a long interspersed element-1
(LINE-1) insertion upstream of the IMPG2 gene. IMPG2 has previously been implicated in human retinal disease;
however, until now no canine PRAs have been associated with this gene. The identification of this PRA-associated
variant has enabled the development of a DNA test for this form of PRA in the breed, here termed PRA4 to
distinguish it from other forms of PRA described in other breeds. This test has been used to determine the
genotypes of over 900 LA dogs. A large cohort of genotyped dogs was used to estimate the allele frequency as
between 0.07–0.1 in the UK LA population.
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Conclusions: Through the use of GWAS and subsequent sequencing of a PRA case, we have identified a LINE-1
insertion in the retinal candidate gene IMPG2 that is associated with a form of PRA in the LA dog. Validation of this
variant in 447 dogs of 123 breeds determined it was private to LA dogs. We envisage that, over time, the
developed DNA test will offer breeders the opportunity to avoid producing dogs affected with this form of PRA.

Keywords: Canine, Dog, Progressive retinal atrophy, PRA, Canine retinal degeneration, Inherited, Photoreceptor
degeneration, IMPG2

Background
Canine progressive retinal atrophies (PRAs) are a group
of hereditary, heterogeneous diseases characterised by
the degeneration of rod and cone photoreceptor cells in
the retina. Clinical signs of PRA in dogs are very similar
to those of retinitis pigmentosa (RP), the equivalent
human inherited retinal degeneration which affects 1 in
4000 humans worldwide [1]. Despite the identification of
271 genes associated with inherited retinal diseases,
including RP (RetNet, the Retinal Information Network
[2]), many patients still lack a molecular diagnosis. Many
of these genes are shared between human and canine
inherited retinal degenerations, making the dog an excel-
lent naturally occurring animal model for retinal disease
[3]. Variability in the age of onset, aetiology and rate of
disease progression is observed in both human and ca-
nine inherited retinal degenerations. In both species, ret-
inal rod and cone photoreceptor cells are implicated in
disease and degenerate over time. Photoreceptors are po-
sitioned within the outer and inner segment layers and
the outer nuclear layer (ONL) of the retina. Depletion of
photoreceptor cells results in thinning of the ONL. Rod-
cone degenerations are characterised by the initial loss
of rod photoreceptors, followed by a reduction in cone
function. In cone-rod degenerations, cone function is
severely affected initially, followed by rods. In both
human and canine retinal degenerations, a moderate to
complete loss of vision is inevitable [4]. Electroretino-
gram (ERG) assessment is not routinely performed in
dogs, so distinguishing between a rod-cone or cone-rod
degeneration is difficult, although when night blindness
is the first clinical sign observed a rod-cone degeneration
is considered the most likely diagnosis. The lack of ERG
assessment in dogs means ophthalmoscopic examination
is often the sole diagnostic procedure employed. Clinical
signs observed by ophthalmoscopic examination include
vascular attenuation of retinal blood vessels, retinal thin-
ning leading to hyperreflectivity of the tapetum and, in
later stages, atrophy of the optic disc [5]. PRA affects
over 100 breeds of dog and is heterogeneous between
and within breeds [6]. Thus far, mutations in 32 genes
have been associated with canine PRAs [7–30].
The British Veterinary Association/ Kennel Club/

International Sheep Dog Society (BVA/KC/ISDS) eye

scheme in the UK [31] and the European College of Veter-
inary Ophthalmologists (ECVO) Eye scheme [32] are clin-
ical eye screening schemes available to dog breeders and
owners in Europe to screen for hereditary eye diseases in
dogs that are intended for breeding. The Lhasa Apso (LA)
dog is currently listed the BVA/KC/ISDS Eye Scheme,
meaning it is the considered opinion of veterinary oph-
thalmologists in the UK that PRA is diagnosed often
enough in the breed to be of concern, and LA breeders
are thus advised to have their dogs’ eyes examined annu-
ally by a BVA/KC/ISDS panellist. Currently there are no
treatments generally available for PRA in dogs. Research
studies using mice and dogs have shown the effectiveness
of gene therapy as a treatment for some retinal degenera-
tions [33–37], and cell-replacement therapy for human RP
patients is being explored using the CRISPR/Cas9 system
to correct genetic mutations in human cell lines [38], but
these studies are in their relative infancy. The develop-
ment of commercially available DNA tests for PRA-
associated mutations therefore play an important role in
controlling PRA, by enabling dog breeders to avoid breed-
ing clinically affected dogs and to reduce the prevalence of
PRA in breeds at risk. Clinical eye screening complements
the use of DNA tests, where the former can identify
novel/emerging eye conditions for which a genetic variant
has not yet been discovered, and the latter enables dog
owners and breeders to use a one-off genetic test to deter-
mine their dog’s genotype with respect to a specific muta-
tion and make informed breeding choices, before signs of
the disease are apparent. This is especially important for
diseases whose clinical signs do not present until later in
life, past the typical breeding age of the dog. DNA tests
can also identify individuals that are heterozygous for a re-
cessive disease-associated mutation, which a clinical eye
examination cannot.
The form of PRA in the LA described in this study

presents with an autosomal recessive mode of inherit-
ance; however the exact age of onset can be difficult to
determine when the disease is progressive and owners
may remain unaware their dog is affected until visual
impairment becomes severe. Cases have been reported,
yet no genetic risk factor identified [22, 39]. The aim of
this study was to explore this genetically distinct form of
PRA in the LA dog, and identify the causal variant.
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Methods
Study population
All dogs were examined by a veterinary ophthalmologist
through a clinical referral process or via the BVA/KC/
ISDS Eye Scheme in the UK, or the European equiva-
lent(s). Dogs with a PRA diagnosis were defined as
“cases”. Ophthalmoscopic examinations of these dogs
showed bilateral retinal atrophy, detecting widespread
tapetal hyperreflectivity, and retinal vascular attenuation.
In some cases, secondary bilateral cataracts were also
observed. An arbitrary age of ≥8 years old was chosen
for LA dogs without signs of PRA to be used as “con-
trols” based on the age of diagnosis and the difficulty in
collecting samples from very old control dogs. An age of
diagnosis was known for 19 of the 21 cases, with ages
ranging from 1.75–11.96 years with a median age of
7.11 years (interquartile range 5.01–7.99).

DNA extraction and quantitation
DNA was extracted from buccal mucosal swabs using
the QIAamp DNA Blood Mini or Midi Kits (Qiagen,
Manchester, UK). DNA concentration and purity were
determined using the NanoDrop 1000 spectrophotom-
eter (Thermo Fisher Scientific, Loughborough, UK) and/
or the Qubit Fluorometer with the Qubit dsDNA broad
range (BR) Assay Kit (Invitrogen, Loughborough, UK).
DNA samples with concentrations < 10 nanograms per
microliter (ng/μL) were concentrated using MultiScreen-
PCR96 filter plates (Merck Millipore, Watford, UK) or
Microcon − 30 kDa centrifugal filter units with ultracel-
30 membrane (Merck Millipore, Watford, UK).

Exclusion of known retinal mutations
Generating PCR amplicons
Genotypes of 25 previously published retinal mutations
(Supplementary Table 1A; 1B), were determined using a
combination of PCR-amplicon sequencing, amplified
fragment length polymorphism (AFLP) analysis or PCR
followed by agarose gel electrophoresis. All primers were
designed using Primer3 (32, 33) and obtained from Inte-
grated DNA Technologies (IDT, Leuven, Belgium). Hot-
StarTaq Plus DNA polymerase (Qiagen, Manchester,
UK) was used for standard reactions. PCR products used
for AFLP analysis were analysed on an ABI 3130xl gen-
etic analyzer (Applied Biosystems, Loughborough, UK)
using Hi-Di formamide (Thermo Fisher Scientific,
Loughborough, UK) and GeneScan 400HD ROX dye
size standard (Thermo Fisher Scientific, Loughborough,
UK). To generate amplicons for pooled amplicon se-
quencing, 18 primer pairs were pooled and a multiplex
PCR was performed. Multiplex PCR and thermal cycling
conditions are listed in Supplementary Tables 2 and 3.

Next-generation sequencing (NGS) of PCR amplicons for
known PRA mutations
Purification was carried out after each thermal cycling
reaction using AMPure XP beads (Beckman Coulter,
High Wycombe, UK), according to the manufacturer’s
instructions, and using a ratio of 1:1.75 for beads: DNA-
containing solution. Adaptor ligation was performed
followed by amplification to create sequencing libraries.
Five μL of each sample library was pooled and quantified
using a KAPA library quantification kit, according to the
manufacturer’s instructions (Kapa Biosystems, Massa-
chusetts, USA). The final library was diluted to 15 pico-
moles (pM) and loaded into a 150 base pair (bp) v3 kit
cartridge (Illumina, Cambridge, UK) for single-ended se-
quencing on the MiSeq sequencing platform (Illumina,
Cambridge, UK). FASTQ files were aligned to the canine
genome assembly CanFam3.1 (Sep.2011. Broad Can-
Fam3.1/canFam3, Dog release 89) [40] using BWA, pro-
ducing BAM files. BAM files were visualized in the
Integrative Genomics Viewer (IGV) [41, 42].
Large insertions and deletions or variants within re-

petitive regions, applicable for a total of seven mutations,
were genotyped using PCR amplification, followed by ei-
ther AFLP analysis or visualisation on an agarose gel
using gel electrophoresis. Locus/gene information and
primers for each mutation screened are listed in Supple-
mentary Table 1B.

Genome-wide association study (GWAS)
Genotyping was carried out using the Illumina Cani-
neHD array (Illumina, San Diego, CA) comprising 173,
662 single nucleotide polymorphisms (SNPs) (Neogen,
Lansing, MI). Genome-wide association mapping was
performed by allelic association analysis using PLINK
after filtering SNPs with a call rate of less than 97% and
minor allele frequency less than 5%; and individuals with
a genotyping call rate of less than 90%. Multi-
dimensional scaling (MDS) plots and quantile-quantile
(Q-Q) plots were generated using PLINK to assess for
the presence of population stratification. Probabilities
generated from GWAS data were adjusted for multiple
testing using the PLINK Max(T) permutation procedure,
and for population stratification and sample relatedness
using Efficient Mixed-Model Association eXpedited
(EMMAX) [43].

Whole-exome sequencing (WES)
We utilised a canine-specific exome capture bait design
for whole-exome sequencing (WES) (manufactured by
Nimblegen, Roche, CA, USA) [44]. The LA was part of a
previous WES PRA study of six breeds (three PRA cases
and three controls over the age of 8 years from each
breed) (unpublished). DNA was extracted from buccal
swabs using standard protocols and samples were
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randomised for library preparation and sequencing with
respect to breed and case-control status. Subsequently,
1.1 μg of DNA from each of the 36 dogs was sheared
(Covaris focused ultrasonicator) to an average size distri-
bution of 180–220 bp and fragmentation was assessed
using a Bioanalyser, at the High-Throughput Genomics
Group, Wellcome Trust Centre for Human Genetics,
University of Oxford, UK. In-house library preparations
were made using a KAPA library prep kit (Kapa Biosys-
tems, Massachusetts, USA) and SeqCap EZ library SR
protocol and associated reagents (Nimblegen, Roche CA,
USA). Briefly, samples were end-repaired, A-tailed and
ligated with Illumina indexes (Illumina, Cambridge, UK).
A clean-up at each stage was done using AMPure XP
beads (Beckman Coulter, High Wycombe, UK). Follow-
ing adapter ligation, the subsequent clean-up incorpo-
rated a size selection stage (post-ligation clean-up
followed by Dual-SPRI size selection (250–450 bp)). The
libraries were then amplified. After clean-up and quality-
control (QC) assessment of pre-capture libraries, indi-
vidual libraries for the 36 dogs were pooled into four
pools of nine libraries. The four pooled libraries were
hybridised with the exome capture baits for 64–72 h at
47 °C. Following hybridisation, libraries were washed and
bound to capture beads, and subsequently amplified,
quantified and purified. Exome enrichment was mea-
sured using quantitative PCR (qPCR) of four loci by
comparing pre-capture pools with post-capture pools.
The average-fold difference for all four assays was 171-
fold. A final quantification of the four pooled libraries
was done by qPCR. Paired-end sequencing (100 bp
reads) was carried out on four lanes of an Illumina
HiSeq2000 at the High-Throughput Genomics Group,
Wellcome Trust Centre for Human Genetics, University
of Oxford, UK. The average library read depth for the
LA was 46X. Sequence reads were aligned to the canine
reference genome (CanFam 3.1) using BWA [45] and
SNP/insertion-deletion (indel) calls were made using
GATK v3.6 [46, 47].

Whole-genome sequencing (WGS) and variant filtering
Illumina sequencing of a TruSeq Nano library on a HiSeq
X sequencing platform was conducted by Edinburgh Gen-
omics, University of Edinburgh, UK, and generated a data-
set of approximately 30X read depth. Reads were aligned
to the canine reference genome (CanFam3.1) using BWA-
MEM [45], variant calls were made using GATK v3.6
(HaplotypeCaller) and base quality score recalibration,
indel realignment and duplicate removal performed [47].
SNP and indel discovery was performed using standard
hard filtering parameters or variant quality score recalibra-
tion according to GATK Best Practices recommendations
[46, 48]. Sequencing reads and variants were visualised
manually in IGV [41, 42] across the defined disease-

associated region from GWAS analysis and compared to
102 genomes from non-breed matched controls. Genomic
Variant Call Format (VCF) files from 114 genomes were
combined by HaplotypeCaller into a multi-sample VCF
file. Cross-genome analysis was performed on the merged
VCF file after annotating variants using Variant Effect Pre-
dictor (VEP) [49]. Variants from whole-genome sequen-
cing (WGS) data were filtered appropriately for a recessive
condition, i.e. homozygous in affected individuals only
and allowing for control dogs to be heterozygous or
homozygous for the alternate allele. An in-house analysis
pipeline generated an effect-score for each variant, de-
pending on its predicted severity/impact on protein se-
quence and whether it is deleterious. Scripts are publicly
available in GitHub (https://github.com/AHT-CanineGe-
netics/Scripts/tree/hitti-malin_BMC). High-effect-score
variants included those resulting in premature start/stop
codons, splice site variants, nonsense and missense vari-
ants, frameshift variants, and in-frame deletions.

Characterisation of the IMPG2-LINE-1 insertion
The length of the long interspersed element-1 (LINE-1)
insertion was estimated by PCR using primers, forward
5′-CCAGGCCTCATGTTTAATAGC-3′; reverse 5′-
GCACTGTTGGGTTCTTGGATA-3′, and conditions
listed in Supplementary Tables 4 and 5. PCR products
were amplified using PrimeSTAR® GXL DNA Polymer-
ase (Takara Bio Europe, Saint-Germain-en-Laye, France)
and separated using agarose gel electrophoresis. PCR
products were also generated in the same way for next-
generation sequencing (NGS) to determine the LINE-1
DNA sequence. Long PCR products were purified and
prepared for NGS on a MiSeq platform using the
methods previously described. De novo assembly was
performed using SOAPdenovo [50].

Variant screening
Candidate variants within the disease-associated region
were genotyped in PRA cases and controls. Primer se-
quences are listed in Supplementary Table 6. Genotyp-
ing of the LINE-1 insertion in the interphotoreceptor
matrix proteoglycan 2 (IMPG2) gene by AFLP was per-
formed using PCR amplification using primers and assay
details listed in Supplementary Tables 6, 7 and 8,
followed by combining 1 μL of PCR product with 10 μL
of a Hi-Di formamide (Thermo Fisher Scientific, Lough-
borough, UK) and GeneScan 400HD ROX dye size
standard (Thermo Fisher Scientific, Loughborough, UK)
mix to assess on an ABI 3130xl genetic analyzer (Ap-
plied Biosystems, Loughborough, UK). Probes for allelic
discrimination assays were PrimeTime ZEN double-
quenched qPCR probes containing a 5′ fluorophore, 3′
Iowa Black® FQ (IBFQ) quencher and proprietary, in-
ternal ZEN™ quencher. A 5′ HEX™ fluorophore was used
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to determine the reference allele and a FAM™ fluoro-
phore to label the alternate allele (Supplementary
Table 6). Individual PrimeTime assays were re-
suspended in ultrapure water to a 10X mix and com-
bined. Allelic discrimination assays were carried out
using KAPA probe fast qPCR master mix (2X) (Sigma-
Aldrich Company Ltd., Dorset, UK) on a StepOnePlus™
Real-Time PCR system (Thermo Fisher Scientific,
Loughborough, UK) and results were analysed using ABI
StepOne Software v2.3. PCR products to be used for
Sanger sequencing were purified on a MultiScreen u96
filter plate (Merck Millipore, Watford, UK) and se-
quenced using the Sanger method using Bigdye v3.1
chemistry (Life Technologies Ltd., Loughborough, UK)
and the following conditions: 96 °C for 30 s; 44 cycles at
92 °C for 4 s, 55 °C for 4 s, and 60 °C for 1 min 50 s. Iso-
propanol precipitation of sequencing reaction products
removed excess reagents and precipitated DNA was re-
suspended in 10 μL Hi-Di Formamide (Applied Biosys-
tems, Loughborough, UK). Sequencing products were
separated on an ABI 3130xl genetic analyzer and data
analysed using the Staden software package [51].

In silico tools
The Ensembl genome browser (Dog release 89) [40] and
UCSC genome browser [52] were used to obtain canine
genome sequence (Sep.2011.Broad CanFam3.1/canFam3)
to interrogate regions. Putative promoter regions were
predicted using Gene2Promoter [53] and PromoterIn-
spector [54]; and transcription factor binding sites
(TFBS) using MatInspector [55]. Genotyping data were
analysed using the PLINK software package [56]. Puta-
tive promoter regions were predicted using Gene2Pro-
moter [53] and PromoterInspector [54]; and
transcription factor binding sites (TFBS) using MatIn-
spector [55]. NNSPLICEv.0.9 [57, 58] was used to evalu-
ate splice site prediction to determine if intronic variants
of interest caused disruption or introduction of exonic
splicing or cryptic splicing.

Breed relationships in a subset of PRA4-tested LA dogs
versus a random set of KC registered LA dogs
To assess whether the Animal Health Trust (AHT)
PRA4 DNA tested population was representative of the
UK Kennel Club registered LA population, the pairwise
kinship coefficients among a subset of PRA4 tested LA
dogs born between 2009 and 2017 were compared to
dogs randomly drawn from the Kennel Club registration
database, also born between 2009 and 2017. Kinship co-
efficients between each of the dogs within each sample
were computed [59, 60], and sample mean and standard
deviation were calculated. Additionally, MDS plots were
generated to depict relatedness within and between the

AHT sample set and 1000 dogs randomly sampled from
those born between years 2009–2017.

Results
Genome-wide association study (GWAS)
A GWAS was conducted using 17 PRA cases and 27 con-
trols. After QC filtering, 108,263 SNPs were included for
the analysis of 42 dogs (15 cases and 27 controls). Analysis
of GWAS data revealed a genome-wide significant associ-
ation on canine chromosome 33 (CANFA33; −Log10
praw = 2.2 × 10− 16) (Fig. 1a). The signal remained signifi-
cant after correcting for multiple testing (pgenome = 9 ×
10− 6) (Fig. 1b). The MDS plot showed a similar distribu-
tion of cases and controls (Supplementary Figure 1). After
correcting for population stratification and sample re-
latedness, the signal on CANFA33 remained statistically
associated (P = 1.6 × 10− 17). Q-Q plots suggested potential
population stratification with a moderately increased gen-
omic inflation factor (λ = 1.36) which decreased to base-
line (λ = 1.02) following corrections (Supplementary
Figure 2).
Visualisation of SNPs either side of the most associ-

ated SNP (SNP BICF2G630247609; p-value = 2.2 ×
10− 16) in affected dogs sharing the disease-associated
haplotype identified a disease-associated interval 1.3
megabases (Mb) in size that was homozygous in 12 of
the 15 cases (Fig. 2).
The defined critical region harbours 21 genes, of

which 12 are protein coding (Table 1). Two of these
genes are potential candidates: interphotoreceptor
matrix proteoglycan 2 (IMPG2) and centrosomal protein
97 (CEP97). IMPG2 has previously been associated with
autosomal recessive RP and vitelliform macular dys-
trophy (VMD) in humans [61, 62] and is therefore a
strong candidate gene for canine PRA. CEP97 plays a
role in centrosome function and ciliary formation [63]
and although CEP97 has not directly been implicated
with human retinal degenerations, mutations in other
centrosomal protein coding genes have been associated
with both syndromic and non-syndromic retinal degen-
erations (CEP19, CEP78, CEP164, CEP250 and CEP290)
[64–75].

Identification of candidate causal variants underlying the
GWAS signal
From examination of WES data for three PRA-affected
and three unaffected LA dogs, no exonic or splice site
variants that segregated with PRA could be identified.
The 1.3 Mb homozygous interval was therefore manually
interrogated in WGS data of a PRA case using IGV soft-
ware. A LINE-1 insertion was identified within the crit-
ical region in this PRA-affected LA, situated within 200
bp upstream of the interphotoreceptor matrix proteogly-
can 2 (IMPG2) gene within the following coordinates:
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CANFA33: 7,785,475-7,785,491 (Fig. 3, track a). This in-
sertion was not visible in the WES data of a PRA case
(Fig. 3, track b). In control genomes, the insertion was
not present. Variant filtering of WGS data identified two
intronic single nucleotide variants (SNVs) situated in ret-
inal candidate genes within the critical region: one in
IMPG2 (G/T SNV; CANFA33: 7717298) and one in
CEP97 (A/G SNV; CANFA33: 8044097). In silico analysis
concluded that neither the IMPG2 or CEP97 intronic
SNVs are located within predicted donor or acceptor
splice sites or nearby any splice site predictions. The loca-
tions of these two intronic SNVs within the defined
homozygous critical region are highlighted in Fig. 2. The
LINE-1 insertion was absent in WGS data from 102 indi-
viduals of 52 other breeds and 2 crossbreeds; WGS data
from a Hungarian Vizsla dog is shown in Fig. 3, track c.
Both intronic variants were looked for in the same 102 ca-
nine genomes. The IMPG2 intronic SNV was absent in all
102 individuals and the CEP97 intronic SNV absent in
101 individuals, with one Welsh Springer Spaniel dog
identified as heterozygous for the SNV.

Sequencing the LINE-1 insertion confirms a partial
transposable element
Amplification by PCR across the LINE-1 insertion in
three LA PRA cases and three LA controls suggested a
size of 1.5–2 Kb (Fig. 4). NGS of the LINE-1 region con-
firmed an insertion of at least 1600 bp. The exact length
of the poly-A tail could not be determined due to the
low complexity of these short sequencing reads gener-
ated from the Illumina sequencing.

Variant screening
To assess the concordance of the LINE-1 insertion with
PRA, an AFLP assay was used to genotype 447 dogs of
122 breeds (Supplementary Table 9). Of the individuals in

the GWAS dataset that passed QC, all 12 LA dogs that
were homozygous for the defined critical region were clin-
ically affected and homozygous for the LINE-1 insertion
and in the control set, one heterozygote was present and
the LINE-1 insertion was absent in the other 26 dogs of
the control set. The cohort of additional controls included
PRA cases of breeds related to the LA: five Shih Tzu dogs,
seven Tibetan Spaniels and two Tibetan Terriers. All of
these dogs were homozygous for the wild type allele.
Four out of the seventeen PRA-affected individuals

included in the original GWAS dataset pre-QC filtering
were not homozygous for the 1.3Mb defined critical re-
gion. Presuming a single-gene disorder model, these four
individuals were surmised to be suffering from a genetic-
ally different PRA and were therefore excluded from
further analysis. Five additional PRA cases that were not
included in the GWAS dataset were available to genotype
for the LINE-1 insertion, the top associated SNP from
the GWAS (BICF2G630247609) and both intronic SNVs
in IMPG2 and CEP97. In total, 59 LA dogs comprising
18 PRA cases and 41 controls were genotyped for these
four variants in an attempt to assess which variant
showed the strongest segregation with PRA (Table 2).
One of the additional PRA cases (individual A18) was
homozygous for the wild type allele across all four vari-
ants. Supplementary Figure 3 shows a schematic diagram
of these four variant genotypes across the 59 LA dogs.

Promoter and transcription factor binding site predictions
To investigate whether the LINE-1 insertion may disrupt
regulation of the IMPG2 gene, in-silico analyses of the
region surrounding the insertion were performed to
search for putative regulatory sequences and promoter
sequences. The Gene2Promoter tool suggested that a
promoter region exists within 1.5 Kb of the upstream
DNA sequence of IMPG2. However when using the

Fig. 1 Manhattan plots of LA PRA GWAS. The level of genome-wide significance, determined by Bonferroni correction, is shown in (a) by a red
dashed line. The signal remained significant after correcting for multiple testing by permutation (b)
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PromoterInspector tool to predict eukaryotic Pol II pro-
moter regions in mammalian genome sequences, no
such promoter regions were predicted. Analysis of 1.5

Mb upstream and downstream of the LINE-1 insertion
breakpoints using the MatInspector tool identified 1275
matches to putative transcription factor binding sites

Fig. 2 Homozygosity mapping of SNP markers to define the critical region. SNP markers surrounding the most associated SNP from the GWAS
(SNP BICF2G630247609; text highlighted in red) in LA PRA cases (PRA-affected LA) (A1–15) and controls (PRA-unaffected LA controls) (C1–27) are
shown. The yellow coloured boxes represent the reference alleles, the pink coloured boxes highlight the alternate alleles and grey boxes
represent missing data. The 1.3 Mb critical region was homozygous in 12 of the 15 cases used in GWAS analysis, as shown by the shaded region
between positions CANFA33: 7,465,076- 8,738,020. One LA control (C10) is heterozygous for this region, in addition to two of the affected LA that
are not homozygous for the critical region, as marked by asterisks (*). Locations of the four variants later followed up after subsequent WGS
analysis (LINE-1 insertion, the top associated GWAS SNP (BICF2G630247609), and intronic SNVs in IMPG2 and CEP97) are indicated to show where
these variants lie within the critical region
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(TFBS) of which 162 were within 150 bp upstream and
downstream of the LINE-1 breakpoints. Forty-three of
these were associated with eye tissue including three
photoreceptor conserved element 1 TFBS, one cone-rod
homeobox-containing TFBS and one pituitary homeo-
box 1 TFBS (Supplementary Table 10). These five

photoreceptor specific TFBS belong to the “vertebrates
bicoid-like homeodomain transcription factor matrix
family” (matrix symbol = V$BCDF) and are located
within very close proximity to the LINE-1 insertion
(Fig. 5). All bicoid-like homeodomain TFBS within this
matrix family ‘V$BCDF’ in the dog are listed in Table 3.

Table 1 Protein coding genes situated within the 1.3 Mb critical region. An asterisk (*) highlights genes previously associated with,
or within a gene family associated with retinal degeneration in humans

Gene Name Abbreviation

ABI family member 3 binding protein AB13BP

Interphotoreceptor matrix proteoglycan 2 IMPG2*

SUMO1/sentrin specific peptidase 7 SENP7

tRNA methyltransferase 10C, mitochondrial RNase P subunit TRMT10C

PEST proteolytic signal containing nuclear protein PCNP

Zinc finger and BTB domain containing 11 ZBTB11

Centrosomal protein 97 CEP97*

Neurexophilin and PC-esterase domain family member 3 NXPE3

NFKB inhibitor zeta NFKBIZ

Zona pellucida like domain containing 1 ZPLD1

ENSCAFG00000009584 N/A; no human orthologue

Ribosomal protein L24 RPL24

Fig. 3 WGS (track a) and WES (track b) alignments over a 722 bp region on CANFA33 from a PRA-affected LA compared to control WGS data
from a PRA-unaffected Hungarian Vizsla dog (example, track c). The identified LINE-1 insertion is upstream of the retinal candidate gene IMPG2.
Grey sequencing reads show those aligning normally to the CanFam3.1 canine reference genome at this position. Coloured reads indicate that
one of the paired sequencing reads aligns to this region on CANFA33, and the mate in this pair of sequencing reads aligns to another
chromosome (each colour represents alignment to a different chromosome), consistent with the presence of a repetitive element insertion
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Using the PRA4 DNA test to estimate allele frequencies
Validation of the LINE-1 insertion enabled the develop-
ment of a DNA test to help reduce the incidence of this
PRA in the LA. This form of PRA in the LA has been
termed ‘PRA4’ to distinguish it from other forms of PRA
described in other breeds. At the time of writing, 911
LA dogs from 22 countries have been genotyped for the
IMPG2 LINE-1 insertion displaying an allele frequency
of 0.1. Genotyping data and allele frequencies are sum-
marised in Table 4.
A PRA4 homozygote (PRA4−/−) identified by the DNA

test underwent clinical follow up and was examined by a
board-certified ophthalmologist/ BVA panellist at the
AHT. Upon ophthalmoscopic evaluation at the age of
2.5 years, the LA had early retinal abnormalities consist-
ent with PRA, including tapetal hyperreflectivity, mild
attenuation of blood vessels in the retina and changes to
the optic disc colouration (Fig. 6).

Sample relatedness and kinship coefficients of LA dogs to
strengthen confidence in reported allele frequencies from
DNA testing datasets
DNA samples from dogs selected for DNA testing are a
biased sample and may not represent a random sample
of the population. We wanted to test whether the allele
frequency of the DNA tested population was materially
different to the general population of LA. To determine
if the allele frequencies reported from the PRA4 DNA
test could be described as representative of the general
LA population, statistical analysis was conducted on a
subset of PRA4 DNA tested LA. Kinship is a determin-
ant of the genetic similarity between two individuals and
a kinship coefficient is a way of quantifying the related-
ness of two individuals in an extended family or pedi-
gree. Pairwise kinship coefficients range from 0 to 1, full
siblings in outbred populations will generate a kinship
coefficient of 0.25 and half siblings a coefficient of 0.125.

Fig. 4 Agarose gel electrophoresis of three LA PRA cases (lanes 2–4), three LA PRA-unaffected controls (lanes 5–7), a negative control (lane 8) and
a DNA marker ladder (lanes 1 and 9) (NEB). The expected PCR product size in unaffected controls is 1606 bp. The product containing the LINE-1
insertion is ~ 3.5 Kb on the gel, suggesting the LINE-1 insertion is ~ 1.9 Kb in size

Table 2 Genotype distributions in LA PRA cases and controls for the four variants of interest

Variant PRA-affected LA PRA-unaffected LA

Alt/Alt Alt/Ref Ref/Ref Alt/Alt Alt/Ref Ref/Ref

IMPG2 intronic SNV (chr33:7717298) 17 0 1 0 6 35

IMPG2 LINE-1 ins 17 0 1 0 6 35

CEP97 intronic SNV (chr33:8044097) 17 0 1 0 8 33

BICF2G630247609 17 0 1 0 8 33
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The mean and standard deviation of pairwise kinship co-
efficient from the 261 AHT PRA4 tested dogs born
2009–2017 (where > 5 dogs were born in each year)
were 0.094 and 0.0501, respectively. From 1500 repli-
cates of 261 randomly sampled UK Kennel Club (KC)
registered LA dogs, also born between 2009 and 2017,
the mean pairwise kinship coefficient was 0.080 (sd
0.0258), range = 0.074–0.087 (Supplementary Figure 4).
Both the mean and SD of these pairwise kinship coeffi-
cients in the AHT PRA4 tested sample set are signifi-
cantly higher than that of the random KC registered
sample sets (P < 0.001, confidence interval test), implying
that the test sample contains some closely related indi-
viduals. Closer inspection of the distribution of pairwise
kinship coefficients between the AHT sample set and
the random replicate samples shows good concordance
over values 0 to 0.16, but notable over-representation of
kinships of the magnitude 0.161 to 0.202, and 0.421 to
0.44 in the AHT sample set (Supplementary Figure 5A-
C).
A new random sample of 1000 KC registered LA dogs

born 2009–17 was drawn, and pairwise kinships calcu-
lated for this group and the AHT sample (n = 261).

From the first three principle components used in MDS
plots, n = 16 individuals were identified as outliers (with
values < 0.5 or > 99.5 percentiles). Further investigation
determined that these comprised two family groups
(Supplementary Figure 5D). The MDS plots show that,
excluding these 16 outliers, the AHT sample set better
clusters with the random KC sample (Supplementary
Figure 6). This suggests that exclusion of these 16 out-
liers presents a population that is more representative of
the general KC registered LA population. Table 5 pro-
vides the mean of pairwise kinships (relationships) be-
tween and within various groupings: Group A = the 16
outliers from the MDS plot; Group B = the AHT subset
of PRA4 tested LA less the 16 outliers (n = 245), and
Group C = the 1000 randomly sampled KC registered
LA dogs born 2009–2017. The mean kinship values
among Group A (n = 16) is 0.223; approaching that of
full sibling level (0.25), indicating that they are more
closely related to each other than to other dogs in Group
B (0.116) and Group C (0.100). The mean kinship of
Group A with Group C is higher than that of Group B
with Group C (0.100 vs 0.078). In addition, the mean
pairwise kinship between Group B and Group C is simi-
lar to the mean pairwise-kinship within Group C (0.078
vs 0.080). Group C is the only truly random sample. The
allele frequencies of the 261 AHT PRA4 tested subset,
and the same subset minus the 16 outlier dogs are re-
ported in Table 6. Allele frequencies generated from the
DNA tested population excluding the 16 outliers can be
considered as representative of the general LA
population.

Fig. 5 TFBS within the ‘V$BCDF’ matrix family from MatInspector within a 2989 bp region over the LINE-1 insertion present in a LA PRA case.
Within this matrix family are five photoreceptor conserved element 1 TFBS, one cone-rod homeobox-containing transcription factor/otx-like
homeobox TFBS and one pituitary homeobox 1 TFBS

Table 3 Genes encoding transcription factors binding to the
TFBS sites of the ‘V$BCDF’ matrix family closely situated around
the IMPG2 LINE-1 insertion identified using MatInspector

Organism Genes for Transcription Factors

Dog CRX, DMBX1, GSC2, OTX1, OTX2, PITX1, PITX2, PITX3

Human CRX, DMBX1, GSC, GSC2, OTX1, OTX2, PITX1, PITX2, PITX3
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Discussion
In this study, a GWAS was performed to identify an
interval associated with a novel autosomal recessive form
of PRA in the LA. A statistically significant association
was identified on CANFA33 which remained significant
after correcting for multiple testing and population
stratification. Analysis of a 1.3 Mb region of homozygos-
ity on CANFA33, which was present in the GWAS PRA
cases and absent in the controls, identified a LINE-1 in-
sertion located within the predicted promoter region of
IMPG2. PRA in the LA has not been reported in the lit-
erature; however, the disease is well recognised anec-
dotally in the breed and is listed on Schedule A of the
UK BVA/KC/ISDS eye scheme. Pedigree analysis indi-
cated an autosomal recessive mode of inheritance, which
is common for canine PRAs.
The 1.3Mb disease-associated region identified from

GWAS analysis was homozygous in 12 of the 15 cases
that passed QC. Two of the three cases that were not
homozygous for the critical region were aged 6.3 years
and 10 years with a BVA certificate or veterinary referral
letter diagnosing PRA, respectively. The third dog had
been examined by a certified veterinary ophthalmologist,
with a diagnosis of suspected PRA at 11 years of age with
additional clinical notes reporting that related dogs be-
came blind due to a different eye condition; sudden ac-
quired retinal degeneration syndrome (SARDS). A
fourth PRA case, submitted after the initial GWAS, in-
cluded in variant follow-up, was also found to be

homozygous for the wild type allele for all four variants
of interest within the critical region, including the LINE-
1 insertion. This case was diagnosed with PRA at the
age of 6.8 years by a Member of the Royal College of
Veterinary Surgeons (MRCVS) and was unable to visit a
BVA panellist or certified ophthalmologist to confirm
the diagnosis. These four discordant cases are assumed
to be affected with a genetically distinct form of PRA or
a PRA phenocopy. A separate GWAS analysis of the
three dogs that were genotyped for the GWAS but were
not homozygous for the critical region was carried out
using the remaining unaffected LA from the GWAS as
control dogs, but revealed no suggestive loci (data not
shown). Recruitment of additional PRA-affected LA dogs
that are clear of the PRA4 mutation may provide scope
for future studies of a second form of PRA in the breed.
Two retinal candidate genes, IMPG2 and CEP97, are

situated within the defined critical region on CANFA33.
Both genes were manually interrogated for potential
causal variants using WES data generated from LA cases
and controls, which confirmed conclusions drawn from
prior analysis of this WES data that no candidate exonic
variants for PRA in this breed were found across the ex-
ome or within the defined critical region. This suggested
that the PRA-associated variant was within a non-coding
region not captured by the WES probes, including up-
stream promoter regions. WGS was therefore performed
on one PRA-affected LA to provide a comprehensive
genomic dataset. A PRA case homozygous for the

Table 4 Total number of LA dogs DNA tested for PRA4, showing genotypes and allele frequencies of the LINE-1 insertion

Genotypea

Cohort
PRA4 −/− PRA4 −/+ PRA4 +/+ Total Allele frequency

Across 22 countries 6 170 735 911 0.1

UK only 4 107 457 568 0.1
aThe wild type allele is represented by ‘+’ and the mutant allele by ‘-‘

Fig. 6 Fundus changes observed in a LA with PRA. a An image of the retina in the left eye of a PRA4 −/− LA dog. Bilateral tapetal hyperreflectivity
was observed as well as mild vascular attenuation and changes to the optic disc colouration. b An image of the retina of a control dog (Giant
Schnauzer dog) with a normal fundus [30]
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critical region was chosen for WGS, to ensure it was
representative of the other cases from the GWAS shar-
ing this haplotype. The critical region was explored and
a LINE-1 insertion upstream of the IMPG2 gene was
identified. Notably, no strong exonic candidate variants
were identified in CEP97; however an intronic variant in
CEP97 was considered and genotyped in a LA cohort.
Given the absence of recombination events between the
LINE-1 insertion, the most associated GWAS SNP and
the two intronic SNVs (in CEP97 and IMPG2), the geno-
type frequencies were compared. Alleles illustrated in
Supplementary Figure 3 show that all four variants are
in close proximity to one another and indicates recom-
bination events have occurred in two dogs between these
regions. The LINE-1 insertion was considered a plausible
variant as it was a better functional candidate. Although
the IMPG2 intronic SNV is as correlated as the LINE-1
insertion, predicted pathogenicity and disruption of the
IMPG2 promoter region suggested the LINE-1 insertion
as the likely causal variant of PRA in these dogs.
Dog breeds exist as isolated populations each with a

limited number of founders which has led to large re-
gions throughout the genome in linkage disequilibrium
(LD) [76, 77]. The significant LD that may be present in
individual breeds means that it can be impossible to sta-
tistically refine the number of possible causal variants
down to a single one, where regions of homozygosity
and variants in LD with one another flank a disease
locus. Studying additional individuals to continue to
monitor genotype-phenotype concordance is important
in these instances.
Mutations in IMPG2 result in autosomal recessive RP

[61] and childhood-onset rod-cone dystrophy with early
macular involvement in humans [78]. Bandah-Rozenfeld
et al. [61] identified seven different mutations patients
with early onset RP (five nonsense mutations and a 1.8
Kb genomic deletion over exon 9) and maculopathy
(one missense mutation). IMPG2 belongs to a group of
glycosylated proteins called proteoglycans, which bind

the large carbohydrates (glycosaminoglycans) in neural
tissues. The retina consists of a neural network of layer-
by-layer structures in which proteoglycans are secreted
from photoreceptor cells and reside in the extracellular
matrix bound to the retinal pigment epithelium (RPE)
[79]. The interphotoreceptor matrix (IPM) is a unique
extracellular complex surrounding retinal photoreceptor
outer segments and the RPE in the fundus of the eye,
and is crucial for supporting normal function of retinal
photoreceptors [80, 81]. Studies have suggested that the
IPM plays a role in recycling photoreceptor outer seg-
ments; in retina-RPE adhesion; the establishment of a
milieu suitable for photoreceptor survival; and in the ex-
change of molecular products between the RPE and
photoreceptor cells [80, 82, 83]. The role of IMPG2 in
retinal photoreceptors and its association with human
retinal disease therefore makes it a strong candidate
gene for canine retinal disorders.
Belonging to a group of transposable elements, LINE-1

elements are repetitive sequences present throughout
the genome. The majority are inactive, defective ele-
ments which vary in size [84]. Full length LINE-1 ele-
ments can exceed 5 Kb in length. However, they can be
truncated either at the 5′ end or further 3′ by premature
polyadenylation, the addition of a polyA tail [85, 86].
Structurally they contain a 5′ untranslated region (UTR)
with internal promoter activity, two open reading frames
(ORFs), a 3′ UTR and a polyA tail [84]. There are a var-
iety of mechanisms in which LINE-1 insertions can alter
gene expression [87–90]. Where a transposable element
is inserted upstream of a gene, transcription of that gene
may be altered by (i) introducing new regulatory ele-
ments, (ii) disruption of existing cis-regulatory elements,
or (iii) the introduction of alternative splice sites or start
sites, the latter due to an inserted promoter sequence
[84, 91].
Promoter regions are DNA sequences classically lo-

cated upstream of a gene, which, along with transcrip-
tion factors interacting with the promoter region,

Table 5 Mean kinships between and within various groupings: Group A = the 16 outliers from the MDS plot; Group B = the AHT
subset of 245 PRA4 tested LA; Group C = 1000 randomly sampled KC registered LA dogs born between the years 2009–2017

Group A (n = 16) Group B (n = 245) Group C (n = 1000)

Group A (n = 16) 0.223

Group B (n = 245) 0.116 0.091

Group C(n = 1000) 0.100 0.078 0.080

Table 6 Allele frequencies for PRA4 in the AHT subset (n = 261) and the AHT subset excluding the 16 outliers identified through the
first three principle components used in MDS plot analysis (n = 245)

Wildtype Carrier Mutant Total Allele Frequency

AHT PRA4 subset 221 38 2 261 0.081

AHT PRA4 subset excluding 16 outliers 210 33 2 245 0.076
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determine where transcription is initiated. Transcription
factors recognize short DNA sequences, called cis-
regulatory sequences, which determine which gene will
be transcribed. Promoter regions upstream of genes are
significant in transcriptional regulation, therefore muta-
tions within promoter regions are commonly associated
with disease [92]. In many eukaryotic genes, a conserved
TATA box promoter sequence is present. However,
Chen et al. [93] showed that regulatory elements exclud-
ing the TATA box were present within a 100 bp up-
stream of the 5′ end of IMPG2 and were 100%
conserved in human and mouse. Five regulatory ele-
ments including pineal regulatory elements (PIRE) were
located within this 100 bp upstream region and four
copies of the PIRE were located between 400 and 1000
bp upstream. Transcription regulation is through these
additional regulatory elements [93]. Cone-rod homeobox
(CRX), a cone-rod homeobox-containing transcription
factor/otx-like homeobox protein, is the binding partner
of PIRE, inducing transactivation of a PIRE reporter con-
struct [94] and is expressed in retinal photoreceptor
cells. In the present study, CRX is also one of the genes
encoding transcription factors represented by the
‘V$BCDF’ matrix family in the in silico prediction tool
MatInspector [55]. The presence of PIRE is thus likely to
be important in controlling the expression of IMPG2 in
photoreceptors in the retina [93]. Moreover, these TFBS
elements may be disrupted by the insertion of the LINE-
1 sequence in PRA-affected LA dogs, which in turn may
impact IMPG2 transcription and protein function. An
example of a LINE-1 element within a promoter region
associated with disease was described by Davidson et al.
in human patients with autosomal dominant corneal
endothelial dystrophies [95]. Four mutations within a
conserved promoter region of the OVOL2 gene were
suggested to alter predicted TFBS. This dysregulated
OVOL2 expression impacted the function of down-
stream genes and pathways, including transcriptional
regulation. Furthermore, transposable elements located
in non-exonic regions have been associated with inher-
ited retinal diseases in dogs. An intronic LINE-1 inser-
tion in a putative regulatory region of the MERTK gene
was found to be associated with a retinopathy in Swedish
Vallhund dogs [96]. In addition, an intronic short inter-
spersed nuclear element (SINE) insertion near the splice
acceptor site of FAM161A was identified in PRA-
affected Tibetan Spaniel and Tibetan Terrier dogs [22].
In order to determine the direct impact of a transposable
element on gene regulation or expression, as in studies
aforementioned, blood or tissue from affected individ-
uals is required. As no retinal or CRX expressing tissue
was available from any cases in the current study, a lucif-
erase assay was attempted using canine skin cells, a cell
line available for immediate use, where expression of the

IMPG2 gene was confirmed by qPCR. However, due to
the absence of CRX expression in this cell type, this lu-
ciferase assay was unsuccessful. Since the hypothesis that
transcription was disrupted by the LINE-1 element could
not be tested either by luciferase assay or RNA or pro-
tein expression analysis, the effect of the LINE-1 inser-
tion observed in this study on the IMPG2 gene can only
be speculated. The lack of tissue from affected dogs is a
common issue in canine PRA investigations, where the
majority of affected dogs do not require enucleation as a
result of the disease.
DNA tests are used by dog owners and breeders as a

tool to prevent affected offspring being born with a par-
ticular inherited condition. The outcome of this study
has been the development of a DNA test, termed PRA4,
to enable LA dogs to be tested for this form of PRA. Re-
search by Lewis and Mellersh has shown that a DNA
tested population is a biased population [97]. Therefore,
as this is a new DNA test, and as allele frequencies gen-
erated from the DNA test may not be applicable to the
general LA dog population, statistical analyses were per-
formed. It was unknown how representative of the gen-
eral population the PRA4 DNA tested population is, and
if many individuals are closely related then allele fre-
quencies and carrier rates can be skewed. Using a subset
of 261 PRA4 tested LA dogs, statistical analysis was per-
formed to compare relatedness across individuals, and
identify dogs that were closely related in the DNA tested
subset in order to try and provide a less skewed fre-
quency statistic. Sixteen outliers were apparent from the
MDS plot of kinship coefficient. Pedigree information
for these 16 individuals revealed they belonged to two
families and these dogs were therefore closely related.
The mean kinship values suggest that, although there
are some closely related individuals in the AHT PRA4
subset, generally the AHT tested sample (when dis-
counting the 16 outliers) was representative of the wider
population. Allele frequencies generated including and
excluding these outliers also support this and provide
confidence in allele frequencies generated from a DNA
tested population, particularly in the period of time im-
mediately following the availability of a new DNA test.
The recently estimated mutant allele frequency of 0.1,
generated from the 911 DNA tested LA during 2 years
of use of a DNA test based on this work, indicates that 1
in 100 dogs are likely to be affected with this form of
PRA, and an 18% carrier frequency within the LA popu-
lation. Although this population will likely include
closely related dogs, this value is well within the range
presented by estimated allele frequencies of other reces-
sive conditions in canine studies [13, 19, 21].
Clinical follow up of one PRA4 −/− individual has pro-

vided some evidence that the age of onset in the breed is
variable, where clinical signs of retinal changes can be
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present from as early as 2.5 years of age. Where provided
with sample clinical information, the age of onset of
PRA cases homozygous for the disease-associated haplo-
type from the GWAS varied, ranging from aged 1.75–10
years. The owner of the PRA4−/− individual had not no-
ticed behavioural changes or signs that the dog’s vision
was deteriorating, suggesting these were early signs of
the slowly progressive disease that were only apparent
upon ophthalmoscopic examination. Continual annual
checks of this dog and other PRA4 −/− LA dogs will help
describe the rate of progression of PRA in this breed.

Conclusions
We have identified a LINE-1 insertion upstream of the
IMPG2 gene that strongly segregates with PRA in LA
dogs. Extensive genotyping of this variant in multiple
breeds strongly suggested that the LINE-1 insertion is
private to the LA and was only present in PRA-affected
dogs. Utilisation of the PRA4 DNA test will, over time,
help reduce the frequency and incidence of this muta-
tion in the LA breed.
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Additional file 1: Supplementary Table 1. (A) PCR primers used for
sequencing amplicons of 18 known canine retinal mutations in the PRA-
affected LA sent for WGS. (B) PCR primers used for genotyping seven
known canine retinal mutations in the PRA-affected LA sent for WGS (by
PCR followed by amplified fragment length polymorphism (AFLP) analysis
or by visualisation of PCR product on an agarose gel). Supplementary
Table 2. Multiplex PCR amplification using pooled primers. Supplemen-
tary Table 3. Thermal cycling conditions for multiplex PCR amplification
using pooled primers. Supplementary Table 4. Reaction for IMPG2
LINE-1 insertion amplification for size determination. Supplementary
Table 5. Thermal cycling conditions to amplify IMPG2 LINE-1 insertion.
Supplementary Table 6. Primer sequences to amplify candidate variant
regions. Supplementary Table 7. Amplification of IMPG2 LINE-1 inser-
tion for amplified fragment length polymorphism analysis. Supplemen-
tary Table 8. Thermal cycling conditions for amplification of IMPG2
LINE-1 insertion for amplified fragment length polymorphism analysis.
Supplementary Table 9. Breed names for 447 dogs of 123 breeds that
were screened for the IMPG2 LINE-1 insertion. Supplementary Table 10.
Forty-two transcription factor binding site predictions from MatInspector
in eye tissue within 150 bp upstream and downstream of the IMPG2
LINE-1 breakpoints. Five of these are bicoid-like homeodomain transcrip-
tion factors (highlighted in orange) and are specific to photoreceptor
cells in the retina. Supplementary Figure 1. A multi-dimensional scal-
ing plot to determine relatedness between the case and control sample
sets showed a similar distribution of 15 cases and 27 controls analysed in
the GWAS. Supplementary Figure 2. (A) The quantile-quantile (Q-Q)
plot of the expected and observed –log10 p values generated from PLINK
derived a genomic inflation factor, lambda (λ) =1.36. (B) The Q-Q plot
after correcting for population stratification using EMMAX showed a de-
creased inflation factor, λ =1.02. Supplementary Figure 3. A schematic
diagram showing genotypes for four variants across 18 PRA-affected (A1–
18) LA and 41 PRA-unaffected (C1–41) LA: homozygous alternate allele
(coloured pink), homozygous wild type/reference allele (coloured yellow)
or heterozygous (coloured pink and yellow). Supplementary Figure 4.
The distribution of the random sample sets mean pairwise kinships (blue
histogram), and the AHT PRA4 DNA tested sample set (red dotted line).
Supplementary Figure 5. (A-C) Histograms showing the proportion of

pairwise relationships across the random sample sets and the AHT PRA4
DNA tested subset; (D) Pedigree drawing of the 16 outliers belonging to
two distinct families: circle = female, square = male, diamond = unknown,
shaded diamond = not included in our data set. Supplementary Figure
6. (A) Multi-dimensional scaling plot to determine relatedness within
each sample set. Red points represent the 261 AHT PRA4 tested samples,
blue points represent 1000 randomly selected KC registered dogs born
2009–2017); (B) zoomed in on central cluster in (A) showing the main
body of the AHT sample set (red) is representative of a random sample
(blue).
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