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Optimizing the data combination rule for
seamless phase II/III clinical trials
Lisa V. Hampsona*† and Christopher Jennisonb

We consider seamless phase II/III clinical trials that compare K treatments with a common control in phase II
then test the most promising treatment against control in phase III. The final hypothesis test for the selected
treatment can use data from both phases, subject to controlling the familywise type I error rate. We show that the
choice of method for conducting the final hypothesis test has a substantial impact on the power to demonstrate
that an effective treatment is superior to control. To understand these differences in power, we derive decision
rules maximizing power for particular configurations of treatment effects. A rule with such an optimal frequentist
property is found as the solution to a multivariate Bayes decision problem. The optimal rules that we derive
depend on the assumed configuration of treatment means. However, we are able to identify two decision rules
with robust efficiency: a rule using a weighted average of the phase II and phase III data on the selected treatment
and control, and a closed testing procedure using an inverse normal combination rule and a Dunnett test for
intersection hypotheses. For the first of these rules, we find the optimal division of a given total sample size
between phases II and III. We also assess the value of using phase II data in the final analysis and find that for
many plausible scenarios, between 50% and 70% of the phase II numbers on the selected treatment and control
would need to be added to the phase III sample size in order to achieve the same increase in power. © 2014 The
Authors. Statistics in Medicine published by John Wiley & Sons Ltd.
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1. Introduction

In the traditional framework for drug development, a phase II clinical trial compares several doses or
formulations of a new treatment against a control. The most promising of these, in terms of efficacy, safety
and possibly other considerations, is taken forward to phase III where investigators hope to confirm the
benefits of the new treatment in one or two ‘pivotal’ clinical trials.

There has been significant recent interest in combining these two stages of the development process.
If a trial follows a ‘seamless’ design, merging the usual phase II and phase III components, there is
opportunity to gain additional value from the phase II data by using these together with phase III data
in the final analysis. Regulators are liable to treat a combined phase II/III trial as a single study and
require a complete protocol to be specified at the outset. This allows a monitoring committee to respond
to results on all aspects of the treatments and patient responses at interim points during the trial without
further input from the sponsors, who remain blinded to interim results. Seamless designs can be complex,
and substantial effort may be required to plan their smooth conduct and establish the validity of the
proposed analysis. Thus, it is important that the gains from using phase II data in the final analysis justify
this investment.

A variety of methods is available to combine data from the two stages of a seamless design with
proper protection of the type I error probability. Thall et al. [1] propose two-stage designs with treatment
selection at the interim analysis. Sampson and Sill [2] derive most powerful procedures within a certain
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class of tests combining data from two stages. Bretz et al. [3] and Schmidli et al. [4] present seamless
phase II/III designs that use closed testing procedures [5] to control the familywise type I error rate and
combination tests [6] to combine data from the two stages in the final hypothesis test.

It is not obvious how to choose between the various options for combining data across two phases of
a seamless trial. Our aims are to identify efficient ways of doing this and, hence, quantify the potential
benefits of using phase II data in a final combined analysis. We shall show how to derive an optimal
final decision rule, maximizing the probability of selecting the best treatment and declaring it efficacious,
under a particular configuration of treatment effects. In some cases, the decision rules we derive only
control the familywise error rate over part of the parameter space—but they are still useful as they provide
an upper bound on the attainable power and this can be enough to show that certain decision rules, which
do control the familywise error rate, are very close to optimal.

In view of the high dimensionality of the parameter space, one would not expect a single data combina-
tion rule to be optimal for all parameter vectors. Nevertheless, we have found rules with robust efficiency
across a wide range of scenarios. Having an efficient final decision rule is an important pre-requisite
for investigating other aspects of phase II/III designs: given such a rule, one can optimize the division
of resources between phases or assess the benefits of other phase II options, such as response adaptive
allocation of patients to treatments.

In Sections 2 and 3, we formulate the two-stage problem and describe a selection of the final decision
rules. We apply these rules to an example in Section 4 and compare their power functions. In Section 5,
we derive optimal decision rules for particular configurations of treatment effects: the form of the optimal
rules in Section 5.1 helps explain the rather surprising results seen in Section 4, and we solve more general
optimization problems in Sections 5.2 and 5.3. In Section 6, we compare final decision rules across a
range of parameter configurations and identify rules that are highly efficient across a wide variety of
situations. In Section 7, we focus on one of these robustly efficient rules and show how to determine
the most efficient division of resources between phases II and III. In Section 8, we assess the benefits of
using phase II data in the final decision by computing the number of additional phase III observations
that would be needed to produce the same improvement in power. We conclude with a discussion of the
implications of our results to extensions of the seamless phase II/III design that we have considered.

2. Problem formulation

Henceforth, we shall refer to the two parts of a seamless phase II/III design as stage 1 and stage 2. We
consider the format of Thall et al. [1] in which K experimental treatments are compared with a control
in stage 1 and one of these is selected to be tested against the control in stage 2.

We suppose patient responses are normally distributed with known variance 𝜎2 and means 𝜇0 on the
control arm and 𝜇i, i = 1,… ,K, on treatment arms, with a high mean indicating a successful treat-
ment. We assume that the primary endpoint, the study population and the treatment definitions remain
unchanged throughout the trial, so the response distribution for a given treatment in stage 2 is the same
as in stage 1. The treatment effects are 𝜃i = 𝜇i − 𝜇0, i = 1,… ,K, and for now, we make no assumptions
about the structure of the vector 𝜽 = (𝜃1,… , 𝜃K). There are K one-sided null hypotheses H0,1: 𝜃1 ⩽ 0,
…, H0,K : 𝜃K ⩽ 0 that may be tested, depending on which treatment is selected at the end of stage 1.

Following Thall et al. [1] (hereafter TSE), we proceed as follows:

In stage 1, randomize m1 patients to each treatment i = 1,… ,K and the control arm and calculate
maximum likelihood estimates �̂�1,i = �̂�1,i − �̂�1,0, i = 1,… ,K, of the K treatment effects. Let i⋆ denote
the treatment with maximum �̂�1,i. If

�̂�1,i⋆ = max
i=1,…,K

{
�̂�1,i

}
< 𝓁, (1)

stop the trial for futility, rejecting no null hypotheses. Otherwise, continue to stage 2 selecting treatment
i⋆ for comparison with the control.

In stage 2, randomize m2 patients to each of treatment i⋆ and the control. Denote the estimate of 𝜃i⋆ based
on stage 2 data only by �̂�2,i⋆ = �̂�2,i⋆ − �̂�2,0.
In the final analysis, reject H0,i⋆ : 𝜃i⋆ ⩽ 0 in favour of 𝜃i⋆ > 0 if

T
(
�̂�1,1,… , �̂�1,K , �̂�2,i⋆

)
⩾ CT (K,m1,m2), (2)

40

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58



L. V. HAMPSON AND C. JENNISON

where the function T and critical value CT (K,m1,m2) are pre-specified.

The familywise error rate (FWER) under 𝜽 of such a procedure is defined as pr{reject any true H0,i; 𝜽}.
We shall consider procedures that control the FWER strongly at level 𝛼; that is, they have the property

pr{reject any true H0,i; 𝜽} ⩽ 𝛼 for all parameter vectors 𝜽.

Let imax be the index of the treatment with the highest effect 𝜃i. Under parameter vectors 𝜽 for which
imax is unique and 𝜃imax

> 0, we define the power of a procedure to be

pr
{

select treatment imax and reject H0,imax
; 𝜽

}
. (3)

Methods of data combination differ in the definition of the function T in (2) and the associated critical
value CT (K, m1, m2). Our aims are to compare the power of different final decision rules and identify
those with close to optimal power for a variety of vectors 𝜽.

Searching for an optimal decision rule is a complex task because power depends on the K-dimensional
𝜽. It may be appropriate to focus on achieving high power under certain forms of 𝜽, particularly if ‘treat-
ments’ are doses of a single compound. Rules attuned to situations where the treatment effects 𝜃1,… , 𝜃K
are high or low together may be thought of as ‘borrowing strength’ for inference about 𝜃i⋆ from other
stage 1 estimates �̂�1,i, i ≠ i⋆. However, the correlations between �̂�1,1,… , �̂�1,K , because of the com-
mon control arm in stage 1, also affect how these estimates should be weighted in the overall statistic
T
(
�̂�1,1,… , �̂�1,K , �̂�2,i⋆

)
.

3. Methods for data combination

In this section, we outline the decision rules underlying six methods for data combination used in our
numerical investigations of power. In our simulations, we have applied the futility stopping rule in (1)
with 𝓁 = 0. We calibrated the critical values of all six decision rules so that tests attain overall type I
error rate 𝛼 when 𝜽 = (0,… , 0) adjusting for the possibility of early stopping, arguing for each test that
this ensures strong control of the FWER at level 𝛼. Therefore, the higher power achieved by a decision
rule can be attributed to an efficient use of the available data rather than a higher type I error rate.

Conventional test: In the conventional approach with separate phase II and phase III studies, only phase III
data are used in making the final decision to accept or reject H0,i⋆ . Let Z2,i⋆ = �̂�2,i⋆∕

√
(2𝜎2∕m2) denote

the standardized test statistic based on stage 2 data. To account for the possibility of stopping after
stage 1 for futility, we reject H0,i⋆ if

Z2,i⋆ ⩾ Φ−1

(
1 − 𝛼

pr
{

maxi

{
�̂�1,i

}
⩾ 0; 𝜽 = 𝟎

}) = Φ−1
(

1 − K + 1
K

𝛼

)
,

whereΦ denotes the standard normal cumulative distribution function and 𝟎 denotes the parameter vec-
tor (0,… , 0). The overall type I error rate under 𝜽 = 𝟎 is exactly 𝛼, and it follows from the arguments
of Jennison and Turnbull [7, Section 3] that the FWER is controlled strongly at level 𝛼.

TSE decision rule: Adapting the procedure of Thall, Simon and Ellenberg [1] to a normal response, we
define

Z1,i⋆ =
�̂�1,i⋆√

(2𝜎2∕m1)
and Z2,i⋆ =

�̂�2,i⋆√
(2𝜎2∕m2)

.

and reject H0,i⋆ if

w1 Z1,i⋆ + w2 Z2,i⋆ > CTSE(K, m1, m2),

where wi =
√
{mi∕(m1 + m2)}, i = 1, 2, and CTSE(K, m1, m2) is chosen to give FWER 𝛼 when 𝜽 = 0.

Jennison and Turnbull [7] note that this ensures the FWER is controlled strongly at level 𝛼.

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58
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Combination tests: Bretz et al. [3] and Schmidli et al. [4] present a variety of adaptive designs for seamless
phase II/III clinical trials. These proposals follow the general approach of Bauer and Kieser [8] for
making mid-study data-dependent adaptations while preserving trial integrity. They use closed testing
procedures [5] to control the FWER and combination tests [6] to conduct hypothesis tests using data
from the two stages.

Denote the set of indices i of null hypotheses H0,i by  = {1,… ,K}. A closed testing procedure
requires an 𝛼-level test of the intersection hypothesis H0,I =

⋂
i∈I H0,i for each subset I of ; this test

will reject H0,I with probability at most 𝛼 when all H0,i with indices i ∈ I are true. Tests of intersection
hypotheses H0,I combine data from the two stages of the trial. A combination test of H0,I is defined in
terms of one-sided p-values P1,I and P2,I for H0,I based on stage 1 and stage 2 data, respectively. Note
that ‘stage 2 data’ refers to new data in stage 2, not the cumulative data at the end of stage 2. Using the
inverse 𝜒2 rule (originally proposed by Fisher [9] for combining separate experiments) to combine p-
values in the test for each intersection hypothesis in the closed testing procedure, we obtain an overall
decision rule that rejects H0,i⋆ if

min{I⊆∶ i⋆∈I}{− log(P1,I) − log(P2,I)} > 0.5𝜒2
4,1−𝛼, (4)

where 𝜒2
4,1−𝛼 is the value exceeded with probability 𝛼 by a 𝜒2

4 random variable. We refer to this as
the ‘BK inverse 𝜒2’ decision rule. Alternatively, using the inverse normal combination rule [10,11] to
combine p-values gives the ‘BK inverse normal’ decision rule, which rejects H0,i⋆ if

min{I⊆∶ i⋆∈I}{w1 Z1,I + w2 Z2,I} > Φ−1(1 − 𝛼), (5)

where, as in the TSE method, wi =
√
{mi∕(m1 + m2)}, i = 1, 2. There are various choices for

defining the p-values for intersection hypotheses in the previous methods. In our simulations, we
compared the efficiencies of methods when Simes [12] and Dunnett [13] p-values are used for inter-
section hypotheses.

Because the trial may stop for futility after stage 1, all the previous procedures have an FWER below 𝛼.
Additional conservatism arises from using Simes’ method to define p-values for intersection hypotheses
arising from multiple comparisons with a common control [14]. So as not to disadvantage methods using
Simes’ test in our investigations of decision rules, we have adjusted the critical values on the right-hand
sides of (4) and (5) so that the FWER is 𝛼 under 𝜽 = 0 proceeding on the assumption that this is a
sufficient condition to ensure strong control of the FWER. In fact, it is difficult to give a general proof
that the probability of a type I error is decreased when one treatment effect, say 𝜃i, is increased above
zero: because H0,i is now false, rejecting it no longer counts as a type I error but, against this, a low p-
value for treatment i may reduce the p-value for an intersection hypothesis involving a selected treatment
i⋆ ≠ i. We have used simulation to check the implications of these lower critical values in our examples,
and in all cases, we found the type I error rate to be controlled at level 𝛼 with some conservatism: see the
supporting information accompanying this manuscript for further discussion.

We now illustrate the application of the previous testing procedures in an example.

4. Illustrative example

Liu and Pledger [15] discuss a seamless phase II/III trial comparing five doses of a treatment for migraine
headaches against placebo. We simplify this example by assuming that both stages of the trial measure the
same clinical endpoint, the decrease in monthly headache rate over 4 months. Responses are assumed to
be normally distributed with standard deviation 𝜎 = 5. A reduction of 2 in the average monthly headache
rate, compared with placebo, is taken to be clinically meaningful, and high power is desired to detect a
dose with such an effect.

In our notation, K = 5 and for each dose i = 1,… ,K, we wish to test H0,i: 𝜃i ⩽ 0 against 𝜃i > 0. While
controlling the FWER strongly at 𝛼 = 0.025, we desire high power to select and declare efficacious a
dose with a treatment effect 𝜃i = 2. Suppose the trial follows a two-stage design with m1 = 28 patients
randomized to each dose and placebo in stage 1 and a further m2 = 140 allocated to each of dose i⋆

and placebo when sampling continues to stage 2. Such unequal division of resources between phases
is common in practice, with larger sample sizes devoted to confirming efficacy of the selected dose in
phase III.

42

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58



L. V. HAMPSON AND C. JENNISON

Table I. Critical values for six decision rules testing H0,i⋆ : 𝜃i⋆ ⩽ 0 against
𝜃i⋆ > 0.

Design Test statistic Critical value

Conventional Z2,i⋆ 1.881
TSE w1Z1,i⋆ + w2Z2,i⋆ 2.245
BK inverse 𝜒2 (Simes) min{I⊇i⋆}{− log(P1,IP2,I)} 5.342
BK inverse 𝜒2 (Dunnett) min{I⊇i⋆}{− log(P1,IP2,I)} 5.539
BK inverse normal (Simes) min{I⊇i⋆}{w1 Z1,I + w2 Z2,I} 1.851
BK inverse normal (Dunnett) min{I⊇i⋆}{w1 Z1,I + w2 Z2,I} 1.958

These rules control familywise type I error rate at level 𝛼 = 0.025 for K = 5,
m1 = 28, m2 = 140, 𝓁 = 0 and 𝜎 = 5.
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Figure 1. Power of six decision rules under 𝜽 = (0, 0, 0, 0, 𝛿) when m1 = 28, m2 = 140, 𝓁 = 0, 𝜎 = 5, and FWER
is controlled strongly at 𝛼 = 0.025. All estimates are based on 1 million simulations. The legend lists rules in

order of decreasing power.

Table I lists the critical values needed to implement the six decision rules described in Section 3 with
a familywise type I error rate of 0.025.

Suppose that only the highest dose gives an improvement over placebo and the vector of treatment
effects has the form 𝜽 = (0, 0, 0, 0, 𝛿). Figure 1 shows the power of each decision rule, as a function of
𝛿, to select dose 5 and reject H0,5. Results are based on 1 million replicates in each scenario considered,
so standard errors of estimated probabilities are at most 0.0005. The TSE procedure is most powerful
at all values of 𝛿, closely followed by the BK inverse normal combination test using Dunnett p-values
for intersection hypotheses. Surprisingly, the three other combination tests have lower power than the
conventional test that does not use the phase II data at all. Differences in power are as high as 0.05 in
places: the values of 𝛿 at which different rules attain the same power differ by up to 5% and, supposing
the sample size needed to achieve a given power to be roughly proportional to 𝛿−2, this translates into
differences in sample size of up to 10%.

The results in Figure 1 parallel those of Jennison and Turnbull [16, Section 5.3] for an example with
K = 4, m1 = 100, m2 = 500 and 𝜎 = 5 (although those authors did not consider methods using
Dunnett tests). The failure in both examples of some decision rules to improve on the conventional test,
which ignores stage 1 data, motivated our investigation of the underlying decision rules. We shall also
investigate whether the same patterns of relative efficiency occur for other forms of 𝜽 and consider what
is the optimal division of resources between phases II and III when the total sample size has been fixed.
In order to explore these issues, we shall derive optimal decision rules for particular forms of 𝜽 and study
the structure of these rules.

5. Optimal data combination rules

5.1. Optimizing power for a family of configurations of 𝜽

In the framework of Section 2, the function T
(
�̂�1,1,… , �̂�1,K , �̂�2,i⋆

)
in (2) specifies a decision rule. We seek

to optimize this function while protecting the FWER. We shall consider a variety of configurations of 𝜽,

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58
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chosen to cover a wide range of plausible possibilities. We first consider vectors 𝜽, which are permutations
of (𝛾 𝛿,… , 𝛾 𝛿, 𝛿), where 0 ⩽ 𝛾 < 1 and the value 𝛿 is equally likely to appear in each of the K positions.
We seek the decision rule with the highest probability, averaged over the K permutations of 𝜽, of selecting
the treatment with effect 𝛿 in stage 1 and rejecting the associated null hypothesis in stage 2. This is in
keeping with the definition of power used by TSE that focuses on selecting the treatment with the highest
effect when other treatment effects are lower by a specified margin. We shall require rules to have type I
error rate at most 𝛼 when 𝜽 = 0: we have seen in Section 3 that this is a sufficient condition for some
rules to provide strong control of the FWER but we shall have to check this property for the new rules
that we derive.

We proceed by defining a Bayes decision problem with a prior distribution for 𝜽 and costs for each
possible decision. We then search over values of these costs to find a version of this problem for which
the optimal Bayes rule has type I error rate 𝛼 under 𝜽 = 0 and so solves the problem originally stated
in frequentist terms. The method of re-casting a frequentist problem as a Bayes decision problem has
been used to find optimal group sequential tests; see, for example, [17–21]. In our problem, power
depends on a vector of treatment effects, and we handle this by dealing with a one-dimensional sub-
set of vectors 𝜽 at a time. This provides a benchmark for each family of 𝜽 vectors, against which other
decision rules can be compared. While it is desirable to have a single rule with robust efficiency in a
wide variety of situations, it could be that quite different rules are needed to achieve high power for dif-
ferent configurations of 𝜽, in which case, the importance of these different scenarios should guide the
overall choice.

For our first problem, with 𝜽 a permutation of (𝛾 𝛿,… , 𝛾 𝛿, 𝛿), let 𝝃i denote the vector with 𝜃i = 𝛿

and the other K − 1 elements equal to 𝛾 𝛿. Define a prior distribution for 𝜽 with discrete mass func-
tion 𝜋(𝜽) placing probability 1∕(K + 1) on each of the cases 𝜽 = 𝟎 and 𝜽 = 𝝃i, i = 1,… ,K.
The only hypothesis that can be rejected when treatment i is selected for stage 2 is H0,i. Thus,
the set of possible actions is {A0, A1,… ,AK} where, for i ⩾ 1, Ai means that treatment i is
selected after stage 1 and H0,i is rejected at the end of stage 2, while A0 indicates stopping for futil-
ity at stage 1 or continuing to stage 2 but failing to reject any H0,i. We define the loss function
L(𝜽,A) as

L(𝟎,Ai) = c1 for i = 1,… ,K,

L(𝝃i,Ai) = −c2 for i = 1,… ,K,

L(𝜽,A) = 0 otherwise.

The reward for correctly rejecting H0,i appears as the negative cost −c2, and the penalty for failing to
reject H0,i when 𝜽 = 𝝃i is the absence of this reward. Our original criteria concern power to declare
efficacy of treatment i when 𝜽 = 𝝃i but do not differentiate between ways of failing to reject H0,i when
𝜽 = 𝝃i; hence, we define the same loss, of zero, for actions A0 and Aj, j ⩾ 1 and j ≠ i, in this case.

The Bayes rule for the problem that we have defined minimizes the Bayes risk

c1 𝜋(𝟎)
K∑

i=1

pr{Ai ∣ 𝜽 = 𝟎} − c2

K∑
i=1

𝜋(𝝃i) pr{Ai ∣ 𝜽 = 𝝃i}

= c1 𝜋(𝟎) pr{select any treatment i and reject H0,i ∣ 𝜽 = 𝟎}

− c2

K∑
i=1

𝜋(𝝃i) pr{select treatment i and reject H0,i ∣ 𝜽 = 𝝃i}.

(6)

Suppose that treatment i⋆ is selected and data at the end of stage 2 are summarized as

Di⋆ =
(
�̂�1,1,… , �̂�1,K , �̂�2,i⋆

)
.

Either action A0 or action A⋆
i must be taken. Let 𝜋

(
𝜽 ∣ Di⋆

)
denote the posterior distribution of 𝜽 given

data Di⋆ . If action A⋆
i is chosen, so H0,i⋆ is rejected, the posterior expected loss is

c1 𝜋
(
𝟎 ∣ Di⋆

)
− c2 𝜋

(
𝝃i⋆ ∣ Di⋆

)
. (7)
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All costs associated with action A0 are zero, so if this action is chosen and H0,i⋆ is not rejected, the loss
is exactly zero. Thus, the Bayes rule that minimizes (6) rejects H0,i⋆ if and only if (7) is negative or,
equivalently, if

𝜋
(
𝝃i⋆ ∣ Di⋆

)
𝜋
(
0 ∣ Di⋆

) >
c1

c2
. (8)

Because the prior probabilities of 𝜽 = 0 and 𝜽 = 𝝃i⋆ are equal, the left-hand side of (8) is simply the
likelihood ratio of the observed data under 𝜽 = 𝝃i⋆ and 𝜽 = 0.

Given 𝜽, the stage 1 estimates �̂�1 =
(
�̂�1,1,… , �̂�1,K

)
are distributed as �̂�1 ∼ N(𝜽,V), where Vii =

(2𝜎2∕m1) for i = 1,… ,K and Vii′ = (𝜎2∕m1) for i ≠ i′. The inverse of V has elements

V−1
ii = K

K + 1

m1

𝜎2
, i = 1,… ,K, and V−1

ii′ = −1
K + 1

m1

𝜎2
, i ≠ i′.

The log likelihood ratio of�̂�1 under 𝜽 = 𝝃i⋆ and 𝜽 = 𝟎 is

�̂�
T

1 V−1 𝝃i⋆ −
1
2
𝝃T

i⋆ V−1 𝝃i⋆ =
m1 𝛿

(K + 1) 𝜎2

[
{K − (K − 1)𝛾}�̂�1,i⋆ + (2𝛾 − 1)

∑
i≠i⋆

�̂�1,i

]
− g

𝛿2

𝜎2
(9)

for some constant g. The log likelihood ratio for the stage 2 data �̂�2,i⋆ is

m2

2 𝜎2
�̂�2,i⋆𝛿 −

m2

4 𝜎2
𝛿2. (10)

Adding (9) and (10) gives the log likelihood ratio of Di⋆ under 𝜽 = 𝝃i⋆ and 𝜽 = 𝟎. It follows that the
condition for the Bayes test to reject H0,i⋆ can be written as

m1

K + 1

[
{K − (K − 1)𝛾}�̂�1,i⋆ + (2𝛾 − 1)

∑
i≠i⋆

�̂�1,i

]
+

m2

2
�̂�2,i⋆ ⩾ c, (11)

where

c = 𝜎2

𝛿
log

(
c1

c2

)
+
(

g +
m2

4

)
𝛿. (12)

The constant c is an increasing function of the ratio c1∕c2. Also, c depends on 𝛿, but the expression on
the left-hand side of (11) does not.

Suppose c is such that the rule given by (11) has type I error rate 𝛼 when 𝜽 = 𝟎. For any given 𝛿, there
are costs c1 and c2 that satisfy (12) with this c. Hence, the decision rule (11) minimizes (6) for this 𝛿 and
the pair (c1, c2), and so, it maximizes

K∑
i=1

𝜋(𝝃i) pr{select treatment i and reject H0,i ∣ 𝜽 = 𝝃i}

amongst all rules with type I error rate less than or equal to 𝛼 when 𝜽 = 0. Thus, this decision rule solves
the problem posed at the start of this section, and we note that, by construction, the same rule is optimal
for all values of 𝛿.

We can find this optimal rule by searching for the constant c in (11) that gives type I error rate 𝛼 under
𝜽 = 𝟎. Because we use simulation to estimate error rates, we have applied the Robbins–Monro algorithm
[22] to search for the value of c that satisfies this condition.

Setting 𝛾 = 0 gives the example of Section 4 where 𝜽 is a permutation of (0,… , 0, 𝛿). In this case,
estimates �̂�1,i for treatments other than i⋆ have negative weights in (11). This is a consequence of the
correlation between estimates �̂�1,i and �̂�1,i⋆ for i ≠ i⋆ caused by the common control arm: for the values
𝜽 = 𝝃i⋆ and 𝜽 = 0 appearing in the likelihood ratio in (8), all 𝜃i for i ≠ i⋆ are zero, and, because
positive values of �̂�1,i for i ≠ i⋆ may be due to lower than average responses on the control arm in stage 1,
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this possibility detracts from the evidence a positive �̂�1,i⋆ provides in support of 𝜃i⋆ = 𝛿. If some of
the 𝜃i are decreased while others remain equal to zero, the negative weights for �̂�1,i, i ≠ i⋆, are likely
to lead to higher values of the left-hand side of (11), increasing the probability of rejecting H0,i⋆ . Thus,
the decision rule (11) does not control the FWER strongly at level 𝛼. The form of this decision rule
is, nevertheless, instructive. The desirability of negative weights for the �̂�1,i, i ≠ i⋆, explains the poor
performance of tests using Simes’ rule, which treats good performance of other treatments as supporting
evidence in favour of treatment i⋆. The conventional procedure ignores all first-stage data, so at least it
does not give weights of the wrong sign to �̂�1,i, i ≠ i⋆. Dunnett p-values for intersection hypotheses are
appropriate when only one treatment is efficacious as they focus on the single treatment with the highest
estimated effect. If we retain the form of the test statistic in (11) but modify it so that all weights are
non-negative in order to maintain strong control of the FWER, we obtain a linear combination of �̂�1,i⋆

and �̂�2,i⋆ . The TSE decision rule has this form: it is the likelihood ratio test between 𝜽 = 𝝃i⋆ and 𝜽 = 0
based on �̂�1,i⋆ and �̂�2,i⋆ only, and we conjecture that the TSE procedure is very close to optimal for the
case 𝛾 = 0.

In (11), the weights for estimates �̂�1,i with i ≠ i⋆ are negative if 𝛾 < 0.5, zero for 𝛾 = 0.5 and positive
if 𝛾 > 0.5. We show in the Appendix how these weights can be obtained by fitting a linear regression
model to the stage 1 data and the signs of the weights follow from this representation. For 𝛾 < 0.5, the
negative weights imply that tests of this form do not control the FWER strongly and, as for 𝛾 = 0, we
conjecture that the TSE procedure is close to optimal.

If 𝛾 = 0.5, the optimal decision rule has zero weights for �̂�1,i, i ≠ i⋆, and is precisely the TSE rule.
Thus, the TSE rule provides the ideal solution in this case where there is one high treatment and other
effects are at an intermediate level. As noted in Section 3, strong control of the FWER does follow from
controlling the type I error rate at 𝜽 = 0 in this case. When 𝛾 ⩾ 0.5, the weight of each �̂�1,i is positive
and, by the arguments applied for Simes’ rule in Section 3, we expect that controlling the type I error rate
at 𝜽 = 0 implies strong control of the FWER for all possible vectors 𝜽.

Figure 2 compares power curves of optimal decision rules and the six methods introduced in Section 3
in the example of Section 4, with K = 5 treatments and a control. Panels (a) and (b) of Figure 2 show
power curves for 𝛾 = 0.5, the case in which the TSE rule is optimal.

We see that the two BK inverse normal combination tests have almost the same power as the TSE rule:
for the test using Simes’ rule, this is a significant improvement over the case 𝛾 = 0 seen in Figure 1.
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Figure 2. Power achieved by decision rules in the example of Section 4 when 𝜽 is a random permutation of
(𝛾, 𝛾, 𝛾, 𝛾, 1) 𝛿 with (a) - (b) 𝛾 = 0.5 and (c) - (d) 𝛾 = 0.75. Decision rules are listed in order of decreasing power.

Results are based on 1 million simulations for each scenario.
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However, the two BK inverse 𝜒2 combination tests still have lower power than the conventional test using
stage 2 data only. The power curves for 𝛾 = 0.75 in panels (c) and (d) show the TSE rule and the two BK
inverse normal combination tests to be almost as powerful as the optimal decision rule for this case, and
now the two BK inverse 𝜒2 combination tests have a small advantage over the conventional test.

The power curves for 𝛾 = 0.75 are noticeably lower than for 𝛾 = 0.5 because of the higher probability
of a sub-optimal treatment being selected after stage 1. If a final decision in favour of a sub-optimal treat-
ment with sufficiently high effect size is deemed acceptable, the definition of power could be modified
to include this. Such a definition would certainly be reasonable in the limit as 𝛾 → 1.

5.2 Optimizing power for general configurations of 𝜽

The approach of Section 5.1 can be extended to obtain decision rules that maximize power averaged over
the K! permutations of (𝛾1,… , 𝛾K−1, 1) 𝛿, where 0 ⩽ 𝛾1 < … < 𝛾K−1 < 1, subject to a type I error rate
of at most 𝛼 when 𝜽 = 0. As before, power is defined to be the probability of selecting the treatment
imax with the highest effect and then rejecting H0,imax

. The optimal decision rule can then be examined to
check whether controlling the type I error at 𝜽 = 0 implies strong control of the FWER.

Let Q denote the set of K! parameter vectors 𝜽 obtained by permuting the elements of (𝛾1,… , 𝛾K−1, 1) 𝛿.
In our Bayes decision problem, we define the prior distribution 𝜋(𝜽) on 𝜽 ∈ Q to give probability 1∕(K+1)
to 𝜽 = 0 and 1∕{(K + 1) (K − 1)!} to each element of Q. For i = 1,… ,K, let Qi be the subset of Q
containing vectors 𝜽 with 𝜃i = 𝛿. With actions A0, A1,… ,AK as defined in Section 5.1, we define the
loss function L(𝜽,A) to be

L(𝟎,Ai) = c1 for i = 1,… ,K,

L(𝜽,Ai) = −c2 for all 𝜽 ∈ Qi, i = 1,… ,K,

L(𝜽,A) = 0 otherwise.

When treatment i⋆ is selected in stage 1, either action A0 or A⋆
i must be taken after stage 2. We seek the

Bayes rule that minimizes the Bayes risk

c1 𝜋(𝟎)
K∑

i=1

pr{Ai ∣ 𝜽 = 𝟎} − c2

K∑
i=1

∑
𝝓∈Qi

𝜋(𝝓) pr{Ai ∣ 𝜽 = 𝝓}

= c1 𝜋(𝟎) pr{select any treatment i and reject H0,i ∣ 𝜽 = 𝟎}

− c2

K∑
i=1

∑
𝝓∈Qi

𝜋(𝝓) pr{select treatment i and reject H0,i ∣ 𝜽 = 𝝓}.

If c1 and c2 are chosen so that the Bayes optimal rule has type I error rate 𝛼 when 𝜽 = 𝟎, we can deduce
that this rule maximizes

K∑
i=1

∑
𝝓∈Qi

𝜋(𝝓) pr{select treatment i and reject H0,i ∣ 𝜽 = 𝝓},

and it therefore maximizes the average power over the K! permutations of (𝛾1,… , 𝛾K−1, 1) 𝛿, amongst all
decision rules with type I error rate at most 𝛼 at 𝜽 = 𝟎.

As before, taking action A0 after stage 2 has cost zero. The posterior expected loss for action Ai⋆ given
that treatment i⋆ is selected and data Di⋆ are observed is

c1 𝜋
(
𝟎 ∣ Di⋆

)
− c2

∑
𝝓∈Qi⋆

𝜋
(
𝝓 ∣ Di⋆

)
.

It follows that the Bayes rule rejects H0,i⋆ if

∑
𝝓∈Qi⋆

𝜋
(
𝝓 ∣ Di⋆

)
𝜋
(
𝟎 ∣ Di⋆

) >
c1

c2

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58

47



L. V. HAMPSON AND C. JENNISON

or, equivalently, if

1
(K − 1)!

∑
𝝓∈Qi⋆

LR
(
Di⋆ ;𝝓, 𝟎

)
>

c1

c2
, (13)

where LR
(
Di⋆ ;𝝓, 𝟎

)
denotes the likelihood ratio of data Di⋆ under parameter vectors 𝜽 = 𝝓 and 𝜽 = 𝟎.

Given 𝜽, the stage 1 estimates�̂�1 follow an N(𝜽,V) distribution. The inverse of V can be written as

V−1 = {(K + 1)IK − 1K,K}
m1

(K + 1) 𝜎2
,

where IK is the K × K identity matrix and 1K,K the K × K matrix with all elements equal to 1. Thus, the
log likelihood ratio of the stage 1 data under 𝜽 = 𝝓 and 𝟎 is

�̂�
T

1 V−1𝝓 − 1
2
𝝓TV−1𝝓 = �̂�

T

1𝝀(𝝓) − h
𝛿2

𝜎2
, (14)

where

𝝀(𝝓) =
m1

(K + 1)𝜎2
{(K + 1)𝝓 − 1K,K𝝓} (15)

and the constant h is the same for all vectors 𝝓 ∈ Q.
When 𝝓 ∈ Qi⋆ , and so 𝜙i⋆ = 𝛿, the log likelihood ratio for the stage 2 data under 𝜽 = 𝝓 and 𝜽 = 0 is

m2

2 𝜎2
�̂�2,i⋆𝛿 −

m2

4 𝜎2
𝛿2. (16)

Combining (14) and (16), the condition (13) can be written as

∑
𝝓∈Qi⋆

exp
{
�̂�

T

1𝝀(𝝓)
}

exp
{ m2

2 𝜎2
�̂�2,i⋆𝛿

}
> c, (17)

where c depends on 𝛿. The value of c for which the type I error rate is 𝛼 under 𝜽 = 0 varies with
𝛿. Therefore, no uniformly most powerful decision rule exists for the 𝜽 configuration, and we find the
appropriate critical value at each 𝛿 value of interest using the Robbins–Monro algorithm. Although the
left-hand side of (17) involves a sum of (K − 1)! terms, this poses no real computational difficulty for
typical values of K.

In order for an optimal decision rule to protect the FWER over the whole parameter space, coeffi-
cients of all elements of�̂�1 must be non-negative in each term�̂�

T

1𝝀(𝝓). Because the smallest coefficient is
m1∕{(K + 1) 𝜎2} times

(K + 1)𝛾1 − (𝛾1 +…+ 𝛾K−1 + 1), (18)

we simply require that the expression (18) is greater than or equal to zero. If the 𝛾js are equally spaced
between 𝛾1 and 1, this condition reduces to 𝛾1 ⩾ K∕(K+2), while a sufficient condition for any pattern of
𝛾js is 𝛾1 ⩾ (K−1)∕K. Finally, we appeal to the argument of Section 3 to claim that a rule of the form (17)
also protects the FWER when some of the elements of 𝜽 are greater than zero.

Figure 3 shows power, averaged over permutations of 𝜽, when the methods of Section 3 are applied to
the example of Section 4.

In panels (a) and (b), the 𝛾js are equally spaced between 0.3 and 1. As the form of the optimal rule
varies with 𝛿, each point on the power curve evaluates the rule maximizing power at that particular value
of 𝛿. As some �̂�1,js have negative weights in (17), these rules do not provide strong control of the FWER
and we label them as ‘pseudo-optimal’. The curve sets an upper bound for the power that can be attained
and we deduce that the TSE rule and the two BK inverse normal combination tests have close to the
maximum possible power. Indeed, the performance of these three procedures is impressive in view of the
fact that they do not have the flexibility of the ‘pseudo-optimal’ rules to adapt to 𝛿. In panels (c) and (d),
where the 𝛾js are equally spaced between 0.75 and 1, 𝛾1 > K∕(K + 2) so the rules given by (17) attach
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Figure 3. Power achieved by decision rules in the example of Section 4 when 𝜽 is a random permutation (a) - (b)
of (0.3, 0.475, 0.65, 0.825, 1) 𝛿 and (c) - (d) of (0.75, 0.8125, 0.875, 0.9375, 1) 𝛿. Decision rules are listed in order

of decreasing power. Results are based on 1 million simulations for each scenario.

positive weights to all 𝜃js and we take them to be truly optimal. Again, the TSE rule and the two BK
inverse normal combination tests have close to maximum power. The efficiency of the inverse normal
combination test using Simes’ rule in these examples indicates that the treatment effects of sub-optimal
treatments are now sufficiently high that it is beneficial for the final decision rule to ‘borrow strength’
from �̂�1,i, i ≠ i⋆.

5.3. Optimizing power under dose–response assumptions

We now consider the situation where investigators suspect that a particular pattern of treatment effects
may occur but these views are not held strongly enough to change the form of the study design from
that described in Section 2. We shall consider the case where the treatment effect is expected to increase
steadily with dose but side-effects or poorer compliance at higher doses may disrupt this relationship. It
is of interest to know whether using such information about the likely pattern of treatment effects can
lead to a significant increase in power.

We capture this somewhat equivocal view about possible treatment effects by formulating a Bayes
decision problem with a special prior distribution. Let 0 ⩽ 𝛾1 < … < 𝛾K−1 < 1 be specified and suppose
the parameter vector 𝜽 is either 0 or a permutation of (𝛾1,… , 𝛾K−1, 1) 𝛿. We assign prior probability
1∕(K + 1) to 𝜽 = 0 and allocate probability 1∕(K + 1) to each of the cases 𝜃i = 𝛿, i = 1,… ,K. For
i = K, the maximum treatment effect is 𝜃K = 𝛿, and we assign all the probability 1∕(K + 1) to the case
𝜽 = (𝛾1,… , 𝛾K−1, 1) 𝛿 = 𝜽ord, say, in line with the assumption that treatment effects increase with dose.
For i < K, the maximum effect is not at the maximum dose, and, because the pattern cannot be monotone,
we divide the prior probability 1∕(K + 1) evenly across the (K − 1)! permutations of (𝛾1,… , 𝛾K−1, 1) 𝛿
with 𝜃i = 𝛿. Thus, the difference between this prior and that used in Section 5.2 is that the probabilities
1∕{(K + 1)(K − 1)!} for vectors 𝜽 in the subset QK are re-allocated to the single vector 𝜽ord, capturing
the desired knowledge about the order of treatment effects in this case.

We define the same loss function as in Section 5.2 and find the Bayes optimal decision rule. The choice
of prior implies that the Bayes rule rejects H0,i⋆ if

LR
(
Di⋆ ;𝜽ord, 𝟎

)
>

c1

c2
for i⋆ = K
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and if
1

(K − 1)!
∑

𝝓∈Qi⋆

LR
(
Di⋆ ;𝝓, 𝟎

)
>

c1

c2
for i⋆ ≠ K.

As in Section 5.2, the likelihood ratio for data Di⋆ can be written as

LR
(
Di⋆ ;𝝓, 𝟎

)
= exp

{
�̂�

T

1𝝀(𝝓)
}

exp
{ m2

2 𝜎2
�̂�2,i⋆𝛿

}
exp{−(h + m2∕4)(𝛿2∕𝜎2)},

where 𝝀(𝝓) is as defined in (15) and this is used with vectors 𝝓 ∈ Qi⋆ for i⋆ ≠ K and with 𝝓 = 𝜽ord for
i⋆ = K.

The form of the Bayes rule depends on 𝛿 so that no uniformly most powerful test exists for treatment
effect configuration 𝜽ord. At each positive value of 𝛿, the Robbins–Monro algorithm can be used to find
the appropriate choice of c1∕c2 that gives an optimal decision rule with type I error rate 𝛼 at 𝜽 = 0. In
order for optimal decision rules to protect the FWER over the whole parameter space, coefficients of
elements of �̂�1 must be non-negative in each term �̂�

T

1𝝀(𝝓) for 𝝓 ∈ Qi⋆ or 𝝓 = 𝜽ord, so 𝛾1,… , 𝛾K must
satisfy the same conditions discussed in Section 5.2.

We have calculated power curves for decision rules of the previous form when 𝜽 = 𝜽ord and the values
of 𝛾1,… , 𝛾K−1 are as in cases (a) and (c) of Figure 3. When the correct treatment, i⋆ = K, is selected,
the decision depends on LR(Di⋆ ;𝜽ord, 0) and so takes full advantage of the monotonicity assumption. We
compared power under 𝜽 = 𝜽ord with that of the optimum rules with no monotonicity assumption, derived
in Section 5.2. In case (a), where effect sizes range from 0.3 𝛿 to 𝛿, the maximum increase in power from
use of dose–response information is 0.005; although the conditions for strong control of the FWER over
the whole parameter space are not met, this is the case for both types of procedure so comparisons are
fair. In case (c), effect sizes are closer, all tests control the FWER strongly, and the maximum increase
in power is much smaller at 0.0005 (coupling of simulations of the different methods implies that this
difference is still estimated reliably). The other six methods are unaffected by assumptions about the
possible monotonicity of 𝜽. However, because these assumptions lead to such small improvements, power
curves for the new optimal rules are barely distinguishable from those shown in Figure 3 for the pseudo-
optimal rules in (a) and the optimal rules in (c), and the TSE rule and both inverse normal rules remain
very close to optimal.

Bretz et al. [23] propose methods that accommodate uncertain information about a dose–response
curve by assuming that this curve belongs to a specified set of models . In their multiple comparison
procedures with modelling techniques (MCP-Mod) approach, they define a test statistic Tm appropriate to
each model m ∈  and use maxm Tm as a global statistic to test for a positive dose–response relationship.
The adjusted p-value is calculated using the joint distribution of the Tm, m ∈ , when the treatment effect
is zero at all doses, that is, 𝜽 = 0 in our notation. Because the Tm are weighted sums of mean responses
at each dose and some means can have negative coefficients, the FWER is not controlled strongly for all
treatment effect vectors 𝜽. Assuming that all treatment effects have the same sign resolves this problem:
the same assumption would justify use of the ‘pseudo-optimal’ tests in case (a).

Our results show that robustly efficient methods such as the TSE rule achieve most of the potential
gains from additional dose–response assumptions: the parallel in the setting of Bretz et al. [23] would
be to take the maximum observed effect over all doses as the global test statistic. Bretz et al. found
their method to have comparable power to a certain likelihood ratio test in many cases. Their method
has a noticeable advantage when the effect size decreases at high doses, which is to be expected as the
likelihood ratio test relies on a monotonicity assumption: the TSE rule makes no such assumption and
should not be misled in such cases.

We acknowledge that our setting differs from that of Bretz et al. [23] in having two stages, and the
gains from model information in stage 1 become diluted in the overall power. Also, Bretz et al. [23] made
further use of their modelling framework by identifying the model producing the maximum Tm and using
this model to select the minimum dose achieving a certain specified effect size for further testing. We
shall return to discussion of such objectives in Section 9.

6. Relative efficiencies of data combination rules

We can express the power differences between decision rules in terms of the sample size needed to achieve
a specific power. With the design of Section 2 and group sizes m1 and m2, we have derived optimal
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Table II. Efficiencies of six decision rules when the treatment vector is a permutation of (a) (0,… , 0, 2), (b)
(0.5,… , 0.5, 2), (c) (1,… , 1, 2), (d) (1.5,… , 1.5, 2), (e) (0.6, 0.95, 1.3, 1.65, 2), (f) (1.5, 1.625, 1.75, 1.875, 2),
(g) (0.6, 0.95, 1.3, 1.65, 2) and (h) (1.5, 1.625, 1.75, 1.875, 2).

Treatment effect vector

Combination rule a b c d e1 f g1 h

TSE 100 100 100 99 100 98 99 98
BK inverse normal, Dunnett 100 100 100 99 100 99 99 99
BK inverse normal, Simes 95 98 99 99 99 99 98 99
BK inverse 𝜒2, Dunnett 95 96 96 96 96 95 95 95
BK inverse 𝜒2, Simes 93 95 96 96 95 95 95 95
Conventional test 97 97 96 93 94 90 94 90

In cases (g) and (h), optimal decision rules use information about the order of the elements of 𝜽. Group sizes are m1 = 28
and m2 = 140. Results are based on 1 million simulations.
1Comparisons in (e) and (g) are with pseudo-optimal decision rules, which do not provide strong control of the
familywise error rate, so entries are lower bounds on actual efficiencies.

Table III. Efficiencies of six decision rules when the treatment vector is a permutation of (a) (0,… , 0, 2), (b)
(0.5,… , 0.5, 2), (c) (1,… , 1, 2), (d) (1.5,… , 1.5, 2), (e) (0.6, 0.95, 1.3, 1.65, 2), (f) (1.5, 1.625, 1.75, 1.875, 2),
(g) (0.6, 0.95, 1.3, 1.65, 2) and (h) (1.5, 1.625, 1.75, 1.875, 2).

Treatment effect vector

Combination rule a b c d e1 f g1 h

TSE 100 100 100 99 99 98 98 97
BK inverse normal, Dunnett 99 99 100 99 99 98 98 98
BK inverse normal, Simes 91 95 98 99 98 99 97 98
BK inverse 𝜒2, Dunnett 96 97 97 97 97 96 95 96
BK inverse 𝜒2, Simes 93 95 97 97 96 96 95 96
Conventional test 89 89 89 85 86 82 85 82

In cases (g) and (h), optimal decision rules use information about the order of the elements of 𝜽. Group sizes are m1 = 56
and m2 = 112. Results are based on 1 million simulations.
1Comparisons in (e) and (g) are with pseudo-optimal decision rules, which do not provide strong control of the
familywise error rate, so entries are lower bounds on actual efficiencies.

decision rules under particular assumptions about the vector of treatment effects, 𝜽. Suppose the optimal
rule achieves power 1−𝛽 for a given form of 𝜽 with maximum treatment effect 𝛿. If another rule requires
group sizes to be increased to 𝜌m1 and 𝜌m2 in order to achieve the same power, the relative efficiency of
this rule, expressed as a percentage, is 100∕𝜌.

We have calculated the efficiency of decision rules applied to the example of Section 4 where K = 5,
𝛼 = 0.025, m1 = 28 and m2 = 140. Table II lists relative efficiencies of the six decision rules of Section 3
for eight configurations of 𝜽 in which the highest treatment effect is 𝛿 = 2 (fixing power at a different
value of 𝛿 has only a small effect on our conclusions).

Cases (a) to (d) are for 𝜽 of the form considered in Section 5.1. The TSE rule is optimal for case (c),
and, in line with the conjecture made in Section 5.1, we also treat it as being optimal for cases (a) and (b).
The form of 𝜽 in cases (e) and (f) is that considered in Section 5.2. In case (e), we calculated efficiency
relative to the ‘pseudo-optimal’ decision rule. This rule does not control the FWER strongly for all 𝜽, but
it provides an upper bound on the attainable power, and this is a rather tight upper bound as two rules that
do protect FWER have close to 100% efficiency. Cases (g) and (h) concern the situation of Section 5.3
where there is partial information about the order of treatment effects; in (g), we are only able to derive
a ‘pseudo-optimal’ decision rule, and we report efficiency relative to the upper bound this rule provides.

We have carried out the same efficiency assessments with group sizes m1 = 56 and m2 = 112, and
the parallel results are presented in Table III. Here, the conventional procedure is less efficient, which is
to be expected because more patients are treated in stage 1 and there is greater potential benefit in using
their data in the final analysis. The inverse 𝜒2 tests, which give equal weight to stage 1 and stage 2 data
summaries, fare better with these values of m1 and m2. However, in all cases where a Dunnett test is
used for intersection hypotheses, the inverse 𝜒2 combination test still lags behind the inverse normal rule.
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There is just one example (case (a) of Table III) of a Simes test, for which the inverse 𝜒2 combination
test is superior to the inverse normal, but then the Dunnett test with an inverse normal combination rule
is far superior.

Results in Tables II and III show that use of stage 1 data in the final analysis can lead to worth-
while gains in efficiency over the conventional test based on stage 2 data alone. The methods of choice
are the TSE procedure and the BK inverse normal combination test using Dunnett tests for intersection
hypotheses: these decision rules attain close to the maximum possible power in all scenarios, with rel-
ative efficiency of at least 97% in all cases and 99% or more in the majority of cases. The BK inverse
normal method using Simes’ tests for intersection hypotheses performs poorly when there is a single
treatment with a high effect size, but this rule can be close to optimal in other situations. We do not
recommend decision rules based on inverse 𝜒2 combination tests: in all but extreme cases, these are
dominated by the rules using inverse normal combination tests (using Dunnett or Simes p-values for
intersection hypotheses) and, in some situations, gain no advantage at all from the use of stage 1 data.

7. Optimal division of sample size between phases II and III

Suppose that in the previous example K = 5 and 𝛼 = 0.025 are fixed but the group sizes m1 and m2 can
be chosen freely subject to an upper bound on the total sample size (K + 1)m1 + 2m2. We shall restrict
attention here to the robustly efficient TSE procedure. For this decision rule, we have calculated values of
m1 and m2 that optimize power when the total sample size is fixed at 448, as in the example of Section 4.
Figure 4 plots the value of m1 that maximizes power, as defined in (3), for a variety of treatment means 𝜽.

Optimal values of m1 were found by a direct search over the integers between 1 and 74; the accuracy
of comparisons was enhanced by using the same sequence of pseudo-random numbers to simulate the
power of each design. Thall, Simon and Ellenberg [1] report design settings that minimize the expected
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Figure 4. (a) Stage 1 group sizes maximizing the power of the TSE procedure when the total sample
size is fixed at 448 and 𝜽 is a random permutation (1) of (0, 0, 0, 0, 1) 𝛿, (2) of (0.5, 0.5, 0.5, 0.5, 1) 𝛿, (3)
of (0.75, 0.75, 0.75, 0.75, 1) 𝛿, (4) of (0.3, 0.475, 0.65, 0.825, 1) 𝛿 and (5) of (0.75, 0.8125, 0.875, 0.9375, 1) 𝛿.
(b) Power achieved by the optimized TSE procedures. Decision rules are listed in order of decreasing power.
Designs are specified with K = 5, 𝓁 = 0, 𝜎 = 5.0 and 𝛼 = 0.025. Results are based on 1 million simulations for

each scenario.
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Figure 5. Operating characteristics of the TSE procedure with fixed total sample size N = 448 when
𝜽 = (0.5,… , 0.5, 1) 𝛿 with (a) 𝛿 = 0.5 and (b) 𝛿 = 2.0. Plotted probabilities are as follows: (1)
pr{select treatment K;𝜽}, (2) pr{reject H0,K|treatment K selected;𝜽} and (3) the product of these, namely
pr{select treatment K and reject H0,K ; 𝜽}. Designs have K = 5, 𝓁 = 0, 𝜎 = 5.0 and 𝛼 = 0.025. Results are based

on 1 million simulations for each scenario.

sample size of the TSE procedure when 𝜽 has the form (𝛾1,… , 𝛾1, 1)𝛿. In Figure 4, we present results for
a wider variety of configurations for 𝜽. Given the robust efficiency of the TSE procedure, we expect these
values of m1 will also be close to optimal for the optimal tests of Section 5 and for the inverse normal
combination rule with Dunnett p-values.

The optimum m1 varies with both the shape of the vector 𝜽 and the scale factor 𝛿. When selecting
m1, we trade accuracy in selecting the best treatment, imax, in stage 1 with sample size for comparing
this treatment against control in stage 2. Figure 5 illustrates the consequences of this trade-off when
𝜽 = (0.5,… , 0.5, 1) 𝛿 with 𝛿 = 0.5 and 𝛿 = 2.0.

Initially, power increases with m1 because of the increased selection accuracy. However, increasing
m1 also reduces the total number of observations on treatment imax when this treatment is selected, and
this eventually results in a loss of overall power to reject H0,imax

. The same considerations help explain
why the optimum m1 increases with 𝛿: when 𝛿 is large, modest values of m2 still give a high conditional
probability of rejecting H0,imax

when treatment imax is selected, thus we can take a larger value of m1 to
improve the probability of selecting treatment imax in stage 1. In the example, the optimum m1 for 𝛿 = 0.5
is 14, while that for 𝛿 = 2.0 is 49.

Because optimum values of m1 can be below 10 or above 60, we conclude that no single choice is close
to ideal in all scenarios. Rather, investigators should consider the most likely scenarios, not necessarily of
the form (𝛾,… , 𝛾, 1) 𝛿, for their trial and choose group sizes that will give the best average power across
these cases. Such scenarios could be established by conducting a Bayesian prior elicitation meeting ahead
of the phase II/III trial to explore experts’ prior opinion on the efficacy of the K treatments relative to
control. With a given decision rule, it is straightforward to run simulations to compare different choices
of m1 and choose a value that will provide good power under an anticipated set of treatment effects. Note
that our definition of power gives no reward for selecting a good second-best treatment and rejecting
its null hypothesis although, in practice, this might be considered a successful outcome. This is not a
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Figure 6. Percentage value, r⋆, of stage 1 data used in the TSE rule, relative to additional stage 2 observations
for 𝜽 = (𝛾,… , 𝛾, 1) 𝛿 with (1) 𝛾 = 0, (2) 𝛾 = 0.5, (3) 𝛾 = 0.75 and (4) 𝛾 = 0.95. Designs are as specified
in Section 2 with K = 5, fixed total sample size N = 448, (m1,m2) chosen to maximize the power of the TSE

procedure, 𝓁 = 0, 𝜎 = 5.0 and 𝛼 = 0.025. Results are based on 1 million simulations for each scenario.

major issue for most of the configurations of 𝜽 described in Figure 4, where treatment imax is superior
to its nearest competitor by some margin. However, when considering cases where several treatments
are competitive, it may be appropriate to use an alternative definition of power and, for example, choose
group sizes to maximize the probability of selecting any treatment i with a treatment effect within 10%
of the largest treatment effect and then rejecting H0,i.

8. Value of phase II data in the final analysis

The relative efficiencies in Tables II and III are based on comparing trial designs where both stage 1 and
stage 2 group sizes, m1 and m2, are multiplied by a common factor. Another way to assess the benefits
of a seamless phase II/III design is to determine how many additional phase III observations would be
needed to achieve the increase in power gained by using phase II data in the final analysis. We shall make
this assessment when the TSE decision rule is used.

For a given vector of treatment effects 𝜽, we can calculate the stage 2 sample size m̃2 such that selecting
a treatment based on m1 stage 1 observations and then applying a conventional test with m̃2 stage 2
observations on the selected treatment and control gives the same overall power as the TSE rule with group
sizes, m1 and m2. Thus, the 2 m1 stage 1 observations on treatment i⋆ and control in the TSE decision
rule have the same benefit as an additional 2

(
m̃2 − m2

)
stage 2 observations for the conventional test.

We express the percentage value of the stage 1 observations on treatment i⋆ and control relative to extra
stage 2 observations in a conventional design as

r⋆ = 100
(
m̃2 − m2

)
∕(m1).

Figure 6 shows plots of r⋆ against 𝛿 for the example of Section 4 when 𝜽 is of the form (𝛾,… , 𝛾, 1) 𝛿
and, for each value of 𝛿, m1 and m2 are chosen to maximize the power of the TSE procedure subject to a
fixed total sample size N = 448.

Results vary with the form of 𝜽 and values of r⋆ at 𝛿 = 1 rise from 22 when 𝛾 = 0 to almost 100
when 𝛾 = 0.95. The critical value in the TSE decision rule, calculated under 𝜽 = (0,… , 0), adjusts
for multiple testing and so avoids any bias from selecting the treatment with the best stage 1 results.
When 𝛾 = 0, the treatment with effect size 𝛿 is very likely to be chosen and the adjustment for multiple
testing reduces power, leading to a low r⋆. For higher values of 𝛾 , the treatment with effect size 𝛿 must
outperform its rivals in order to be selected after stage 1: it is then likely to have an above average
estimate, �̂�1,i, and this balances the effect of the multiplicity adjustment. As 𝛾 → 1, r⋆ can exceed 100,
indicating that information from all K treatments, not just treatment i⋆ and the control, contributes to the
final decision.

In a trial involving multiple treatments or several doses of a single treatment, one might expect the
treatment effects to be spread out between zero and the highest value. Thus, of the scenarios in Figure 6,
case (2), with 𝛾 = 0.5, represents the most plausible situation. In this case, the stage 1 responses on
treatment i⋆ have an equivalent value to around 60% of their number of stage 2 observations. Recognizing
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the usual uncertainty about likely treatment effects, we suggest that stage 1 data on treatment i⋆ should
typically be viewed as offering around 50% to 70% of their face value as stage 2 observations in many
situations. Since the TSE rule is close to optimal under general configurations of 𝜽, the results of this
section should also provide an accurate reflection of the value of using stage 1 data in other efficient
decision rules.

9. Discussion

We have sought optimal data combination rules for seamless two-stage designs, making the problem
tractable by focusing on one configuration of 𝜽 at a time. In many situations, the optimal rules that
we have derived control the FWER strongly; in other cases, our results provide upper bounds on the
attainable power that serve as benchmarks for other procedures. We have identified two decision rules
that we would recommend for use in practice, namely the TSE procedure and the BK inverse normal
combination test using Dunnett p-values for intersection hypotheses. These rules are highly efficient
in a variety of situations and tailoring the decision rule to the particular configuration of 𝜽 can give
only very small additional efficiency. Furthermore, because both rules can be expressed as closed testing
procedures, they can be used flexibly, still controlling the FWER when additional criteria are used to
select a treatment for stage 2. We have also demonstrated how observations can be divided between the
two stages to maximize power in a given scenario. Comparisons with the conventional practice of using
phase III data alone in a final hypothesis test confirm that combining data across phases can improve
power: for typical vectors of treatment effects, the increase in power is comparable with that achieved by
adding 50% to 70% of the subjects on two stage 1 treatments to the stage 2 sample size and performing
a conventional analysis. We have reached similar conclusions in simulations with different numbers of
treatments and different sample sizes. In some situations, the benefits of data combination may be deemed
insufficient to compensate for the planning and logistical effort involved in a seamless phase II/III trial;
in others, particularly clinical trials for rare diseases, the power gained from stage 1 data may be deemed
very worthwhile.

Sampson and Sill [2] derived a conditionally unbiased most powerful test for this problem. Their
conditioning event is rather complex, as is the resulting test, and their procedure does not include stopping
for futility after stage 1. If adapted to our problem, this method could not do better than our optimal rules
for particular 𝜽 vectors. Bretz et al. [24] asked whether the approach of Sampson and Sill [2] could be
extended to find an unconditionally unbiased most powerful test: our results show that different tests are
optimal for different configurations of treatment effects, so this is not the case.

Extensions of the problem described in Section 2 have been proposed and studied. Optimizing proce-
dures in more complex settings may not be feasible, but, to the extent that these new problems retain core
elements of the basic problem, we expect our conclusions to remain relevant. As an example, Bischoff
and Miller [25] consider the case of two treatments and a control with normal responses of unknown
variance, and they tailor the design to minimize total expected sample size. Their test statistic combines
estimates of the effect of the selected treatment from stages 1 and 2 in the same way as the TSE rule, so
our results suggest that using this estimate in a t-statistic will give good power.

Stallard and Todd [26] consider testing multiple treatments against a control in a sequential design
in which the most promising treatment is selected at the first analysis and subsequent interim analyses
allow early stopping for a final decision. Calculations follow similar lines to those of standard group
sequential tests; see, for example, [27, Ch. 19]. With just two analyses, this method reduces to the TSE
procedure, and we conclude that it combines data before and after treatment selection in an efficient way.
The approach can be extended in various directions: these include allowing treatments to be dropped over
several analyses [28, 29] or basing the treatment selection on a short-term endpoint [30].

Magirr et al. [31] propose a new type of trial design for comparing multiple treatments with a control
at multiple analyses. As in the TSE procedure, decision rules are defined in terms of the means of cumu-
lative data on each treatment and the control. An innovative approach to computation makes it feasible
to create designs comparing many treatments with several interim analyses. Wason and Jaki [32] use
numerical search methods to optimize features of these designs, including the allocation ratio between
active treatments and the control.

DiScala and Glimm [33] consider an adaptive trial design with a survival endpoint, in which treat-
ment selection is based on a more rapidly observed event. When analysing follow-up data on subjects
who have already contributed to a decision about treatment choice, there is a danger of type I error

© 2014 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. Statist. Med. 2015, 34 39–58

55



L. V. HAMPSON AND C. JENNISON

inflation ([34]) but the methods of Jenkins et al. [35] and Irle and Schäfer [36] can be used to avoid
this problem.

In Section 5.3, we considered the case where ‘treatments’ represent dose levels and a dose–response
model may be used. The smaller risk of safety problems at lower dose levels motivates the decision in
the MCP-mod procedure of Bretz et al. [23] to select the lowest dose that produces a specified treatment
effect, even when safety responses are not considered directly. Some authors have considered treatment
selection and testing based on both efficacy and safety data: Liu and Pledger [15] refer to safety outcomes
when deciding on the treatment to take forward from the first stage of a seamless phase II/III design;
König et al. [37] and Kimani et al. [38] propose further procedures for this case. If a model for efficacy,
and possibly safety, is specified and the benefits of demonstrating a new treatment to be effective are
quantified, the question of how best to design two (or more) phases of a drug development programme
can be clearly stated. The problem is challenging, even without the combination of data across stages of
a seamless design. This is an area of considerable current activity that is starting to produce important
insights; see, for example, [39, 40].

Appendix A

Connection between optimal data combination rules and parameter estimates for a linear model

We consider the case of Section 5.1 where 𝜽 is a permutation of (𝛾,… , 𝛾, 1) 𝛿 for known 𝛾 ∈ (0, 1). Let
�̂�1,i, i = 0, 1,… ,K, denote the first stage sample means on the control and K experimental treatments,
so the estimated treatment effects in stage 1 are �̂�1,i = �̂�1,i − �̂�1,0, i = 1,… ,K. For simplicity, suppose
�̂�1,K is the largest stage 1 estimate and treatment i⋆ = K is compared against control in stage 2.

The optimal decision rule (8) in Section 5.1 is based on the likelihood ratio of the combined stage 1
and stage 2 data under 𝜽 = 𝝃i⋆ = (𝛾,… , 𝛾, 1) 𝛿 and 𝜽 = 0, and this can be written as the product of
separate terms for stage 1 and stage 2 data. The stage 1 estimates �̂�1,1,… , �̂�1,K follow a normal linear
model with a single unknown parameter 𝛿; also, given i⋆ = K, the stage 2 estimate �̂�1,K is normally
distributed with mean 𝛿. Let 𝛿1 and 𝛿2 be the maximum likelihood estimates of 𝛿 based on stages 1 and
2 data, respectively, with variances var

(
𝛿1

)
and var

(
𝛿2

)
. Standard algebra shows that the log likelihood

ratio between 𝜽 = 𝝃i⋆ and 𝜽 = 0 for stage 1 data is a constant plus 𝛿 𝛿1∕var
(
𝛿1

)
, and for stage 2, data

it is a constant plus 𝛿 𝛿2 ∕ var
(
𝛿2

)
. Combining these terms, we find the log likelihood ratio based on the

stage 1 and stage 2 data together is an increasing function of

𝛿

(
𝛿1

var
(
𝛿1

) +
𝛿2

var
(
𝛿2

)) ,

a multiple of the maximum likelihood estimate of 𝛿 for the pooled stages 1 and 2 data. It follows that
the first-stage estimates �̂�1,1 … , �̂�1,K contribute to the optimal decision rule with weights proportional to
their weights in 𝛿1, the estimate of 𝛿 obtained by fitting a normal linear model to �̂�1,1,… , �̂�1,K .

At this point, it helps to represent the stage 1 data as the sample means �̂�1,i, i = 0, 1,… ,K, on the con-
trol and K experimental treatments. In the case we are considering, 𝜽 = (𝛾,… , 𝛾, 1) 𝛿 and �̂�1,0,… , �̂�1,K
follow a linear regression model with E

(
�̂�1,i

)
= 𝛼 + 𝛿 xi, where x0 = 0, x1 = … = xK−1 = 𝛾 and xK = 1.

The estimate 𝛿1 is a linear combination of �̂�1,0,… , �̂�1,K with weights summing to zero, so

𝛿1 = w0 �̂�1,0 + w1 �̂�1,1 +…+ wK �̂�1,K

= w1 �̂�1,1 +…+ wK �̂�1,K

and we see �̂�1,1,… , �̂�1,K contribute to 𝛿1 with the same weights as �̂�1,1,… , �̂�1,K . If 𝛾 = 0, so 𝜽 =
(0,… , 0, 1) 𝛿, it is straightforward to show

𝛿1 = �̂�1,K − 1
K

K−1∑
i=0

�̂�1,i = �̂�1,K − 1
K

K−1∑
i=1

�̂�1,i,

in agreement with the contributions of �̂�1,0,… , �̂�1,K in the decision rule (11), which can be regarded as a
test of H0: 𝛿 = 0. If 𝛾 = 0.5, �̂�1,1,… , �̂�1,K−1 make no contribution to the estimate of the slope 𝛿 in the
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linear regression E(�̂�1,i) = 𝛼 + 𝛿 xi and so have zero weight in 𝛿1, in keeping with their absence from the
TSE decision rule, which is optimal in this case. For other values of 𝛾 , inspection of the linear regression
model shows that �̂�1,1,… , �̂�1,K−1 contribute to 𝛿1 with negative weights if 𝛾 < 0.5 and with positive
weights if 𝛾 > 0.5, which agrees with the pattern of weights for unselected first-stage treatments in the
data combination rule (11).
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