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Abstract

Background: Toll-like receptor 4 plays a role in pathogen recognition, and common polymorphisms may alter host
susceptibility to infectious diseases.
Purpose: To review the association of two common polymorphisms (TLR4 896A>G and TLR4 1196C>T) with
infectious diseases.
Data Sources: We searched PubMed and EMBASE up to March 2013 for pertinent literature in English, and
complemented search with references lists of eligible studies.
Study Selection: We included all studies that: reported an infectious outcome; had a case-control design and
reported the TLR4 896A>G and/or TLR4 1196C>T genotype frequencies; 59 studies fulfilled these criteria and were
analyzed.
Data Extraction: Two authors independently extracted study data.
Data Synthesis: The generalized odds ratio metric (ORG) was used to quantify the impact of TLR4 variants on
disease susceptibility. A meta-analysis was undertaken for outcomes reported in >1 study. Eleven of 37 distinct
outcomes were significant. TLR4 896 A>G increased risk for all parasitic infections (ORG 1.59; 95%CI 1.05-2.42),
malaria (1.31; 95%CI 1.04-1.66), brucellosis (2.66; 95%CI 1.66-4.27), cutaneous leishmaniasis (7.22; 95%CI
1.91-27.29), neurocysticercosis (4.39; 95%CI 2.53-7.61), Streptococcus pyogenes tonsillar disease (2.93; 95%CI
1.24-6.93) , typhoid fever (2.51; 95%CI 1.18-5.34) and adult urinary tract infections (1.98; 95%CI 1.04-3.98), but was
protective for leprosy (0.36; 95%CI 0.22-0.60). TLR4 1196 C>T effects were similar to TLR4 896 A>G for brucellosis,
cutaneous leishmaniasis, leprosy, typhoid fever and S. pyogenes tonsillar disease, and was protective for bacterial
vaginosis in pregnancy (0.55; 95%CI 0.31-0.98) and Haemophilus influenzae tonsillar disease (0.42; 95%CI
0.17-1.00). The majority of significant associations were among predominantly Asian populations and significant
associations were rare among European populations.
Conclusions: Depending on the type of infection and population, TLR4 polymorphisms are associated with
increased, decreased or no difference in infectious disease. This may be due to differential functional expression of
TLR4, the co-segregation of TLR4 variants or a favorable inflammatory response.
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Introduction

Toll-like receptors (TLRs) are a class of highly conserved
membrane bound pattern recognition receptors (PRRs) that
play an integral role in the regulation of the immune system
through the recognition of pathogen-associated molecular
patterns (PAMPs) and the activation of immune response
genes [1,2]. Toll-like receptor 4 (TLR4), is a well-studied TLR,
specifically recognizing lipopolysaccharide from Gram-negative
bacteria [3,4] and initiating intracellular signal cascades, that
involve the adaptor protein encoded by the myeloid
differentiation primary response gene 88 (MyD88), which
ultimately activates nuclear factor kappa B [5] and leads to
interferon production [6]. TLR4 has also been shown to
recognize mannans of fungal pathogens [7], Mycobacterium
tuberculosis [8], and the fusion protein of respiratory syncytial
virus [9].

Two single nucleotide polymorphisms (SNPs), TLR4 896
A>G (corresponding to an Asp299Gly substitution mutation ;
SNP ID: rs 4986790) and TLR4 1196 C>T (corresponding to a
Thr399Ile substitution mutation; SNP ID: rs 4986791), have
been shown to be associated with LPS hyporesponsiveness
[10,11]. In whites, the two SNPs are in linkage disequilibrium
(D=1 and r2=0.791, HapMap accessible at: http://
hapmap.ncbi.nlm.nih.gov/). Structurally, these mutations are
found outside of the ligand binding domain of TLR4 and crystal
structures have shown that these mutations have no effect on
LPS binding. Instead, they do cause local conformational
changes around the area of the mutation that may affect folding
efficiency, cell surface expression, protein stability, as well as
interaction with downstream messenger proteins [12]. At the
molecular level, it has been shown that the TLR4 896 A>G
mutation interferes with TLR4 interaction with MyD88 and other
downstream messengers [13]. These mutations also appear to
affect the levels of functional TLR4 expression, leading to a 2-
fold reduction [14]. This reduction is further amplified to 10-fold
in the absence of myeloid differentiation factor 2 (MD-2) which
forms a complex with TLR4 and LPS [14,15].

There has been great interest regarding the association of
the TLR4 SNPs TLR4 896 A>G and TLR4 1196 C>T to
susceptibility for infection and other non-infectious disease
states. Clinical studies associating these SNPs to infectious
disease susceptibility have produced mixed results [16-19].
The present study aims to reassess the association of TLR4
896 A>G and TLR4 1196 C>T with infectious disease
susceptibility using the Generalized Odds Ratio (ORG), which
can elucidate the magnitude and association of individual
genotypes with susceptibility to disease [20].

Materials and Methods

Study Selection
We conducted searches on Pubmed and EMBASE up to

March, 2013 (last access on March 3, 2013). The search terms
included: “(toll AND like AND receptor AND 4 AND
polymorphism) OR (TLR4 AND polymorphism) OR Asp299Gly
OR D299G OR Thr399Ile OR T399I” for PubMED; “('tlr4'/exp
OR 'tlr4') AND ('receptor'/exp OR 'receptor') AND

(polymorphism OR asp299gly OR d299g OR thr399ile OR
t399i)” for EMBASE. The titles and abstracts of the studies
were reviewed; titles that included TLR4 polymorphisms and
risk for infectious disease were included for more detailed
evaluation. Studies that reviewed TLR4 polymorphisms and
their association with non-infectious disease were excluded, as
were studies that were not published in English. An eligible
study fulfilled all of the following three criteria: (i) the study
reported an infectious disease outcome, (ii) the study was
performed using a case-control design, where “cases” refer to
subjects with a disease outcome and controls refer to a healthy
population (without the disease outcome), and, (iii) the study
reported genotype frequencies for TLR4 896 A>C, TLR4
1196C>T, or both.

Data Extraction
Two authors (PDZ and MLP) independently extracted data

from the final included articles. Any discrepancies were
reviewed and resolved by consensus. The information
extracted included name of first author, origin of population
being studied, number of cases and controls being studied
subdivided by genotype frequencies (homozygous wild-type,
heterozygous, and homozygous mutant), the disease being
studied, and the conclusions reportedly drawn from each study.

Data Synthesis
We used the generalized odds ratio (ORG) along with its 95%

Confidence Interval (95% CI) to address the association of
TLR4 896 A>C and TLR4 1196 C>T polymorphisms with
outcomes of interest (disease susceptibility). The ORG provides
a model-free approach of estimating the genetic risk in genetic
association studies (GAS) and meta-analysis of GAS,
depending on the mutational load [20]. The ORG is defined as
follows: for any two subjects, one diseased (case) and one
non-diseased (control), the ORG estimates the odds of being
diseased relative to the odds of being non-diseased when the
diseased subject has higher mutational load than the non-
diseased subject, i.e. the risk of disease is proportional to the
increased genetic exposure. Alternatively, the ORG shows how
many diseased-healthy pairs exist in the study for which the
diseased have the larger mutational load, relative to the
number of pairs for which the non-diseased have the larger
mutational load [20][21]. The ORG estimates the overall genetic
risk effect by utilizing the complete genotype distribution
whereas the OR of conventional genetic models (additive,
dominant, recessive, co-dominant) is calculated by merging
genotypes. In addition, the conventional genetic models are not
independent and thus, the interpretation of results is difficult
when more than one model is significant [22]. In the meta-
analysis of GAS, heterogeneity was quantified using the
Cochran’s Q and I2 metric [20]. The existence of the differential
magnitude of effect in large versus small studies was checked
using the Harbord’s test [23] for meta-analysis involving at least
four studies. Also, the Hardy-Weinberg equilibrium (HWE) was
used as a quality criterion for control populations. HWE
deviations may result in biased estimations as they can
influence type-I error in single study effects, and may alter
statistical significance in meta-analysis of gene-disease
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associations [24,25]. The HWE deviations amongst the control
populations were screened using the chi-square test [26]. For
single studies deviating from HWE, a sensitivity analysis was
performed after correction of control group with the expected
genotype frequencies [22,27]. ORG was calculated using the
ORGGASMA application available at http://biomath.med.uth.gr
[20]. This study complies with the PRISMA guidelines for
reporting reviews and meta-analyses (Checklist S1) [28].

Results

A total of 962 studies from PubMed and 1615 from EMBASE
were initially retrieved, comprising a total of 2,197 non-
duplicate studies (Table S1-Flow diagram). After reading the
title and the abstract, 117 studies were found to be suitable for
further evaluation. Of the 117 articles reviewed in detail, 58
studies were excluded (18 studies did not publish genotypic
frequencies, 13 had no healthy controls in their experimental
design, 5 focused on in vitro functional studies, 8 did not study
the desired polymorphisms, 6 were either reviews or a meta-
analysis, and 8 studies had non extractable data for other
reasons). A total of 59 case-control studies [29-87] were
included in the analysis, reporting 37 different disease
outcomes (Tables 1 and 2). The origin of studies was in
descending order Europe (28 studies), Asia (12 studies), South
America (7 studies), Africa (6 studies), North America (5
studies), Australia (1 studies).

TLR4 896 A>G and disease susceptibility
For outcomes with more than 1 available study, a meta-

analysis was performed for chronic periodontitis (10 studies)
[61,63,65-72], Helicobacter pylori infection (2 studies) [52,53],
malaria (3 studies) [54-56], meningococcal disease (4 studies)
[57-60], sepsis (3 studies) [75-77], respiratory syncytial virus (2
studies) [73,74], tuberculosis (5 studies) [78-82] and urinary
tract infections in children (3 studies) [83-85]. Combined effects
were also calculated for all Gram negative infections
[30,31,33,35,39,46,47,52,53,57-60], all Gram positive
infections [43,45,46] and all parasitic infections
[36,37,40,50,51,54-56] (table 3). A significant risk was found for
all parasitic infections combined (ORG 1.59; 95% CI 1.05-2.42,
effect derived from Asian, African and South American
populations; Figure 1) and malaria (ORG 1.31; 95% CI
1.04-1.66, a combined effect for African and Asian studies;
Figure 2) . The effect on malaria was of marginal significance
across African studies [54,56] (ORG 1.29; 95% CI 0.99-1.69).
All other effects were insignificant, namely all Gram negative
infections (ORG 1.10; 95% CI 0.90-1.38), all Gram positive
infections (ORG 1.28; 95% CI 0.43-3.81), Chagas disease (ORG

1.06; 95% CI 0.53-2.14) , H. pylori (ORG 0.91; 95% CI
0.61-1.36), meningococcal disease (ORG 1.10; 95% CI
0.90-1.34), aggressive or chronic periodontitis (ORG 1.04; 95%
CI 0.53-2.04 and ORG 0.94; 95% CI 0.75-1.18, respectively),
respiratory syncytial virus (ORG1.02; 95% CI 0.72-1.44), sepsis
(ORG 0.81; 95% CI 0.41-1.56) and tuberculosis (ORG 1.18;
95% CI 0.80-1.73). The meta-analysis results are summarized
in Table 3. Statistical heterogeneity varied from absent to
moderate. The Harbord’s test indicated that there is no

differential magnitude of effect in large versus small studies for
all outcomes (p≥0.05). Across populations of European
ancestry, the risk of meningococcal disease [57-59] (ORG 1.12;
95% CI 0.85-1.49) and chronic periodontitis (excluding the two
non-European studies [66,68]; ORG 1.06; 95% CI 0.53-2.14)
remained insignificant. The effects on meningococcal disease
and aggressive periodontitis did not alter after removing from
analysis the two studies not in HWE equilibrium (data not
shown) [58,62]. Effects on tuberculosis remained insignificant
across Indian [78,81] (ORG 1.34; 95% CI 0.62-2.90) or S.
American [80,82] populations (ORG 1.30; 95% CI 0.39-4.33).
For outcomes with a single available study, a significant risk
was present for brucellosis (ORG 2.66; 95% CI 1.66-4.27) [30],
cutaneous leishmaniasis (ORG 7.22; 95% CI 1.91-27.29) [36],
neurocysticercosis (ORG 4.39; 95% CI 2.53-7.61) [40], and
typhoid fever (ORG 2.51; 95% CI 1.18-5.34) [47]. All the
significant single-study effects are summarized in Table 4.

Of note, all these effects were derived from Asian studies.
Increased risk for tonsillar infection due to Streptococcus
pyogenes (ORG 2.93; 95% CI 1.24-6.93) [46] was noted in the
Greek pediatric population, as was an increased risk for urinary
tract infections in adults (ORG 1.98; 95% CI 1.04-3.98) in a
Chinese population [48]. Interestingly, not all outcomes were
negative and the TLR4 896 A>G polymorphism was associated
with significant protection against leprosy (ORG 0.36; 95% CI
0.22-0.60) in East Africa [38].

The use of the ORG metric resulted in more conservative
estimates of associations, as two reportedly significant
associations (1 reporting increased risk for Gram-negative
osteomyelitis [41] and 1 reporting a protective effect for
Streptococcus pneumoniae in children [45]) were downgraded
to non-significant. Six control populations deviated for HWE
equilibrium [30,35,39,53,58,62], and associations of TLR4
variants with disease were readdressed after correcting
genotypes with their expected frequencies. These effects did
not change (they appear in brackets in Tables 1,2).
Specifically, the association of TLR4 896 A>G and brucellosis
[30] remained significant after HWE correction (ORG 2.69; 95%
CI 1.67-4.33).

TLR4 1196 C>T and disease susceptibility
A meta-analysis of GAS was performed for malaria (2

studies) [55,56], aggressive periodontitis (4 studies)
[61,62,64,65], chronic periodontitis (9 studies)
[61,63,65,67,69-72,87], and tuberculosis (3 studies) [78,80,81]
and revealed no significant effects. Statistical heterogeneity
varied from absent to moderate. Specifically, the combined
effects were ORG 1.30 (95% CI 0.64-2.65) for malaria, ORG

0.78 (95% CI 0.42-1.65) for aggressive and ORG 1.12
(0.83-1.52) for chronic periodontitis, and ORG 1.07 (95% CI
0.81-1.42) for tuberculosis. Effects were also insignificant for all
Gram negative infections combined [ORG 1.11 (95% CI
0.66-1.87)][33,35,39,46,47,52], all Gram positive infections
combined [ORG 1.09 (95% CI 0.13-9.09)] [45,46] and all
parasitic infections combined [ORG 1.50 (95% CI 0.88-2.56)]
[36,37,40,50,51,55,56]. The meta-analysis results are
summarized in Table 3. The Harbord’s test indicated that there
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Table 1. Genotypic frequencies reported for the TLR4 896 A>G SNP and association with disease outcome; significant
effects are in bold; outcomes that have been studied more than once have been grouped together in the table, with the
overall effect described in the shaded area† genotypic frequencies of controls that did not satisfy Hardy Weinberg
Equilibrium, [effects in brackets after correction of HWE deviations].

  Control Genotype Case Genotype    

Name Population A/A A/G G/G A/A A/G G/G Disease Outcome Conclusion Reported ORG (95% CI)

Carvalho et al [29] England 70 10 0 58 18 0 Aspergillosis
Overall susceptibility
not studied

2.10 (0.92-4.81)

Rezazadeh et al [30] Iran 65 46 0 68 127 3 Brucellosis Increased risk† 2.66(1.66-4.27) [2.69
(1.67-4.33)]

Doorduyn et al [31] Netherlands 608 72 3 405 49 1 Campylobacter No association 1.00 (0.68-1.46)

Plantinga et al [32] Tanzania 99 9 0 107 10 0
Oropharyngeal candidiasis in
HIV

No association 1.02(0.41-2.55)

Laisk et al [33] Estonia 287 35 1 61 9 0 C.trachomatis(women) No association 1.24 (0.58-2.67)

Szebeni et al [34] Hungary 108 10 0 37 4 0 NecEnterocolitis in LBW infants No association 1.26 (0.40-4.00)

Lee, et al [35] United States 431 11 21 103 2 3
Gram –ve infections in liver
transplant

No association† 0.66 (0.26-1.70)
[0.42(0.16-1.66)]

Ajdary, et al [36] Iran 73 2 0 102 26 0 Leishmaniasis (Cutaneous) Increased risk 7.22 (1.91-27.29)

Rasouli et al [37] Iran 137 18 0 110 11 1 Leishmaniasis (Visceral) No asscociation 0.81 (0.38-1.75)

Bochud et al [38] East Africa 155 37 2 375 32 2 Leprosy Protective 0.36 (0.22-0.60)

West, et al [39] Thailand 1377 20 1 484 5 0 Meliodosis No association† 0.74(0.29-1.92)
[0.70(0.27-1.78)]

Verma, et al [40] India 127 22 1 77 61 2 Neurocysticercosis Increased risk 4.39(2.53-7.61)

Montes et al [41] Spain 135 20 0 65 12 3 Osteomyelitis Increased risk 1.55 (0.76-3.20)

Emonts et al [42] Netherlands 374 58 1 293 42 2 Otitis media (acute)
Overall susceptibility
not studied

0.96 (0.63-1.45)

Moens et al [43] Belgium 161 16 1 84 13 2 Invasive pneumococcal infection No association 1.69 (0.81-3.54)

Mrazek et al [44] Czechoslovakia 217 34 1 89 9 0 Prosthetic joint infection No association 0.66 (0.31-1.42)

Doorduyn et al [31] Netherlands 608 72 3 173 20 0 Salmonella gastroenteritis No association 0.96 (0.57-1.60)

Yuan et al [45] Australia 364 44 1 82 3 0 S. pneumoniae Protective 0.35 (0.12-1.07)

Liadaki, et al [46] Greece 195 27 0 99 6 0 Tonsillar Disease (H.influenzae) No association 0.47 (0.19-1.14)

Liadaki, et al [46] Greece 264 25 0 30 8 0 Tonsillar Disease (S.pyogenes) Increased risk 2.93 (1.24-6.93)

Bhuvanendran, et al [47] Malaysia 241 9 0 277 27 0 Typhoid Fever Increased Risk 2.51 (1.18-5.34)

Yin, et al [48] China 227 21 0 109 20 0 UTI (Adults) Increased risk 1.98 (1.04-3.98)

Hawn et al [49] United States 274 33 6 585 65 2 UTI (Women) No association 0.79 (0.52-1.20)

        Chagas Disease  1.06 (0.53-2.14)

Weitzel, et al [50] Northern Chile 42 3 0 114 11 0 Chagas Disease No association 1.20 (0.35-4.14)

Zafra et al [51] Colombia 191 9 0 262 10 3 Chagas Disease No association 1.00 (0.43-2.36)

        H. pylori  0.91 (0.61-1.36)

Achyut et al [52] India 168 32 0 110 20 0 H. pylori No association 0.97 (0.53-1.76)

Moura et al [53] Brazil 222 28 4 206 25 1 H. pylori No association† 0.87(0.50-1.50)
[0.81(0.47-1.40)]

        Malaria  1.31 (1.04-1.66)

Esposito, et al [54] Burundi 300 36 1 528 72 2 Malaria (children) No association 1.13 (0.74-1.73)

Zakeri, et al [55] Iran 287 33 0 276 39 5 Malaria (all ages) No association 1.38 (0.86-2.22)

Mockenhaupt et al [56] Ghana 239 47 4 444 129 7 Malaria (pregnancy)
Overall susceptibility
not studied

1.42 (0.99-2.02)

        Meningococcal disease  1.10 (0.90-1.34)

Biebl et al [57] Austria 678 88 3 167 18 0
Meningococcal disease (all
ages)

No association 0.82 (0.49-1.40)
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is no differential magnitude of effect in large versus small
studies for all outcomes (p≥0.05).

For outcomes with a single available study, a significant risk
was present for cutaneous leishmaniasis in Iran (ORG 10.14;
95% CI 1.90-54.16) [36], neurocysticercosis in India (ORG 3.10;

95% CI 1.45-6.67) [40], S. pyogenes tonsillar disease in
Greece (ORG 3.12; 95% CI 1.36-7.13) [46] and typhoid fever in
Malaysia (ORG 2.26; 95% CI 1.01-5.07) [47]. A significant
protection was conferred for bacterial vaginosis in pregnancy
(ORG 0.55;95% CI 0.31-0.98) in the United States (notably,

Table 1 (continued).

  Control Genotype Case Genotype    

Name Population A/A A/G G/G A/A A/G G/G Disease Outcome Conclusion Reported ORG (95% CI)

Read et al [58] England 787 81 11 924 110 13
Meningococcal disease (all
ages)

No association† 1.13 (0.86-1.51)
[1.05(0.79-1.38)]

Faber et al [59] Europe 190 23 1 165 27 5 Meningococcal disease (infants) Increased risk 1.55(0.89-2.72)

Allen et al [60] Gambia 198 51 2 198 51 3
Meningococcal meningitis
(children)

No association 1.02(0.67-1.56)

        Periodontitis (aggressive)   1.04 (0.53-2.04)

Brett et al [61] England 90 7 0 37 8 0 Aggressive periodontitis No association 2.73 (0.96-7.76)

Emingil et al [62] West Europe 147 7 1 86 4 0 Aggressive periodontitis No association† 0.96 (0.30-3.12)
[0.81(0.26-2.54)]

James et al [63] West Europe 103 20 0 69 4 0 Aggressive periodontitis No association 0.33 (0.12-0.97)

Noack et al [64] Germany 71 9 0 100 11 0 Aggressive periodontitis No association 0.86 (0.35-2.13)

Schulz et al [65] Germany 73 7 0 52 8 0 Aggressive periodontitis No association 1.58 (0.56-4.47)

        Periodontitis (chronic)  0.94 (0.75-1.18)

Garlet, et al [66] Brazil 131 74 12 135 56 6 Chronic periodontitis No association 0.70 (0.47-1.03)

Noack et al [67] Germany 68 8 0 96 12 0 Chronic periodontitis No association 1.04 (0.42-2.61)

Sahingur et al [68] United States 59 17 1 95 19 0 Chronic periodontitis No association 0.67 (0.33-1.37)

Schulz et al [65] Germany 73 7 0 66 7 0 Chronic periodontitis No association 1.10 (0.38-3.19)

Izakovicova Holla et al [69] Czechoslovakia 195 23 0 147 24 0 Chronic periodontitis No association 1.38 (0.76-2.53)

Berdeli et al [70] Turkey 100 6 0 79 4 0 Chronic periodontitis No association 0.88 (0.26-3.01)

James et al [63] West Europe 78 16 0 77 17 1 Chronic periodontitis No association 1.11 (0.53-2.31)

Brett et al [61] England 90 7 0 47 6 0 Chronic periodontitis No association 1.66 (0.55-4.97)

Laine et al [71] Netherlands 90 8 1 90 10 0 Chronic periodontitis No association 1.16 (0.46-2.93)

Folwaczny et al [72] Germany 236 8 0 234 10 0 Chronic periodontitis No association 1.24 (0.50-3.12)

        Respiratory Syncytial Virus  1.02 (0.72-1.44)

Lofgren, et al [73] Finland 290 59 7 251 55 6 Respiratory Syncytial Virus No association 1.06 (0.73-1.66)

Paulus et al [74] Canada 97 9 0 218 17 1 Respiratory Syncytial Virus No association 0.84(0.37-1.91)

        Sepsis  0.81 (0.42-1.56)

Ahmad-Nejad et al [75] Germany 99 12 1 31 6 1 Sepsis (ICU) No association 1.72 (0.64-4.63)

Carregaro et al [76] Brazil 178 26 1 88 9 0 Sepsis (ICU) No association 0.71 (0.33-1.56)

Feterowski et al [77] Germany 135 19 0 143 10 0 Sepsis (ICU) No association 0.51 (0.23-1.19)

        Tuberculosis  1.18 (0.80-1.73)

Najmi et al [78] India 206 44 0 95 34 6 Tuberculosis Increased association 2.00 (1.23-3.25)

Newport et al [79] Gambia 235 58 5 241 62 4 Tuberculosis No association 1.01(0.69-1.49)

Sanchez, et al [80] Colombia 270 29 1 429 36 1 Tuberculosis No association 0.78 (0.47-1.28)

Selvaraj et al [81] South India 151 53 3 153 47 4 Tuberculosis No association 0.91 (0.59-1.40)

Rosas-Taraco et al [82] Mexico 110 4 0 94 10 0 Tuberculosis No association 2.70 (0.87-8.39)

        UTI  1.41 (0.70-2.84)

Akil, et al [83] Turkey 79 14 0 97 14 1 UTI-children No association 0.85 (0.39-1.84)

Ertan, et al [84] Turkey 29 1 0 28 2 0 UTI-children No association 1.70 (0.22-13.37)

Karoly et al [85] Hungary 218 17 0 88 15 0 UTI-children Increased risk 2.18 (1.06-4.52)

doi: 10.1371/journal.pone.0081047.t001
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Table 2. Genotypic frequencies reported for the TLR4 1196 C>TSNP and association with disease outcome; significant
effects are in bold; outcomes that have been studied more than once have been grouped together in the table, with the
overall effect described in the shaded area.

  Control Genotype Case Genotype     

Name Population C/C C/T T/T C/C C/T T/T Disease Outcome Conclusion Reported ORG (95% CI)

Goepfert et al [86] United States 316 28 0 435 21 0 Bacterial Vaginosis in Pregnant Protective 0.55 (0.31-0.98)

Laisk et al [33] Estonia 287 35 1 61 9 0 C. trachomatis(women) No association 1.24 (0.58-2.67)

Szebeni et al [34] Hungary 108 10 0 37 4 0 NecEnterocolitis in LBW infants No association 1.26 (0.39-4.00)

Lee, et al [35] United States 395 64 4 89 18 1 Gram –ve infections in liver transplant No association 1.23 (0.71-2.15)

Achyut et al [52] India 188 11 1 115 9 6 H pylori No association 2.08 (0.95-4.54)

Ajdary, et al [36] North Iran 74 1 0 105 21 2 Leishmaniasis (Cutaneous)
Increased risk of
infection

10.14 (1.90-54.16)

Rasouli et al [37] Iran 137 18 0 112 9 1 Leishmaniasis (Visceral) No association 0.67 (0.30-1.49)

Bochud et al [38] East Africa 179 15 1 407 8 0 Leprosy Protective 0.23 (0.10-0.55)

West, et al [39] Thailand 1379 22 1 486 3 0 Meliodosis No association† 0.43 (0.14-1.33)
[0.41(0.13-1.25)]

Verma, et al [40] India 140 9 1 114 25 1 Neurocysticercosis Increased risk 3.13 (1.46-6.73)

Montes et al [41] Spain 133 22 0 67 10 3 Osteomyelitis Increased risk 1.19 (0.57-2.47)

Mrazek et al [44] Czechoslovakia 219 33 0 88 10 0 Prosthetic joint infection No association 0.78 (0.38-1.63)

Ahmad-Nejad et al [75] Germany 98 13 1 31 6 1 Sepsis (ICU) No association 1.58 (0.60-4.23)

Yuan et al [45] Australia 365 43 1 82 3 0 S. pneumoniae Protective 0.36 (0.12-1.09)

Liadaki, et al [46] Greece 192 30 0 99 6 0 Tonsillar Disease (H.influenzae) Protective 0.42 (0.17-1.00)

Liadaki, et al [46] Greece 262 27 0 29 9 0 Tonsillar Disease (S.pyogenes) Increased risk 3.12 (1.36-7.13)

Bhuvanendran, et al [47] Malaysia 242 8 0 282 22 0 Typhoid Fever Increased Risk 2.26 (1.01-5.07)

Hawn et al [49] United States 277 35 4 589 69 0 UTI - Women No association 0.83 (0.55-1.26)

        Chagas Disease  1.03 (0.49-2.18)

Weitzel, et al [50] Northern Chile 42 3 0 114 11 0 Chagas Disease No association 1.19 (0.35-4.14)

Zafra et al [51] Colombia 282 9 0 267 8 0 Chagas disease No association 0.95 (0.37-2.42)

        Malaria  1.30 (0.64-2.65) 

Zakeri, et al [55] Iran 270 50 0 271 49 0 Malaria (all ages) No association 0.98(0.64-1.50)

Mockenhaupt et al [56] Ghana 283 7 0 550 28 2 Malaria (pregnancy)
Overall susceptibility
not studied

2.05 (0.91-4.62)

        Periodontitis (aggressive)  0.78(0.42-1.65) 

Brett et al [61] England 78 17 0 46 3 0 Aggressive periodontitis No association 0.35 (0.11-1.16)

Emingil et al [62] Turkey 148 7 0 88 2 0 Aggressive periodontitis No association 0.57 (0.13-2.41)

Noack et al [64] Germany 71 9 0 100 11 0 Aggressive periodontitis No association 0.86 (0.35-2.13)

Schulz et al [65] Germany 73 7 0 52 8 0 Aggressive periodontitis No association 1.58 (0.56-4.47)

        Periodontitis (chronic)  1.12 (0.83-1.52)

Brett et al [61] England 78 17 0 50 4 0 Chronic periodontitis No association 0.41 (0.14-1.22)

Reddy et al [87] South India 59 1 0 56 3 1 Chronic periodontitis No association 2.77 (0.42-18.48)

Schulz et al [65] Germany 73 7 0 67 7 0 Chronic periodontitis No association 1.09 (0.38-3.14)

IzakovicaHolla et al [69] Czechoslovakia 196 22 0 147 24 0 Chronic periodontitis No association 1.45 (0.79-2.67)

Berdeli et al [70] Turkey 101 5 0 80 3 0 Chronic periodontitis No association 0.81(0.20-3.16)

James et al [63] West Europe 74 18 0 73 20 1 Chronic periodontitis No association 1.16 (0.58-2.32)

Noack et al [67] Germany 68 8 0 96 12 0 Chronic periodontitis No association 1.04 (0.42-2.61)

Laine et al [71] Netherlands 90 8 1 90 10 0 Chronic periodontitis No association 1.15 (0.46-2.93)

Folwaczny et al [72] Germany 235 9 0 233 11 0 Chronic periodontitis No association 1.22(0.51-2.93)

        Tuberculosis  1.07 (0.81-1.42)

Najmi et al [56] India 206 43 1 105 26 4 Tuberculosis No association 1.37 (0.82-2.28)

Sanchez, et al [80] Colombia 272 26 1 429 36 1 Tuberculosis No association 0.87 (0.52-1.46)

TLR4 Polymorphisms and Infectious Diseases

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e81047



African Americans comprised 78% of the cases) [86], leprosy in
East Africa (ORG 0.23; 95% CI 0.10-0.55) [38], and
Haemophilus influenzae tonsillar disease in a Greek pediatric
population (ORG 0.42; 95% CI 0.17-1.00) [46]. The significant
results are summarized in Table 4. Only 1 control population
deviated from HWE equilibrium that assessed the risk of
meliodosis [39], a risk that did not change after correction with
the expected genotype frequencies (Table 2). Two reportedly
significant associations for Gram-negative osteomyelitis
(increased risk) and S. pneumoniae (protection) were not
confirmed in this analysis with the use of the ORG metric.

The significant effects were unidirectional and similar in
magnitude when both TLR4 896 A>G and 1196 C>T were
examined (Table 4), that is if TLR4 896 A>G was protective
then 1196 C>T was also protective. When TLR4 896 A>G
increased risk, then 1196 C>T increased risk. Specifically, the
point estimates for 896 A>G and 1196 C>T variants were
(respectively): 7.22 and 10.14 for cutaneous leishmaniasis,
4.39 and 3.13 for neurocysticercosis, 2.93 and 3.12 for S.

pyogenes tonsillar disease, 2.51 and 2.26 for typhoid fever,
0.36 and 0.23 for leprosy. An exception to the rule was H.
influenzae tonsillar disease, where the protective effect of
TLR4 896 A>G did not reach statistical significance (ORG 0.47;
95% CI 0.19-1.14), while 1196 C>T showed significant
association (ORG 0.42; 95% CI 0.17-1.00).

Discussion

We performed a systematic literature review to address the
potential association of 2 common TLR4 single nucleotide
polymorphisms (TLR4 896 A>G, TLR4 1196 C>T) with
infectious diseases. An increased risk was documented for all
parasitic infections combined, malaria [54-56], brucellosis [30],
cutaneous leishmaniasis [36], typhoid fever [47],
neurocysticercosis [40] and adult urinary tract infections [48].
Interestingly, all these effects were reported in populations of
Asian descent, with the exception of parasitic infections and
malaria where the effect was a combined effect from Asian,

Table 2 (continued).

  Control Genotype Case Genotype     

Name Population C/C C/T T/T C/C C/T T/T Disease Outcome Conclusion Reported ORG (95% CI)

Selvaraj et al [81] South India 152 46 5 150 49 4 Tuberculosis No association 1.04 (0.68-1.61)

†. genotypic frequencies of controls that did not satisfy Hardy Weinberg Equilibrium, [effects in brackets after correction of HWE deviations].
doi: 10.1371/journal.pone.0081047.t002

Table 3. Summary of disease associations derived from meta-analysis of case-control studies.

Disease Outcome Studies Polymorphism Effect (ORG ; 95% CI) PQ I2 PH

All Gram - infections 13 TLR4 896 A>G 1.10 (0.90-1.38) 0.01 52% 0.32
 6 TLR4 1196 C>T 1.11 (0.66-1.87) 0.02 61% 0.59
Helicobacter pylori 2 TLR4 896 A>G 0.91 (0.61-1.36) 0.79 - -
Meningococcal Disease 4 TLR4 896 A>G 1.10 (0.90-1.34) 0.43 0 0.93
All Gram + infections 3 TLR4 896 A>G 1.28 (0.43-3.81) 0.01 77% -
 2 TLR4 1196 C>T 1.09(0.13-9.09) 0.002 - -
All parasitic infections 8 TLR4 896 A>G 1.59 (1.05-2.42) <0.001 72% 0.72
 7 TLR4 1196 C>T 1.50 (0.88-2.56) 0.01 64% 0.5
Chagas Disease 2 TLR4 896 A>G 1.06 (0.53-2.14) 0.82 - -
 2 TLR4 1196 C>T 1.03 (0.49-2.18) 0.76 - -
Malaria 3 TLR4 896 A>G 1.31 (1.04-1.66) 0.71 0 -
 2 TLR4 1196 C>T 1.30 (0.64-2.65) 0.11 - -
Periodontitis(Aggressive) 5 TLR4 896 A>G 1.04 (0.53-2.04) 0.07 52% 0.16
 4 TLR4 1196 C>T 0.78 (0.42-1.65) 0.29 20% 0.92
Periodontitis (Chronic) 10 TLR4 896 A>G 0.94 (0.75-1.18) 0.68 0 0.74
 9 TLR4 1196 C>T 1.12 (0.83-1.52) 0.74 0 0.93
RSV 2 TLR4 896 A>G 1.02 (0.72-1.44) 0.61 - -
Sepsis 3 TLR4 896 A>G 0.81 (0.41-1.56) 0.16 45% -
Tuberculosis 5 TLR4 896 A>G 1.18(0.80-1.73) 0.03 63% 0.43
 3 TLR4 1196 C>T 1.07 (0.81-1.42) 0.47 0 -
UTI (Children) 3 TLR4 896 A>G 1.41 (0.70-2.84) 0.21 35% -

PQ= p value for Q homogeneity test; PH= p value for Harbord’s small study effects test, -=not applicable
doi: 10.1371/journal.pone.0081047.t003
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African and South American populations. This finding is more
striking when we consider that European populations
comprised the majority of GAS data (28 out of 59 studies, 48%)
and a significant risk was found only for TLR4 polymorphisms
and S. pyogenes tonsillitis among Greek children [46]. Another
notable finding is that, for some infections, these single
nucleotide polymorphisms were associated with lower infection
rates. Overall, these effects sum to a total of 11 significant
SNPs-disease associations that represent almost one third
(30%) of all outcomes addressed in the eligible studies and
there was consistency of effects (risk or protection) between
896 A>G and 1196 C>T variants when both associations were
studied.

In this study we utilized the generalized odds ratio (ORG)
metric to quantify the magnitude of associations. This metric
provides a straightforward interpretation of the relative risk
effect, based solely on genotype distribution [20]. The

generalized odds ratio overcomes this problem by directly
quantifying the magnitude of association of a gene with disease
[20]. Implementing the ORG obviates the need for selecting,
estimating and interpreting individual genotype contrasts
(dominant, recessive and co-dominant) and their effect. ORG

can also be used in meta-analysis of GAS to summarize effects
and produce robust results, avoiding the shortcomings of
multiple model testing, namely the lack of biologic justification
and non-independency of effects [20,88,89]. For example, for
TLR4 896 A>G association with malaria, the combined ORG

showed that the probability of having malaria might be 31%
higher for subjects having higher mutational load relative to
those with lower mutational load (subjects who are
homozygous for G allele have the highest mutational load,
those homozygous for A allele have the lowest, and
heterozygous have an intermediate level). The application of
the ORG metric also resulted in a more conservative estimate of

Figure 1.  All parasitic infections: Random effects (RE) generalized odds ratio (ORG) estimates with the corresponding 95%
confidence interval (CI) for the variant TLR4 896 A>G.  The horizontal axis is plotted on a log scale.
doi: 10.1371/journal.pone.0081047.g001
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associations, given that associations for infections such as
osteomyelitis (39) and S. pneumonia (43) were downgraded to
insignificant. The associations derived from tuberculosis data
were insignificant similar to those reported [90].

In our analysis, TLR4 polymorphisms were associated with
susceptibility to a diverse spectrum of infections including
Gram-negative, Gram-positive bacteria as well as parasitic
infections, such as cutaneous leishmaniasis and
neurocysticercosis. This wide spectrum of associations
correlates with the spectrum of recognition molecules by TLR4.
Indeed, TLR4 is involved in induction of cell-mediated immunity
to Brucella abortus in mice [7] and TLR4 signaling also
upregulates macrophage anti-leishmanial activity [91].
Similarly, binding of the Salmonella typhi porin OmpS1 to TLR4
leads to overexpression of MHCII and CD40 molecules and
activation of dendritic cells [92]. TLR4 can recognize LPS of
Gram-negative bacteria [3,4], glycans of the helminth Taenia

solium [93] as well as the fusion protein of respiratory syncytial
virus[9].

Interestingly, our analysis also confirmed that these
polymorphisms are also protective for certain types of infection,
such as leprosy. It is not clear why such polymorphisms confer
increased susceptibility to some infection, but protect from
others. It could be speculated that in some infections the
immune response leads to an inflammatory response that is
protective, whereas in others such response may be essential
in the pathogenesis of the infectious process. An example is
Mycobacterium leprae where the TLR4-mediated immune
response to the pathogen may modulate inflammatory
processes that influence disease manifestations but are not
attributable to direct stimulation by M. leprae. Indeed, Bochud
et al [38] found that the stimulation of monocytes with M. leprae
inhibited their subsequent response to TLR4 stimulation with
LPS.

Figure 2.  Malaria: Random effects (RE) generalized odds ratio (ORG) estimates with the corresponding 95% confidence
interval (CI) for the variant TLR4 896 A>G.  The horizontal axis is plotted on a log scale.
doi: 10.1371/journal.pone.0081047.g002
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Among Indo-European populations, 6-14% of the individuals
are double heterozygous for both polymorphisms [94]. It is
suggested that the double heterozygous TLR4 896 A>G/TLR4
1196 C>T haplotype does not functionally differ from wild type
TLR4. Therefore, co-segregation may result in a functionally
neutral phenotype and, as seen in European populations, lead
to the lack of significant associations. Conversely, TLR4 896
A>G was frequently found (10-18%) among African
populations, with only 2% having TLR4 1196 C>T co-
segregation. Two studies (on typhoid fever and leprosy)
indicated weak linkage disequilibrium in Malaysian [47] and
East African populations [38]. These differences between
Europeans (co-segregation) compared to Asian and African
population (lack of co-segregation) may explain why the
majority of significant associations were noted for endemic
diseases of Asia and Africa.

Our analysis on the impact of these polymorphisms in
periodontitis illustrates the different impact of polymorphisms
based on the population. More specifically, despite the bulk of
studies on aggressive and chronic periodontitis, TLR4 variants
did not show any significant association, even though TLR4
has been shown to be overexpressed in gingival epithelial cells
and gingival fibroblasts [95-97] in association with periodontal

Table 4. Summary of significant associations with disease
outcomes, derived from single case-control studies.

Study PopulationDisease Outcome Polymorphism ORG (95% CI)

Goepfert [86] USA
Bacterial vaginosis
(pregnancy)

TLR4 1196

C>T

0.55
(0.31-0.98)

Rezazadeh[30] Iran Brucellosis
TLR4 896

A>G

2.66
(1.66-4.27)

Ajdary [36] Iran
Cutaneous
leishmaniasis

TLR4 896

A>G

7.22
(1.91-27.29)

   
TLR4 1196

C>T

10.14
(1.90-54.16)

Bochud [38]
East
Africa

Leprosy
TLR4 896

A>G

0.36
(0.22-0.60)

   
TLR4 1196

C>T
0.23(0.10-0.55)

Verma [40] India Neurocysticercosis
TLR4 896

A>G

4.39
(2.53-7.61)

   
TLR4 1196

C>T

3.13
(1.46-6.73)

Liadaki [46] Greece
H.influenzae

(tonsillitis)
TLR4 1196

C>T

0.42
(0.17-1.00)

Liadaki [46] Greece
S.pyogenes

(tonsillitis)
TLR4 896

A>G

2.93
(1.24-6.93)

   
TLR4 1196

C>T

3.12
(1.36-7.13)

Bhuvanedran
[47]

Malaysia Typhoid fever
TLR4 896

A>G

2.51
(1.18-5.34)

   
TLR4 1196

C>T

2.26
(1.01-5.07)

Yin [48] China UTI (Adults)
TLR4 896

A>G

1.98
(1.04-3.98)

doi: 10.1371/journal.pone.0081047.t004

inflammation involving pathogens related to periodontitis, such
as Porphyromonas gingivalis, Fusobacterium nucleatum and
Aggregatibacter actinomycetemcomitans [98-101]. One
possible explanation is that this finding was because all
relevant studies were almost exclusively confined to European
ancestry populations and the lack of susceptibility may be
related to the strong linkage disequilibrium, that is the non-
random association between 896 A>G and 1196 C>T in
Europeans [94].

Importantly, our analysis highlights the need to evaluate the
impact of these polymorphisms in different populations and
various clinical conditions. Moreover, the absence of significant
associations in meta-analysis data for periodontitis,
tuberculosis, meningococcal disease and sepsis, signifies that
the functional alterations related to polymorphic TLR4 variants
may not be critical to produce the clinical phenotype. Lack of
reproducibility stands as a barrier for conclusive evidence, and
design, sample size and environmental and genetic
heterogeneity between populations may affect results. Finally,
the presence of a significant effect may rely on the magnitude
of functional expression of TLR4. Protection or risk may be
moderated by the level of TLR4 functional expression, which is
modulated by TLR4 polymorphism and MD-2 presence [14,15].
Therefore, it is essential to explore whether MD-2 is important
in the response to some infections, but not others, or that levels
of TLR4 vary in one infection compared to another.

The heterogeneity of the populations studied along with
multiple endpoints should also be considered as potential study
limitation that may influence statistical power. Moreover,
different populations mount diverse immunologic responses
and the clinical relevance of polymorphisms is not always
straightforward. The lack of association for a disease
phenotype highlights that gene-to-gene interactions and gene-
environment interactions may be influential parameters of
disease association. Case-control design of individual GAS
precludes adjusted analysis for gene-gene-environment
interactions and may have reduced the efficiency of genetic
risk estimates, though it is unlikely to inflate false-positive
results [89].

Despite these limitations, genetic markers of immune
response such as TLR4 variants, are valuable not only to
classify high-risk patients based on disease susceptibility but
also to predict disease severity and other sequelae. The
associations of TLR4 896A>G with hearing loss in survivors of
bacterial meningitis [102] and the increased risk of
tympanostomy among toddlers with history of bronchiolitis
[103] are indicative examples.

In conclusion, our analysis highlights the complex effect of
TLR variants in susceptibility to infectious disease. Some of the
effects, such as in malaria, are validated in a variety of studies,
whereas single case-control studies should be cautiously
interpreted until more information on the specific outcomes is
added. Taken in their totality, our results indicate that
depending on the infection and the population studied, the
same polymorphism may be associated with risk, protection or
have no effect. In this context, our analysis provides the
rationale for understanding the protective or adverse effect of
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TLR4 polymorphisms and may provide a basis to explain the
maintenance of these polymorphisms.
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