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Abstract
When	organisms	with	similar	phenotypes	have	conflicting	management	and	conser-
vation	initiatives,	approaches	are	needed	to	differentiate	among	subpopulations	or	
discrete	 groups.	 For	 example,	 the	 eastern	metapopulation	 of	 the	 double-	crested	
cormorant	(Phalacrocorax auritus)	has	a	migratory	phenotype	that	is	culled	because	
they	are	viewed	as	a	threat	to	commercial	and	natural	resources,	whereas	resident	
birds	are	targeted	for	conservation.	Understanding	the	distinct	breeding	habitats	of	
resident	versus	migratory	cormorants	would	aid	in	identification	and	management	
decisions.	Here,	we	use	 species	distribution	models	 (SDM:	Maxent)	of	 cormorant	
nesting	habitat	to	examine	the	eastern	P. auritus	metapopulation	and	the	predicted	
breeding	 sites	 of	 its	 phenotypes.	 We	 then	 estimate	 the	 phenotypic	 identity	 of	
breeding	colonies	of	cormorants	where	management	plans	are	being	developed.	We	
transferred	SDMs	trained	on	data	from	resident	bird	colonies	in	Florida	and	migra-
tory	bird	colonies	in	Minnesota	to	South	Carolina	in	an	effort	to	identify	the	pheno-
type	 of	 breeding	 cormorants	 there	 based	 on	 the	 local	 landscape	 characteristics.	
Nesting	habitat	characteristics	of	cormorant	colonies	in	South	Carolina	more	closely	
resembled	 those	 of	 the	 Florida	 phenotype	 than	 those	 of	 birds	 of	 the	Minnesota	
phenotype.	The	presence	of	the	resident	phenotype	in	summer	suggests	that	migra-
tory	and	resident	cormorants	will	co-	occur	in	South	Carolina	in	winter.	Thus,	there	
is	 an	opportunity	 for	 separate	management	 strategies	 for	 the	 two	phenotypes	 in	
that	 state.	We	 found	 differences	 in	 nesting	 habitat	 characteristics	 that	 could	 be	
used	 to	 refine	management	strategies	and	reduce	human	conflicts	with	abundant	
winter	migrants	and,	at	the	same	time,	conserve	less	common	colonies	of	resident	
cormorants.	The	models	we	use	here	show	potential	for	advancing	the	study	of	geo-
graphically	 overlapping	 phenotypes	with	 differing	 conservation	 and	management	
priorities.
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1  | INTRODUCTION

Wildlife	 management	 initiatives	 are	 often	 developed	 to	 protect	
individual	 species,	 subspecies,	 or	 populations	 (Blair,	 Gutierrez-	
Espeleta,	 &	 Melnick,	 2013;	 Groom,	 Meffe,	 &	 Carroll,	 2006).	 At	
times,	 however,	 subpopulations	 (local	 populations	 of	 a	metapop-
ulation;	Hanski	&	Gilpin,	1991)	or	discrete	groups	within	a	species	
(phenotypes)	may	be	difficult	to	differentiate	and	have	conflicting	
management	 or	 conservation	 goals.	 Differentiation	 of	 subgroups	
with	 similar	 phenotypes,	 however,	 might	 be	 possible	 using	 their	
seasonal	 distributions	 and	 behavioral	 traits	 such	 as	 foraging	 pat-
terns	and	preferences.	For	example,	thousands	of	migratory	double-	
crested	 cormorants	 Phalacrocorax auritus	 that	 winter	 on	 lakes	 in	
South	Carolina	 are	viewed	 as	 a	 threat	 to	 commercial	 and	natural	
resources,	whereas	small	colonies	of	cormorants	that	breed	in	the	
state	during	 the	 summer	 are	viewed	 as	 favorable	 contributors	 to	
ecosystem	processes	 and	 need	 conservation.	 Resource	managers	
in	South	Carolina	were	 tasked	 to	develop	management	strategies	
to	 limit	 the	negative	 impacts	of	 the	migratory	cormorants	and,	at	
the	same	time,	to	conserve	the	year-	round	colonies	(personal	com-
munication,	D.	Shipes,	SCDNR).	Understanding	the	distinct	breed-
ing	patterns	and	habitats	of	resident	versus	migratory	cormorants	
could	help	identify	the	subgroups	and	inform	the	conservation	and	
management	plans	(Carranza	&	Winn,	1954;	Fonteneau,	Paillisson,	
&	Marion,	2009).

Human–wildlife	conflicts	over	shared	fisheries	resources	have	pre-
cipitated	dozens	of	culling	programs	for	P. auritus,	killing	thousands	of	
birds	annually	to	reduce	competition	for	sport	and	forage	fishes	(Dorr,	
Hatch,	&	Weseloh,	2014).	Once	distributed	ubiquitously	 throughout	
North	America,	cormorant	nesting	colonies	were	documented	along	
nearly	 all	 freshwater	 and	 coastal	 habitats	 (Audubon,	 1840–1844).	
Cormorant	 population	 bottlenecks	 occurred	 in	 the	 twentieth	 cen-
tury	when	their	abundance	 in	North	America	declined	 from	millions	
to	thousands	(Dorr	et	al.,	2014;	Wires	&	Cuthbert,	2006).	During	this	
population	decline,	two	phenotypes	(suggested	by	some	to	be	distinct	
subspecies)	of	the	eastern	population	became	apparent:	a	migratory	
group	 that	 breeds	 in	 the	 northern	United	 States	 and	Canada	 and	 a	
resident	 group	 that	 breeds	 in	 the	 south.	 Both	 groups	winter	 in	 the	
southeastern	United	States	and	Mexico.	During	their	population	bot-
tlenecks,	 there	were	 no	 breeding	 cormorants	 in	 the	 state	 of	 South	
Carolina.	Although	P. auritus	 populations	 are	 now	 considered	 to	 be	
recovered	 (Dorr	 et	al.,	 2014),	 it	 is	 unclear	 whether	 contemporary	
breeding	colonies	in	South	Carolina	can	justifiably	be	managed	sepa-
rately	from	migratory	birds.

A	group	of	cormorants	sometimes	referred	to	as	the	Florida	sub-
species	(Forrester	et	al.,	2003;	Hatch,	1995;	Post,	1988)	is	thought	to	
be	re-	expanding	northward,	and	managers	suggest	that	birds	in	South	
Carolina	may	belong	 to	 this	group	 (F.J.	Cuthbert	et	al.	2011—unpub-
lished	data	MNDNR).	Others,	however,	have	suggested	the	migratory	
phenotype	 is	cueing	 in	on	the	 large	 lake	systems	(like	habitats	found	
in	 northern	 breeding	 sites)	 and	 reducing	 their	 migration	 distances	
(Post	&	Post,	1988;	Post	&	Seals,	1991).	The	debate	over	the	status	of	

contemporary	southern	breeding	birds	remains	contentious	as	molec-
ular	studies	have	yet	to	successfully	differentiate	among	breeding	phe-
notypes	of	P. auritus	 in	 eastern	North	America	 (Green,	Waits,	Avery,	
&	Leberg,	2006;	Mercer,	Haig,	&	Roby,	2013;	Waits,	Avery,	Tobin,	&	
Leberg,	 2003).	 Sheehan,	 Tonkyn,	Yarrow,	 and	 Johnson	 (2016b)	 used	
intestinal	parasite	assemblages	as	evidence	that	resident	and	migratory	
birds	forage	together	in	Mississippi	and	Alabama	during	the	winter.	If	
this	is	the	case	in	South	Carolina,	lethal	management	of	cormorants	in	
winter	risks	the	concurrent	removal	of	the	local	birds	that	breed	in	that	
state.	Parasite	community	data	are	not	yet	available	 for	birds	breed-
ing	or	wintering	in	South	Carolina	and	require	lethal	means	to	obtain.	
Therefore,	we	 sought	 nonlethal	 species	 distribution	modeling	 (SDM)	
methods	to	define	the	migratory	and	resident	phenotypes	of	cormo-
rants	to	better	identify	and	categorize	the	cormorant	colonies	nesting	
in	South	Carolina.

Without	 an	 official	 designation	 of	 subspecies,	 we	 consider	 the	
two	groups	of	cormorants	(northern	breeding	and	southern	breeding)	
to	be	phenotypes	occurring	within	a	metapopulation.	The	use	of	the	
metapopulation	 concept	 is	 fitting	 for	P. auritus	 because	 they	 live	 in	
fragmented	 landscapes,	 their	 suitable	 habitat	 (water)	 is	 limited	 and	
occurs	in	discrete	fragments	(Hanski,	Mononen,	&	Ovaskainen,	2011;	
Ojanen	et	al.	2013),	and	their	population	dynamics	are	considered	to	
be	independent	(Hanski,	2004).	We	have	found	no	evidence	that	birds	
commonly	switch	between	northern	and	southern	breeding,	although	
banding	 evidence	 suggests	 imperfect	 fidelity	 among	 these	 groups	
(personal	observation,	B.	Dorr,	USDA/APHIS/NWRC).	Thus,	we	con-
sider	migration	 behavior	 a	 phenotypic	 characteristic	 that	 differenti-
ates	the	two	groups	(Hanski,	2004).

Migration	behavior	is	used	to	define	groups	of	birds	for	conservation	
and	management.	 In	Mississippi,	 resident	Mississippi	 sandhill	 cranes	
(Grus canadensis pulla)	 are	 listed	 as	 endangered	 (Henkel	 et	al.,	 2012)	
and	consequently	are	conserved,	while	migratory	birds	elsewhere	are	
hunted	for	sport	(Raftovich,	Chandler,	&	Wilkins,	2015).	Similarly,	some	
migratory	Canada	Geese	are	protected	from	hunting	and	harassment,	
while	 culling	 programs	 of	 resident	 birds	 are	 commonplace	 (Beston,	
Williams,	Nichols,	&	Castelli,	2015;	Holevinski,	Malecki,	&	Curtis,	2006;	
Nichols,	2014).	Because	genetic	distinction	within	the	aforementioned	
metapopulations	 is	 questionable	 or	 nonexistent	 (Glenn,	 Thompson,	
Ballard,	Roberson,	&	French,	2002;	Smith,	Craven,	&	Curtis,	1999),	dis-
tinguishing	phenotypes	based	on	the	behavior	is	an	accepted	form	of	
differentiation	for	conservation	and	management	planning.	Migration	
and	breeding	behaviors	are	 influenced	by	climatic,	geologic,	biologic,	
and	 anthropogenic	 factors	 (Guillaumet	 et	al.,	 2011;	 Hutto,	 1985;	
Walther	et	al.,	 2002),	 and	 if	 truly	different,	we	expect	migratory	and	
resident	groups	of	P. auritus	 to	 respond	 to	 these	variables	 in	distinct	
ways.	Using	the	environmental	characteristics	of	known	nesting	sites	of	
cormorants,	we	developed	two	ecological	niche	models	to	describe	the	
habitat	of	resident	and	migratory	P. auritus	during	the	breeding	season.	
If	the	two	phenotypes	are	to	be	managed	differently	throughout	their	
range,	the	methods	used	here	could	be	considered	in	other	situations	
where	the	identity	of	breeding	cormorants	is	in	question.

Species	distribution	models	can	be	used	to	predict	future,	current,	
and	past	distributions	of	species,	such	as	current	distributions	of	rare	or	
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cryptic	species	(Engler,	Guisan,	&	Rechsteiner,	2004),	potential	distribu-
tions	of	invasive	species	(Young,	Abbott,	Caldwell,	&	Schrader,	2013),	and	
future	distributions	of	organisms	in	relation	to	climate	change	(Thomas	
et	al.,	2004).	The	 types	of	data	 input	 into	SDM	can	 limit	 the	statisti-
cal	assessments	used	to	develop	predictive	models	 (Aarts,	Fieberg,	&	
Matthiopoulos,	2012;	Hastie	&	Fithian,	2013).	Using	presence–absence	
and	abundance	data	with	true	records	of	absences	are	ideal	for	SDM	
development	 (Howard,	 Stephens,	 Pearce-	Higgins,	 Gregory,	 &	 Willis,	
2014;	Van	Couwenberghe,	Collet,	Plerrat,	Verheyen,	&	Gegout,	2013),	
but	the	availability	of	such	data	is	limited.	Nonetheless,	presence-	only	
datasets	can	still	be	used	in	a	presence–absence	assessment	by	assum-
ing	all	locations	not	listed	as	presence	points	are	absence	points	(Phillips	
&	Dudik,	2008).	This	presence-	inferred-	absence	method	requires	reli-
able	presence	data	to	ensure	that	true	presence	points	are	not	included	
in	the	absence	dataset	(Guisan	&	Thuiller,	2005)	and	to	identify	what	
conditions	 exist	 at	 occurrence	 sites	 that	 do	 not	 occur	 elsewhere	 in	
the	 landscape.	Maximum	entropy	 (Maxent)	 is	 an	 increasingly	popular	
method	 for	developing	predictive	SDMs	based	on	 the	presence-	only	
data	(Evans	et	al.,	2010;	Phillips	&	Dudik,	2008),	and	its	applicability	and	
methodology	are	well	documented	(Oppel	et	al.,	2012;	Peterson,	Papes,	
&	Eaton,	2007;	Renner	&	Warton,	2013).

In	 this	 study,	 we	 use	 SDM	 predictions,	 to	 better	 identify	 which	
phenotype(s)	 are	 likely	 to	 be	breeding	 in	 a	 state	where	 conservation	
and	management	priorities	require	reliable	predictions.	We	developed	
SDMs	from	environmental	variables	expected	to	be	important	for	suc-
cessful	 breeding	 of	 resident	 and	migratory	P. auritus	 subpopulations.	
Breeding	waterbird	 colonies	 are	 relatively	 conspicuous,	 and	 there	 is	
a	low	likelihood	of	missed	detection	(Ridgway,	2010);	thus,	presence-	
inferred-	absence	 models	 are	 suitable	 for	 modeling	 P. auritus	 nesting	
habitat	distributions.	We	hypothesized	that	the	habitat	of	known	breed-
ing	sites	for	migratory	and	resident	phenotypes	would	be	significantly	
different	 from	 the	 general	 landscapes	within	Minnesota	 and	 Florida,	
respectively,	and	that	landscape	variables	important	for	the	prediction	
of	 nesting	 sites	 would	 be	 associated	 with	 waterways,	 fisheries,	 and	
avian	mortality.	We	confirmed	model	predictions	using	contemporary	
breeding	colony	data	of	P. auritus	within	the	states	of	Minnesota	and	
Florida	 using	 observed	 presence,	 absence,	 and	 colony	 size	 data.	We	
hypothesized	that	the	prediction	values	provided	by	the	models	would	
correlate	with	the	size	of	a	cormorant	colony.	Lastly,	we	use	the	models	
trained	on	Minnesota	and	Florida	nesting	data	to	predict	contemporary	
nesting	sites	for	resident	and	migratory	cormorants	in	South	Carolina.

2  | METHODS

2.1 | Nesting colony data

We	 developed	 nesting	 habitat	 models	 for	 migratory	 P. auritus 
using	 available	 nesting	 survey	 data	 from	 Minnesota	 (1977–2010:	
Guillaumet,	 Dorr,	Wang,	 &	 Doyle,	 2013;	Wires	 &	 Cuthbert,	 2006;	
Dorr	et	al.,	2014)	and	resident	P. auritus	in	Florida	(1970–1999:	Nisbet	
et	al.,	2002).	These	states	are	historical	breeding	areas	for	migratory	
and	 resident	 cormorant	 phenotypes,	 respectively.	 Data	 for	 nesting	
sites	 in	South	Carolina	were	based	on	 the	colonies	documented	by	

SCDNR	in	2011	and	2012	(unpublished	data,	breeding	bird	database	
accessed	October	2013,	SCDNR),	publications	 reporting	contempo-
rary	nesting	locations	(Post	&	Seals,	1991),	and	personal	observations	
from	 the	 field	 (unpublished	 data,	 K.	 Sheehan,	 Clemson	 University,	
2011–2013).	All	 count	data	were	 converted	 to	presence	points	 for	
Maxent	model	creation	and	presence/absence	for	model	validation.

Each	colony	location	was	initially	reported	as	a	single	point	despite	
multiple	 habitat	 characteristics	 occurring	 within	 a	 nesting	 site.	 For	
example,	at	a	30-	m	resolution,	a	single	colony	could	occur	in	forested,	
undeveloped,	and	wetland	habitat.	To	capture	the	full	 range	of	envi-
ronmental	characteristics	within	each	colony,	we	converted	point	data	
to	polygons,	using	automated	and	manual	methods.	This	also	allowed	
us	to	overcome	geographic	positioning	errors	(Naimi,	Skidmore,	Groen,	
&	Hamm,	2011)	 that	associated	some	colonies	with	unlikely	nesting	
habitats	(e.g.,	open	water	adjacent	to	island	nesting	sites).	Geospatial	
analysis	of	water	layers	from	the	National	Hydrography	Dataset	(NHD)	
was	 used	 to	 identify	 areas	 of	 land	 that	were	 <10,000	km2	 and	 sur-
rounded	by	water.	The	 resulting	polygons	were	 spatially	 joined	with	
nesting	colony	data.	Manual	validations	were	performed	by	overlaying	
colony	polygons	on	 satellite	 imagery;	we	manually	 adjusted	 the	 col-
ony	extent	to	accommodate	sites	not	captured	during	automation,	as	
was	 the	case	when	rookeries	occupied	 islands	smaller	 than	 the	spa-
tial	resolution	of	the	source	dataset	(30	m	×	30	m;	Figure	1)	or	where	
rookeries	 occurred	 in	 swamps	 or	 mainland	 peninsulas.	 The	 polygon	
layer	 containing	 colony	 data	was	 converted	 into	 a	 raster	with	 each	
30	m	×	30	m	cell	 representing	 the	presence	or	 absence	of	 a	 nesting	

F I G U R E  1 Conversion	of	nesting	points	to	polygons.	
Aerial	imagery	of	island	nesting	sites	reported	in	Florida	where	
sandy	and	shell	hash	substrates	(light	areas	in	the	photograph)	
connect	P. auritus	nesting	areas	(inset	image)	in	trees.	Example	
polygons	drawn	around	P. auritus	colonies.	Albers	Equal	Area	Conic	
projection	
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colony.	And	finally,	each	presence	cell	was	converted	to	point	data	(one	
point	created	at	the	center	of	each	30	m	×	30	m	cell)	for	input	into	the	
Maxent	 analysis.	Because	most	 colonies	were	 represented	by	multi-
ple	points,	potential	spatial	autocorrelation	could	inflate	the	fit	of	our	
models	(Hijmans,	2012).	We	tested	model	residuals	for	spatial	autocor-
relation	using	a	100-	permutation	Mantel	test	on	distance	matrices	of	
geographic	covariance	and	residual	covariance.	To	overcome	issues	of	
spatial	autocorrelation,	we	validated	our	models	in	three	ways:	(1)	We	
verified	low	prediction	probability	of	observed	absence	points	(created	
in	the	same	way	as	present	points);	(2)	we	created	random	landscape	
models	to	verify	that	the	habitat	used	by	P. auritus	was	distinct	from	
habitat	 throughout	 the	 rest	 of	 the	 state;	 and	 (3)	we	 transferred	 the	
models	(based	on	the	observed	presence,	observed	absence,	and	ran-
dom	data	points)	between	all	states	to	verify	that	the	predicted	habitat	
models	were	unique	to	each	specified	circumstance.

2.2 | Layer development for individual parameters

The	 selection	 of	 nesting	 locations	 by	P. auritus	 could	 be	 associated	
with	foraging	habitat,	nesting	habitat,	and/or	anthropocentric	param-
eters.	These	variables	were	derived	from	data	layers	obtained	through	
publicly	 available	Web	downloads	 from	 the	National	Atlas,	National	
Land	Cover	Database	 (NLCD),	National	Wetlands	 Inventory,	and	the	
NHD	 (see	Table	S1	 in	Appendix	S1	 in	Supporting	 Information).	Fish	
consumption	 advisories	 and	 avian	 disease	 outbreaks	were	 obtained	
from	the	Environmental	Protection	Agency,	and	fish	stocking	activity	
data	were	obtained	from	each	state’s	fisheries	agency.	We	obtained	
climate	data	from	the	PRISM	Climate	Group,	Oregon	State	University.	
Because	downloaded	data	were	in	different	formats	(raster,	polygon,	
point,	 polyline)	 and	 sometimes	 were	 split	 into	 multiple	 files,	 each	
parameter	 was	 individually	 processed	 to	 obtain	 similarity	 in	 trans-
formation,	registry,	and	raster	cell	value.	In	some	cases,	this	required	
simply	snapping	raster	data	to	a	common	registry	point	(e.g.,	climate	
data),	 and	 in	 other	 cases,	 spatial	 joining	 of	 data	 and	 object	 classes	
(e.g.,	wetland	data),	raster	conversion	(e.g.,	fish	advisories),	and	raster	
reclassification	(e.g.,	land	use	data)	was	needed	to	achieve	consistent	
and	 comparable	 formatting	 (parameter	 processing	 details	 appear	 in	
Appendix	S1).	We	provide	a	schematic	example	of	layer	development	
for	wetland	data	layers	(Figure	2).

2.3 | Derivation of parameters

Guisan	 and	 Thuiller	 (2005)	 recommend	 focal	 statistics	 for	 highly	
mobile	 organisms	 because	 observations	 are	 likely	 to	 vary	 between	
potential	and	realized	distributions.	The	likelihood	of	any	given	focal	
cell	 to	 be	 impacted	 positively	 or	 negatively	 by	 the	 values	 of	 other	
nearby	cells	was	either	summed,	averaged,	or	maximized	at	a	radius	
of	 either	 3.5	 or	 10	km.	We	based	 focal	 radii	 on	 foraging	 distances	
reported	during	the	breeding	season	(Coleman,	Richmond,	Rudstam,	
&	Mattison,	 2005;	 Dorr	 et	al.,	 2012;	 Sheehan,	 Hanson-Dorr,	 Dorr,	
Yarrow	&	Johnson,	2016a).	The	final	state-	based	raster	 layers	were	
converted	to	tagged	image	file	format	(tiff)	and	imported	into	the	R	
statistical	 computing	 environment	 (r-	project.org)	 with	 the	 Maxent	

Java	 application	 (cs.princeton.edu/~schapire/maxent/)	 using	 the	
“dismo”	package	 (Hijmans	&	Elith,	2013).	To	capture	biological	pro-
cesses	 that	 occur	 at	 differing	 spatial	 extents,	 multiple	 focal	 statis-
tics	were	calculated	for	many	environmental	variables.	As	such,	we	
expected	these	 layers	to	covary	and	identified	groups	of	correlated	
parameters	 during	model	 development	 (derived	 from	 the	 same	 ini-
tial	dataset	or	source	agency;	see	Table	S2	in	Appendix	S1).	Within	
each	group,	the	variable	that	explained	the	most	variance	in	nesting	
site	distribution	was	retained	and	the	remaining	group	members	were	
removed	from	the	model	(York	et	al.,	2011;	Young	et	al.,	2013).

2.4 | Species distribution models

We	 assessed	 the	 influence	 of	 environmental	 parameters	 (derived	
parameters)	of	the	entire	extent	of	each	state	for	nest	site	selection	of	
P. auritus	in	Minnesota	and	Florida.	We	stacked	all	derived	variables	
(Phillips,	Anderson,	&	Schapire,	2006)	and,	using	default	Maxent	algo-
rithms,	reduced	the	number	of	model	parameters	using	three	series	
of	five	 iterations,	removing	environmental	variables	 in	the	following	
order:	variables	contributing	no	explanatory	power	to	the	model	(pro-
viding	0%	contribution);	variables	providing	0.5%	or	less	explanatory	
contribution	(Holt,	Salkeld,	Fritz,	Tucker,	&	Gong,	2009);	and	variables	
that	covaried	significantly	with	parameters	with	greater	explanatory	
power	(Koncki	and	Aronson	2015;	see	Table	S2	in	Appendix	S1).	By	
removing	nonexplanatory	and	redundant	variables,	we	reduced	model	
parameters	 and	 overfitting	 (Merckx,	 Steyaert,	 Vanreusel,	 Vincx,	 &	
Vanaverbeke,	 2011).	 The	models	 trained	 on	Minnesota	 and	Florida	
nesting	data	were	used	to	generate	predicted	geographic	distributions	
within	 the	 political	 boundaries	 of	 each	 state	 (Minnesota,	 Figure	3;	
Florida,	Figure	4;	and	South	Carolina,	Figure	5).

2.5 | Testing model predictions

In	addition	to	common	predictors	of	model	success	(receiver	operat-
ing	characteristic	area	under	the	curve	[AUC],	which	is	the	likelihood	

F I G U R E  2 Derivation	steps	for	wetland-	related	layers	used	to	
develop	the	Maxent	model	trained	on	resident	cormorants	in	Florida.	
Although	their	base	layers	used	different	in	geographic	extents,	the	
same	methods	were	used	to	develop	wetland-	related	layers	for	the	
states	of	Minnesota	and	South	Carolina	
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of	a	model	to	assign	a	higher	prediction	value	for	any	randomly	cho-
sen	presence	point	when	compared	 to	any	 randomly	chosen	back-
ground	point;	Merow,	 Smith,	&	Silander,	 2013),	we	used	observed	
absence	data	 points	 in	Minnesota	 and	Florida	 (Nisbet	 et	al.,	 2002;	

Wires,	Cuthbert,	&	Hamilton,	2011;	Wires,	Haws,	&	Cuthbert,	2005)	
to	test	the	predictive	ability	of	each	model.	We	sampled	point	data	
from	 the	 predictive	map	 outputs	 based	 on	 the	 observed	 presence	
and	absence	points	 for	each	state	and	compared	prediction	values	
with	empirical	presence–absence	data.	Thresholds	of	the	maximum	
training	sensitivity	plus	specificity	 (MTSS)	values	 (Jimenez-	Valverde	
&	 Lobo,	 2007)	were	 used	 to	 transform	 continuous	 data	 to	 binary,	
where	 each	 point	 was	 categorized	 as	 nesting	 habitat	 (1)	 or	 non-	
nesting	habitat	(0)	of	P. auritus	(Cao	et	al.,	2013).	Chi-	square	analyses	
of	actual	versus	predicted	data	were	used	to	assess	the	ability	of	each	
model	to	correctly	predict	the	status	of	a	site	observed	for	nesting	P. 
auritus.	We	also	assessed	whether	model	output	was	a	good	predic-
tor	of	colony	size	and	used	 linear	 regressions	comparing	nest	den-
sity	 (nests/km2)	 to	prediction	values	derived	by	the	Minnesota	and	
Florida	models.

To	 confirm	 that	 predictor	 variables	 in	 nesting	 models	 were	 not	
merely	a	representation	of	the	landscape,	we	created	a	random	set	of	
5,000	points	within	the	state	boundaries	of	Minnesota	and	Florida	and	
developed	null	models	 in	 the	 same	manner	as	 the	empirical	models	
created	with	the	presence	data.	These	predictive	maps	of	the	random	
landscape	developed	from	the	null	models	were	compared	to	empir-
ical	nesting	census	data	 for	Minnesota,	Florida,	 and	South	Carolina.	
The	null	models	aided	 in	confirming	 that	our	models	 trained	on	 the	
observed	presence	data	were	accurate	despite	potential	spatial	auto-
correlation	(Hijmans,	2012).

3  | RESULTS

3.1 | Statewide models

The	 Maxent	 model	 for	 migratory	 cormorant	 nesting	 habitat	 in	
Minnesota	produced	prediction	values	ranging	from	<0.010	to	0.956	
(Figure	3).	The	AUC	value	was	0.911,	indicating	the	excellent	model	
fit;	however,	as	expected,	residuals	exhibited	spatial	autocorrelation	
(Mantel	test,	p = 0.001). The t	tests	performed	on	the	observed	field	
data	 confirmed	 the	 prediction	 success	 of	 this	 model	 for	 migratory	
birds	 (p <	0.0001,	 Table	1)	with	 a	mean	 prediction	 of	 absence	 sites	
of	0.12	 (95%	CI:	0.108–0.133)	 and	presence	 sites	of	0.54	 (95%	CI:	
0.535–0.544).	The	threshold	for	the	MTSS	as	determined	by	Maxent	
algorithm	was	0.277	 (Chi-	square	p	<	0.0001,	R-	square	=	0.814).	The	
Maxent	predictor	values	were	not	a	 strong	estimate	of	colony	size,	
as	higher	prediction	values	(those	most	likely	to	be	P. auritus	nesting	
sites)	corresponded	with	small	colony	sizes	rather	than	 large	colony	
sizes	(p	=	0.0278,	R-	square	=	0.002).

The	Florida	model	 (Figure	4)	successfully	predicted	the	presence	
and	absence	of	P. auritus	nesting	colonies	(p	<	0.0001,	Table	1,	AUC	of	
0.887,	Mantel	test	for	autocorrelation	p	=	0.001).	The	mean	prediction	
value	for	absence	sites	was	0.040	 (95%	CI:	0.0360–0.0450)	and	for	
presence	sites	was	0.496	(95%	CI:	0.491–0.500).	The	MTSS	threshold	
value	used	for	presence/absence	designation	of	a	site	was	0.298	(Chi-	
square	p	<	0.0001,	R-	square	=	0.827).	A	positive	regression	of	Florida	
colony	densities	agreed	with	prediction	values	derived	from	Maxent	
(p	<	0.0001,	R-	square	=	0.203).

F I G U R E  3 Prediction	of	suitable	cormorant	nesting	habitat	in	
Minnesota.	Albers	Equal	Area	Conic	projection	

F I G U R E  4 Prediction	of	suitable	cormorant	nesting	habitat	in	
Florida.	Albers	Equal	Area	Conic	projection	
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Seventeen	parameters	were	included	in	the	final	models	predicting	
P. auritus	nesting	habitat	in	Minnesota	and	Florida	(Table	2).	Of	these,	
eight	variables	occurred	in	both	models	including	variables	important	
for	cormorant	foraging,	nesting,	and	anthropogenic	factors.

3.2 | Model predictions for South Carolina

Contemporary	 colonies	 of	P. auritus	 nesting	 in	 South	 Carolina	 per-
sist	in	and	around	reservoir	lakes	created	in	the	1950s	(Post	&	Post,	
1988;	Post	&	Seals,	1991;	personal	observation,	K.	Sheehan,	Clemson	
University).	 The	 models	 for	 Minnesota	 (Figure	5a)	 and	 Florida	
(Figure	5b)	performed	well	when	transferred	to	predict	nesting	sites	
in	 South	 Carolina	 (Table	1);	 however,	 prediction	 values	 based	 on	
the	Minnesota	 model	 were	 low.	 And	 when	 truncated	 with	 thresh-
old	values,	 the	Minnesota	model	yielded	no	predicted	nesting	sites.	
Nesting	sites	of	P. auritus	based	on	the	Florida	model	identified	two	
colonies	with	 the	MTSS	 threshold	 values	 (Figure	5c;	p	<	0.0001,	R- 
square	=	0.3401)	where	cormorants	currently	breed.

3.3 | Model validation results

The	 residuals	 of	 our	models	were	 spatially	 autocorrelated	 (migra-
tory	P. auritus	Mantel	r	statistic	=	0.103,	p =	0.001;	resident	P. auri-
tus	Mantel	 r	 statistic	=	0.255,	p =	0.001).	 In	 light	 of	 these	 results,	

cross-	validation	 and	 null	 model	 tests	 were	 important	 to	 confirm	
model	performance.	When	tested	for	prediction	success	in	Florida,	
the	Minnesota	model	was	significant	(p	<	0.0001),	but	explained	lit-
tle	of	the	variance	in	nest	presence	(R-	square	=	0.082).	When	con-
verted	to	the	presence/absence	of	nesting	habitat	using	the	MTSS	
threshold,	 the	 Minnesota	 model	 identified	 no	 P. auritus	 nesting	
sites	present	 in	Florida.	Likewise,	the	prediction	values	for	Florida	
model	did	not	 successfully	predict	nesting	 locations	 in	Minnesota	
(p =	0.507)	 and	 correctly	 identified	 few	 nesting	 locations	 with	
MTSS	 threshold	 values	 (p =	0.004,	 R-	square	=	0.004).	 The	 lack	 of	
fit	between	the	two	phenotype	models	suggests	that	these	groups	
cue	 in	 on	 landscape	 characteristics	 differently.	 To	 ensure	 that	
model	variance	did	not	simply	correspond	with	overall	differences	
in	landscape	characteristics,	null	models	built	from	randomly	gener-
ated	 presence	 points	were	 developed.	 The	 null	Minnesota	model	
did	 not	 successfully	 predict	 nesting	 sites	 of	 P. auritus	 (p =	0.413,	
AUC	=	0.527).	The	Florida	model	created	with	random	points	pre-
dicted	 nesting	 habitat	 of	 P. auritus	 (p =	0.033,	 R-	square	=	0.001,	
AUC	=	0.536);	 however,	 the	 prediction	 values	 for	 absence	 points	
(mean	=	0.942,	95%	CI	=	0.932–0.951)	were	higher	than	those	for	
presence	 points	 (0.927,	 95%	CI	=	0.918–0.937).	 Using	MTSS	 and	
balanced	 threshold	 values	 for	 nesting	 habitat	 in	 South	 Carolina	
yielded	no	suitable	nesting	habitat	based	on	the	random	Minnesota	
and	Florida	null	models.

F IGURE  5 Prediction	of	suitable	nesting	habitat	in	South	Carolina.	Prediction	values	of	P. auritus	based	on	the	parameters	that	describe	the	
ecological	niche	of	cormorants	nesting	in	(a)	Minnesota,	(b)	Florida,	and	(c)	the	MTSS	threshold	value	for	Florida	altering	continuous	predicted	
values	to	suitable	(good)	nesting	habitat	and	unsuitable	(poor)	habitat.	Albers	Equal	Area	Conic	projection	

Model State test p- value R- square

Threshold

p- value R- square

Minnesota Minnesota <0.0001 0.653 <0.0001 0.750

Florida Florida <0.0001 0.791 <0.0001 0.827

Minnesota Florida <0.0001 0.082 N/A N/A

Florida Minnesota 	0.507 0.0004 <0.0001 0.004

Minnesota S.	Carolina <0.0001 0.256 N/A N/A

Florida S.	Carolina <0.0001 0.218 <0.0001 0.036

The	degree	of	freedom	for	all	tests	was	1.

TABLE  1 Results	of	Student’s	t	tests	
comparing	model	output	based	on	the	
prediction	value	and	values	truncated	at	
the	threshold	for	maximum	training	
sensitivity	plus	specificity	(MTSS)
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4  | DISCUSSION

The	Maxent	species	distribution	models	developed	here	were	predic-
tive	of	breeding	habitat	 for	migratory	cormorants	 in	Minnesota	and	
resident	cormorants	in	Florida	and	had	good	model	fit.	When	trans-
ferred	 to	 South	Carolina,	 the	 Florida	model	 correctly	 predicted	 the	
presence	and	absence	of	P. auritus	nesting	colonies	and	indicated	that	
nesting	 habitat	 selection	 characteristics	 for	 the	 resident	 phenotype	
are	present	 in	South	Carolina	 (Figure	5).	 In	 contrast,	 the	Minnesota	
model	was	not	predictive	of	P. auritus	nesting	colonies	or	nesting	habi-
tat	selection	characteristics	 in	South	Carolina.	We	used	the	Maxent	
algorithm	to	assess	landscape	characteristics	in	Minnesota	and	Florida	
based	on	the	suitability	of	local	parameters	important	for	the	foraging	

and	nesting	success	of	resident	and	migratory	cormorant	phenotypes.	
We	 detected	 similar	 variables	 in	 the	 models	 trained	 on	 data	 from	
Minnesota	and	Florida,	but	the	importance	of	each	parameter	varied.	
Effective	management	of	wildlife	metapopulations	that	have	pheno-
types	 with	 differing	 conservation	 imperatives	 requires	 a	 thorough	
understanding	of	 landscape	features	that	could	promote	or	discour-
age	the	establishment	of	 local	populations.	The	 inclusion	of	specific	
variables	 in	both	models	highlights	the	 importance	of	the	 landscape	
parameters	 selected	 in	 our	 models	 and	 could	 be	 investigated	 in	
greater	 detail	 to	 improve	 conservation	 and	 management	 plans	 for	
suites	 of	wildlife	 species	 (Guisan	&	 Thuiller,	 2005;	Nicholson	 et	al.,	
2006)	including	waterbirds.

4.1 | Considerations for other waterbird 
distribution models

Understanding	 the	mechanistic	 biology	 and	 ecology	 of	 other	 nest-
ing	waterbirds	will	 almost	 certainly	 require	 different	 local	 variables	
of	importance.	Specific	parameters	that	could	be	informative	include	
fine-	scale	submerged	and	emergent	vegetation	data,	climate	condi-
tions	that	would	contribute	to	exposure	severity	such	as	 lake	fetch	
and	forest	cover	density,	and	recreation	variables	that	might	be	use-
ful	for	estimating	the	anthropogenic	use	of	each	water	body	(water	
depth,	 boat	 launches,	 beaches,	 industry,	 etc.).	P. auritus	 often	 nest	
near	 conspecifics	 and	 other	 waterbirds,	 and	 information	 regarding	
nesting	 sites	 of	 other	 bird	 species	 could	 be	 used	 to	 better	 inform	
models.	 We	 did	 not	 include	 conspecific	 data	 for	 the	 models	 pre-
sented	here,	because	previous	occurrence	data	 collected	over	 long	
periods	of	time	were	not	readily	accessible	within	all	regions	exam-
ined.	Nonetheless,	the	landscape-	derived	variables	in	our	models	are	
generally	available	so	that	the	methods	used	here	can	be	considered	
in	future	applications.

To	expand	on	the	methods	used	here,	we	suggest	that	future	stud-
ies	 train	SDMs	with	occupancy	data	 from	 telemetered	 resident	 and	
migratory	 birds.	 This	 would	 allow	 managers	 to	 identify	 the	 habitat	
used	 during	 the	 nonbreeding	 season,	when	 subpopulations	 overlap	
geographically	and	when	management	activities	directly	impact	multi-
ple	groups	or	organisms.	If	these	tracking	studies	were	combined	with	
SDMs,	 wildlife	 management	 programs	 could	 better	 identify	 critical	
habitats	 and	 geographic	 areas	 to	 target	 for	 subspecies/subpopula-
tion	conservation	and	management	activities	(Venier,	Pearce,	McKee,	
McKenney,	 &	Nieme,	 2004).	Additionally,	 changes	 in	migration	 and	
breeding	 behaviors	 resulting	 from	 climatic,	 geologic,	 biologic	 (e.g.,	
disease),	and	anthropogenic	changes	in	the	landscape	(Huntley	et	al.,	
2006;	 Kavanagh	 &	 Bamkin,	 1995)	 could	 be	 predicted	 using	 SDMs	
(Peterson,	2001).	Using	the	environmental	characteristics	of	the	pres-
ent	 distributions	 of	wildlife	 can	 help	 develop	management	 plans	 to	
accommodate	 transitions	 through	 a	 changing	 landscape,	 effectively	
promoting	 proactive	 rather	 than	 reactive	 management	 (Lotter	 &	 le	
Maitre,	2014;	May,	Page,	&	Fleming,	2016).	For	these	predictive	mod-
els	to	accurately	describe	potential	distributions,	consistency	among	
parameter	variables	used	to	train	models	and	those	to	which	models	
are	transferred	is	critical.

TABLE  2 Variable	contribution	for	parameters	included	in	the	
final	cormorant	nesting	habitat	models	developed	with	Maxent	in	
Minnesota	and	Florida

Minnesota Florida

Foraging Avg.	Wetland	Area 4a 6.9a

Lbs.	Fish	Stocked	10k

Lbs.	Fish	Stocked	3.5k 0.7

Min	Temp	September

Num	Fish	Stocked	10k

Water	Availability	3.5k 23.3

Water	Presence	10k

Water	Quantity	3.5k 16.5

Water	Quantity	10k 19.7

Nesting Forested	Land 9.3a 11a

Max	Temp	June 1.8a 2.6a

Undeveloped	Land 2.7a 16.1a

Max	Temp	March 3.7

Max	Temp	September

Min	Temp	March 1.3a 12a

Min	Temp	September 4.4

Min	Tempt	June 2.9

Precipitation	March 3.4

Precipitation	September 5.3

Avian	Botulism	Death 0.1

Anthropocentric Anthropogenic	Land

Agriculture	Quantity 12

Avian	Lead	Poisoning

Avian	Pesticide	Death 1.1a 0.7a

Human	Pop.	Density 2.1

Impervious	Surf.	Quant 13.4a 4.8a

Indian	Land 1

Land	Use	Change 1.9a 2.7a

Mercury	Fish	Advisory 7.3a 0.6a

Rescinded	Fish	Adv. 2.7a 2a

aFactors	that	appear	in	both	models.
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When	 transferring	models	 trained	 on	 data	 from	Minnesota	 and	
Florida	 to	 the	 extent	 of	 South	 Carolina,	 only	 nesting	 habitat	 for	
the	 Florida	 phenotype	 was	 predicted.	 Transferability	 of	 a	 model	 is	
dependent	 on	 the	 similarities	 between	 the	 region	 used	 to	 develop	
the	model	 and	 the	area	 the	model	 is	 transferred	 to	 (Peterson	et	al.,	
2007;	 Randin	 et	al.,	 2006;	Wolmarans,	 Robertson,	 &	 van	 Rensburg,	
2010).	 In	 our	models,	 data	 that	might	 have	 differed	 significantly	 in	
range	were	ranked	prior	to	focal	statistic	transformation	(Table	S3	in	
Appendix	S1).	This	allowed	 for	 the	values	derived	 from	 focal	 statis-
tics	to	be	similar	in	range,	preventing	transferability	problems	such	as	
interpretation	 errors	 associated	with	 clamping	 (Phillips	 et	al.,	 2006).	
Climate	variables	were	the	only	environmental	parameters	not	treated	
with	focal	statistics.	Temperature	averages	 in	March	and	September	
are	 higher	 for	 the	 two	 southern	 states	 (South	Carolina	 and	 Florida)	
than	 for	 Minnesota	 (Easterling	 et	al.,	 1997);	 however,	 temperature	
variables	in	the	Minnesota	model	contributed	a	cumulative	10%	to	the	
prediction	value	assignments.	Thus,	we	do	not	expect	this	model	to	be	
incompatible	with	the	variable	values	for	South	Carolina	or	Florida	and	
note	 that	 springtime	 temperature	has	been	 identified	as	 an	 import-
ant	 contributor	 to	 passerine	 species	 distribution	 models	 (Virkkala,	
Louto,	Heikkinen,	&	Leikola,	2005).	We	suggest	that	the	results	of	the	
threshold	tests	in	South	Carolina	are	valid	and	conclude	that	separate	
management	and	conservation	goals	for	the	nesting	colonies	of	cor-
morants	in	South	Carolina	are	justified.

4.2 | Conclusions and management implications

Phalacrocorax auritus	has	a	salacious	history	in	North	America	where	
harassment	and	exploitation	of	nesting	colonies	by	humans	were	his-
torically	common	(Wires	&	Cuthbert,	2006).	Cormorants	are	subject	
to	various	laws	that	allow	for	both	their	protection	and	management,	
including	 lethal	 control	 and	 reduction	 or	 elimination	 from	 suitable	
nesting	 and	 roosting	 habitats	 as	 a	 means	 of	 limiting	 their	 impacts	
on	natural	resources	(Dorr	&	Somers,	2012;	Dorr	et	al.,	2014;	Wires	
et	al.,	2005).	Thus,	the	realized	ecological	niche	where	P. auritus	nests	
do	not	necessarily	represent	its	potential	ecological	niche	and	human	
disturbance	characterizes	a	portion	of	the	disparity	between	the	fun-
damental	and	realized	habitat	uses	of	P. auritus.	Our	models	 include	
anthropocentric	variables	that	could	help	increase	prediction	accuracy	
for	 nest	 site	 suitability	 and,	 therefore,	 identify	 regions	where	man-
agement	of	resident	phenotypes	might	be	treated	differently.	Many	
of	 these	 anthropocentric	 variables	 can	 be	 altered	 to	 some	 degree	
through	urban	planning	and	natural	resource	management,	points	to	
consider	for	management	goals	designed	to	influence	the	distribution	
of	P. auritus.

Geographic	 parameters	 such	 as	 prevalence	 of	water	 bodies	 and	
forested	 land	are	critical	predictors	 for	 the	distribution	of	waterbird	
metapopulations	as	are	anthropogenic	parameters	such	as	the	quan-
tity	and	distribution	of	impervious	surfaces	(Becker	&	Weisberg,	2015).	
These	and	other	parameters	can	be	manipulated	through	changes	in	
land	management	practices	 (Liu	&	Taylor,	2002).	By	 including	model	
parameters	that	influence	the	feeding	and	nesting	success	of	cormo-
rants,	 we	 developed	 assessments	 that	 predict	 species	 distribution	

better	than	climatic	variables	alone	(Cabral	&	Kreft,	2012)	and	inform	
managers	of	variables	that	could	be	considered	for	habitat	manipula-
tion.	For	example,	 connecting	and	converting	undeveloped	 lands	 to	
forested	habitat	near	current	and	potential	nesting	sites	might	reduce	
the	 attractiveness	 of	 a	 site	 for	 P. auritus	 colonies.	 Additionally,	 the	
removal	or	alteration	of	roosting	habitat	(standing	dead	cypress	trees)	
in	areas	where	P. auritus	are	undesirable	could	prevent	colony	estab-
lishment	and	persistence.	Furthermore,	parameters	such	as	fish	stock-
ing	could	be	explored	in	greater	detail	to	clarify	whether	the	timing,	
stocking	numbers,	richness	of	species	stocked,	or	size	of	stocked	fishes	
could	be	altered	to	deter	or	attract	P. auritus.	We	encourage	managers	
to	consider	using	SDMs	to	identify	factors	that	could	be	manipulated	
to	 alter	 the	 attractiveness	 of	managed	 lands	 to	 cormorant	 colonies	
while	still	preserving	ecosystem	services.	Models	like	these	could	be	
used	by	conservationists	interested	in	differentiating	between	migra-
tory	and	resident	groups	in	the	absence	of	reliable	molecular	evidence	
and	where	colony	establishment	is	accepted	or	even	desirable.

Here,	we	demonstrate	how	 readily	 available	 environmental	vari-
ables	can	be	used	to	develop	SDMs	that	describe	the	distribution	of	
colonial	waterbirds,	 using	 double-	crested	 cormorant	 nesting	 habitat	
as	a	case	study.	The	model	trained	on	data	from	Florida	successfully	
identified	contemporary	nesting	sites	of	P. auritus	 in	South	Carolina.	
This	information	could	be	used	to	refine	management	plans	for	both	
migratory	and	resident	cormorant	phenotypes	in	states	where	the	two	
overlap	in	geographic	distribution.	Resource	managers	can	deploy	sim-
ilar	methods	to	identify	the	current	and	future	distributions	of	wildlife,	
particularly	where	conservation	and	management	of	metapopulations	
differ.
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