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The predatory mirid bug, Cyrtorhinus lividipennis Reuter, feeds on brown planthopper 
(BPH) eggs that are deposited on rice and gramineous plants surrounding rice fields. The 
development and reproduction of C. lividipennis are inhibited by feeding on BPH eggs 
from gramineous species, and the underlining regulatory mechanism for this phenomenon 
is unclear. In the present study, HPLC-MS/MS analysis revealed that the concentrations 
of six amino acids (AAs:Ala, Arg, Ser, Lys, Thr, and Pro) were significantly higher in rice 
than in five gramineous species. When C. lividipennis fed on gramineous plants with BPH 
eggs, expression of several genes in the target of rapamycin (TOR) pathway (Rheb, TOR, 
and S6K) were significantly lower than that in the insects fed on rice plants with BPH 
eggs. Treatment of C. lividipennis females with rapamycin, dsRheb, dsTOR, or dsS6K 
caused a decrease in Rheb, TOR, and S6K expression, and these effects were partially 
rescued by the juvenile hormone (JH) analog, methoprene. Dietary dsTOR treatment 
significantly influenced a number of physiological parameters and resulted in impaired 
predatory capacity, fecundity, and population growth. This study indicates that these six 
AAs play an important role in the mediated-TOR pathway, which in turn regulates 
vitellogenin (Vg) synthesis, reproduction, and population growth in C. lividipennis.

Keywords: Cyrtorhinus lividipennis, target of rapamycin, amino acid, fecundity, population growth

INTRODUCTION

The mirid bug Cyrtorhinus lividipennis (Reuter; Hemiptera: Miridae) is a natural predator of 
rice planthoppers. Predation by C. lividipennis modulates the population densities of several 
planthoppers in rice fields, including the brown planthopper (BPH), Nilapavata lugens (Katti 
et  al., 2007; Sigsgaard, 2007). Cyrtorhinus lividipennis nymphs and adults mainly consume 
planthopper eggs, nymphs, and adults for growth and development (Reyes and Gabriel, 1975). 
Cyrtorhinus lividipennis also preys on lepidopteran pests including Chilo suppressalis, Cnaphalocrocis 
medinalis, and Sesamia inferens (Zhu and Chen, 1981).
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The feeding and reproduction of insect species are closely 
correlated with nutritional factors (Yu et al., 1996). Cyrtorhinus 
lividipennis is an unusual species that exhibits both herbivorous 
and predatory feeding habits (Bentur and Kalode, 1985). When 
C. lividipennis consumed a diet of planthoppers that inhabited 
gramineous species such as Echinochloa glabrescens, Leptochloa 
chinesis, Digitaria ciliaris, Cyodon dactylon, and Eleusine indica 
growing on the bunds surrounding rice fields, their development 
and reproduction were reduced in comparison to those 
consuming planthoppers (such as BPH eggs) on rice plants 
(Pomari-Fernandes et  al., 2015), indicating that nutrition from 
rice plant is beneficial to the predator. When C. lividipennis 
was fed on eggs of the rice meal moth, Corcyra cephalonica 
(Lepidoptera: Pyralidae), the predator successfully reached the 
adult stage (Murugan and George, 1992). Similarly, Telenomus 
remus (Hymenoptera:Platygastridae) showed normal development 
when fed on C. cephalonica eggs, suggesting that C. cephalonica 
is a promising factitious host (Matteson, 2000). Collectively, 
these results indicate that C. cephalonica eggs or planthopper 
eggs/nymphs from rice plants provide adequate nutrients for 
successfully rearing predatory insects.

Predation capacity is influenced by changes in the 
environment, host morphology, and nutrient composition 
(Wakde, 1995; Laba and Heong, 1996; Cortesero et  al., 2000). 
With respect to the latter category, proteins, free amino acids 
(AAs), sugars, lipids, inorganic salts, and vitamins provide 
energy and compounds needed for insect growth and 
development (Shah et  al., 2005). AAs are among the most 
important nutrients and participate in various metabolic processes 
in insects (Sogawa, 1972); furthermore, AAs were shown to 
significantly impact the balance between fecundity and lifespan 
in Drosophila (Grandison et al., 2009). Our recent transcriptomic 
analysis revealed that, when newly-emerged C. lividipennis fed 
on BPH eggs from any of the five gramineous species mentioned 
above, the expression levels of the TOR and S6K genes in the 
target of rapamycin (TOR) pathway were significantly 
downregulated, compared to those feeding on BPH eggs from 
rice plants or C. cephalonica eggs (data not shown).

The TOR signaling pathway transduces nutritional signals 
that stimulate vitellogenin (Vg) synthesis in insect fat body, 
which subsequently activates egg development (Kim and Guan, 
2011; Roy and Rikhel, 2011; Perex-Hedo et al., 2013). In Aedes 
aegypti, the TOR signaling pathway genes (e.g., S6K, Rheb, 
and TSC2) relay nutritional information during egg development 
(Hansen et al., 2004, 2005; Roy and Rikhel, 2011). Furthermore, 
the knockdown of TOR gene in A. aegypti reduced Vg 
transcription and resulted in reduced numbers of deposited 
eggs, suggesting that the TOR pathway is a critical component 
in Vg biosynthesis and the maturation of oocytes (Hansen 
et al., 2004, 2005; Roy and Rikhel, 2011). In Blattella germanica, 
the TOR pathway reportedly links nutritional signals with 
juvenile hormone (JH) and Vg synthesis (Maestro et al., 2009). 
An analogous relationship between the TOR signaling pathway 
and JH synthesis was identified in BPH (Lu et  al., 2016). 
Collectively, these studies indicate that Vg transcription and 
egg maturation are controlled by endocrine hormones and the 
TOR signaling pathway in insects.

In the present study, we  explore the question of why a diet 
of BPH eggs from gramineous plants is an unsuitable food 
source for C. lividipennis. This study illuminates one of the 
underlying regulatory mechanisms of this phenomenon and 
provides valuable information regarding the role of six AAs 
in the reproduction of C. lividipennis.

MATERIALS AND METHODS

Plant Materials and Insects
The BPH-susceptible rice cultivar Ningjing 4 was used in this 
study. Seeds were planted in a cement pool, and seedlings 
were transferred into plastic pots and arranged in hills at the 
six-leaf stage as previously described (Lu et  al., 2017; Ge et  al., 
2020a). All experiments utilized rice at the tillering stage 
(40  days).

The seeds of gramineous plants, including L. chinesis, D. ciliaris, 
C. dactylon, and E. indica, were purchased from Jiangsu Leerda 
Seed Industry Co., Ltd. (LiYang, Jiangsu). Seeds of the barnyard 
grass E. glabrescens were collected from rice fields located at 
the Yangzhou University Farm. Seeds were sown in plastic 
pots (16  cm diameter  ×  15  cm high). The six gramineous 
plants were used in experiments 40  days after germination 
because plenty of BPH eggs were laid on these plants at this 
time. Each newly-emerged C. lividipennis female was offered 
10 rice plants with BPH eggs or 50 C. cephalonica eggs as 
food sources.

The BPH strain utilized herein was provided by the China 
National Rice Research Institute (Hangzhou) and reared as 
described previously (Ge et al., 2020a). Cyrtorhinus lividipennis 
was obtained from rice plants cultivated in Yangzhou and 
maintained on Ningjing 4 rice containing N. lugens eggs 
or nymphs.

Reagents and Quantitation of Free Amino 
Acids
Amino acids, vitamins, inorganic salts, and other reagents were 
purchased from Sinopharma Chemical Reagent Co. Ltd. 
(Shanghai, China). Stems (0.1  g fresh weight) were removed 
from rice (tillering stage) and five gramineous species at 40 days 
after germination, respectively, and transferred to 1  ml of 
0.01  N HCl. Suspensions were allowed to settle for 15  min 
at ambient temperature, and a 0.5  ml volume was centrifuged 
at 10,000  ×  g. AAs were extracted using the EZ:Fast Free AA 
Kit (Phenomenex, CA, United  States). HPLC-MS/MS analysis 
of free AAs in extracted samples was conducted as described 
(Florencio-Ortiz et al., 2018). AA standards were supplied with 
the EZ:Fast kit, and calibration curves were calculated for each 
AA. Data were analyzed with Agilent 5975 software.

Artificial Diets for C. lividipennis
Artificial diets were formulated as described previously 
(Ge et  al., 2020b). Compounds were dissolved in double-
distilled water (ddH2O), and the pH was adjusted to 6.4 
with 4% KOH in a total volume of 100  ml. Diets were 
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prepared with AAs (+6 AAs:Ala, Arg, Lys, Ser, Pro, and Thr), 
without AAs (−6 AAs:−Ala, −Arg, −Lys, −Ser, −Pro, and −Thr), 
or lacking individual AAs (−1 AA:−Ala, −Arg, −Lys, −Ser, 
−Pro, or −Thr). Glass cylinders (7.5  ×  1.2  cm) were used 
as feeding chambers. A 50  μl aliquot of the artificial diet 
was sandwiched between layers of a Parafilm membrane as 
described previously (Ge et  al., 2020a). The diet capsule was 
replaced on alternate days, and 200  μl ddH2O was added 
daily to maintain RH (He et  al., 2014). A black cotton cloth 
was used to exclude light from the cylinders; however, the 
open end containing the diet capsule was left uncovered to 
provide light. Cyrtorhinus lividipennis feeding (n  =  10 first 
instar individuals) was facilitated by puncturing the inner 
Parafilm membrane, and 10 chambers were used to rear 
nymphs in each treatment. Rearing was conducted in growth 
chambers maintained at 26  ±  2°C, 80% RH with a 16L:8D 
photoperiod. Mortality was recorded on alternate days.

dsRNA Preparation and Microinjection
Rheb, TOR, and S6K were amplified from cDNA using primer 
sets Rheb-F/Rheb-R, TOR-F/TOR-R, and S6K-F/S6K-R 
(Supplementary Table S1). The green fluorescent protein (GFP) 
gene encoding GFP was used as a negative control; this was 
amplified as a 688-bp fragment from pHT3AG with primers 
GFP-F and GFP-R. The reaction conditions were as follows: 
35  cycles at 95°C for 30  s, 60°C for 30  s, and 72°C for 45  s, 
with a final extension at 72°C for 10 min. Cloned PCR products 
were used as templates to re-amplify the genes for dsRNA 
synthesis using the following primer sets: Rheb-T7F/Rheb-T7R, 
TOR-T7F/TOR- T7R, S6K-T7F/S6K-R, and GFP-T7F/GFP-T7R 
(Supplementary Table S1). A DNA gel purification kit (Omega 
Bio-tek, Doraville, GA, United  States) was used to purify PCR 
products. The T7 RiboMAX™ Express RNAi System (Promega, 
Madison, WI, United  States) was used to generate dsRNAs by 
in vitro transcription. The dsRNA products were dissolved in 
diethyl pyrocarbonate (DEPC)-treated water at 5  μg/μl and 
stored at −80°C.

Fifth instar C. lividipennis nymphs were anesthetized with 
CO2 prior to dsRNA injection (Lin et  al., 2016). Injection of 
the intra-thoracic region was carried out using a Nanoject II 
microinjection device (Drummond Scientific, Broomall, PA, 
United  States; Liu et  al., 2010). dsRNA (50  ng in 50  μl) was 
injected into fifth instar nymphs; after a 2  h recovery period, 
nymphs were allowed to feed on the complete artificial diet. 
Insects were collected at 2  days after emergence (DAE) and 
used for total RNA extraction.

Methoprene and Rapamycin Treatments
A stock solution (100 ng/nl) of the JH analog (JHA) methoprene 
(Sigma-Aldrich, St. Louis, MO, United  States) was prepared 
in acetone as described (Ge et  al., 2020a) and diluted to 
10  μg/μl in acetone and ddH2O (1:10  v/v). Fifty nanoliters 
of 1.0  ng/nl JHA solution was topically applied to the dorsal 
side of newly emerged female as described (Ge et  al., 2020a). 
Methoprene-treated C. lividipennis females were transferred 
into glass cylinders and maintained on normal artificial diets. 

C. lividipennis females were collected 48  h after topical 
application; quantitative real-time PCR (qPCR) was used to 
evaluate the expression of Rheb, TOR, S6K, and Vg, and 
immunoblotting was used to detect phosphorylation level of 
S6K and Vg. Treatments and controls consisted of three 
independent biological replicates.

Rapamycin (Sigma-Aldrich St. Louis, MO, United States) was 
dissolved in ethanol (Lu et  al., 2016). The abdominal region 
of fifth instar nymphs was injected with a 100  nl solution of 
2.0 nM rapamycin, whereas negative controls were injected with 
an equal volume of ethanol. The nymphs were supplied with 
the complete artificial diet containing AAs and reared until 
adults emerged. Newly emerged females were collected and 
treated with methoprene. The expression of Rheb, TOR, S6K, 
and Vg were determined using qPCR, and the phosphorylation 
of S6K and Vg were determined by western blot (WB) analysis 
48 h after the topical application of JHA methoprene. Treatments 
and controls consisted of three independent biological replicates, 
with 15 females for each replicate.

Quantitative Real-Time PCR
Trizol reagent (Invitrogen, Carlsbad, CA, United  States) was 
used to extract RNA from C. lividipennis. cDNA was synthesized 
with PrimeScript RT Reagent Kit and gDNA Eraser (TakaRa 
Beijing, China). cDNA was synthesized in 20 μl reaction volumes 
at 37°C for 15  min in a mixture containing random hexamers 
and oligo dT primers.

Quantitative real-time PCR was conducted in a 7,500 real-
time PCR system (Bio-Rad Co. Ltd., California, United  States) 
in a 96-well format with SYBR PremixEX Taq Kit (TakaRa, 
Tokyo, Japan). Reactions contained cDNA template (1 μl), SYBR 
master mix (5  μl), primers (0.4  μl/per primer at 10  μmol), 
and ddH2O (3.2  μl). The qPCR program was as follows: 95°C 
for 30  s, followed by 35  cycles of 95°C for 5  s, 60°C for 15  s, 
and 72°C for 30  s. Reactions were normalized using β-actin 
(EU179847), and the 2−ΔΔct method was used to obtain relative 
mRNA expression levels (Livak and Schmittgen, 2001). The 
primers used for qPCR are shown in Supplementary Table S1.

Protein Extraction and Determination
Soluble proteins were extracted from ovaries and fat bodies 
of 50 dsTOR-treated females and 50 dsGFP-treated control 
females at 2  DAE as described by Ge et  al. (2010). The 
Bradford method (Bradford, 1976) was used to determine 
protein concentrations. A595 values were measured by UV 
spectrophotometry, and protein content was determined with 
a standard curve of BSA (Shanghai Biochemistry Research 
Institute, Shanghai, China). Treatments and controls consisted 
of three independent biological replicates.

Female Body Mass and Isolation of 
Ovaries
The weights of 10 dsTOR- and 10 dsGFP-treated females 
(control) were recorded at 2  DAE. Treatments and controls 
consisted of three independent biological replicates (n  =  10, 
10 BPH females for each replicate, N  =  3, 3 replicates).
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Ovaries (n  ≥  10 mated females from dsTOR- and dsGFP-
treatments at 7 DAE) were isolated in 10 mM phosphate buffered 
saline (PBS; pH 7.4), fixed in 3.8% formaldehyde, and washed 
with 0.2% Triton X-100 as described (Ge et  al., 2019). After 
washing, images were photographed with a Leica DMR connected 
to a Fuji Fine PixS2 Pro digital camera (Germany).

JH III and Ecdysteroid Titers
Titers of JH III and ecdysteroid were measured in adult 
females by HPLC/MS (Cornette et  al., 2008; Giebbultowicz 
et  al., 2008). 20-hydroxyecdysone and JH III standards were 
obtained from Sigma (St. Louis, MO, United States). Treatments 
and controls were replicated three times with five females 
for each replicate.

Measurement of Predation Capacity in 
C. lividipennis
The predation capacity of C. lividipennis was measured as 
described by Base et  al. (2002) with minor modifications. First 
instar nymphs of the prey, N. lugens (n  =  20), were placed 
in glass tubes (3  ×  25  cm) containing four 15  days-old rice 
seedlings of rice cv. “Ningjing 4,” which is susceptible to 
N. lugens. Newly emerged (<24  h) C. lividipennis adult females 
were individually placed into glass tubes, which were then 
sealed with nylon mesh. Surviving N. lugens nymphs were 
recorded daily, and the predation number per C. lividipennis 
was assessed based on survival counts of N. lugens nymphs 
at days 1 and 3. Treatments and controls consisted of five 
independent biological replicates.

Western Blot Analysis
Immunoblotting was conducted as described previously with 
minor modifications (Ge et al., 2019). Fat bodies and ovaries 
were separately homogenized in lysis buffer (0.5  ml) 
supplemented with protease and phosphatase inhibitors (Lu 
et  al., 2016) and incubated for 1  h at 4°C. Lysates were 
centrifuged and protein concentration in the resulting 
supernatant was analyzed using the Bradford method as 
described above. Total 30  μg protein was separated by 10% 
SDS-PAGE and transferred to PVDF membranes; the 
membranes were treated with a blocking solution [5% nonfat 
dry-milk in 10  mM Tris-buffered saline (TBS), pH 7.4, 
containing 0.5% TBS Tween-20 (TBST)] for 1  h and then 
incubated with primary antibodies at room temperature for 
2 h. Anti-phospho-p70 S6 kinase (p70-Thr-389 S6K) polyclonal 
antiserum (1:5,000) was obtained from Cell Signaling 
Technology (Danvers, MA, United  States), and anti-Vg 
antiserum (1:5,000) was prepared by Nanjing Kingsley 
Biotechnology Co. Ltd. (Nanjing, China). Antiserum to β-actin 
(1:5,000; Cell signaling Technology, Davers, MA, United States) 
served as a loading control. Membranes were washed with 
TTBS three times, 5  min each, and incubated within the 
TBS buffer containing goat anti-rabbit IgG secondary 
antibodies-conjugated to horseradish peroxidase (1: 8,000 
dilution) for 1  h at room temperature. Reactive proteins 

were visualized with chemiluminescent substrates with the 
GBOX-Chemi XT4 system (Syngene, Cambridge, UK) as 
described previously (Lu et  al., 2016).

Immunofluorescence Microscopy
Ovarioles from C. lividipennis mated females were removed 
at 7  DAE, washed 3× in cold PBS (pH  =  7.4, 10  mM), fixed 
in 4% paraformaldehyde for 2  h, and then washed with PBS 
three times. Ovaries were then washed three times in PBS 
containing 0.1% Triton X-100 (PBST), blocked in PBST 
containing 5% goat serum, and incubated with anti-Vg (1:500) 
as described previously (Ge et  al., 2020a). After three washes 
with PBS, 5  min each, Alexa Fluor 488-labeled goat anti-
rabbit secondary antibody (1:500; Beyotime, Shanghai, China) 
was added in PBST containing 2% goat serum and 3% BSA. 
After incubation at ambient temperature for 1  h at low light, 
nuclei were counterstained with 100  nM 4',6-diamidino-2-
phenylindole (DAPI; Beyotime) for 10  min in PBST. Samples 
were placed on slides and washed in PBS three times with 
5  min each. Fluorescence images were captured with a Zeiss 
LSM 780 confocal microscope (Carl Zeiss MicroImaging, 
Göttingen, Germany).

Population Growth
Two groups were established to monitor population growth: 
dsGFP-treated females mated with untreated males (control 
group), and dsTOR-treated females mated with untreated 
males (treatment group). A randomized complete block 
containing five replicates was used as an experimental design. 
Newly emerged C. lividipennis (two pairs) were released on 
rice plants containing BPH eggs at the tillering stage (40 days 
after germination) and enclosed in nylon cylindrical cages 
as described (Ge et al., 2019). When the third instar nymphs 
of the next generation emerged (~25  days), groups were 
inspected daily and the third instar nymphs were counted; 
these nymphs were transferred to new plastic pots with 
tillering-stage rice plants. Nymphs were examined every 
2  days until adults emerged; numbers of both sexes were 
recorded until the females died. Numbers of adults from 
the new generation and unhatched egg counts were used 
to calculate hatch rates and the ratio of adults/
adults  +  unhatched eggs (Ge et  al., 2019). The population 
growth index (PGI) was expressed by the ratio N1/N0; this 
was determined by dividing the total number (N1) of adults 
of next generation  +  unhatched eggs by the number of 
adults released (N0  =  8, 4 pairs).

Statistical Analyses
Statistics were obtained with SPPS v. 18.0 (SPSS Inc., Chicago, 
IL, United States). The Shapiro-Wilk test was utilized to examine 
normality of data variances, and the t-test was performed to 
compare means of two variables. Fisher’s protected least significant 
difference (PLSD) test was applied to multiple comparisons of 
the means. Data points were considered significant at p < 0.05. 
Values were expressed as means  ±  SEM.
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RESULTS

Free Amino Acid Content in C. lividipennis 
Inhabiting Different Hosts
The concentrations of free AAs were measured for rice plant 
and five gramineous species (C. dactylon, D. ciliaris, E. indica, 
E. glabrescens, and L. chinensis; Table  1). The concentrations 
of six AAs (Ala, Arg, Lys, Pro, Ser, and Thr) were significantly 
higher in rice plant than that in gramineous species; exception 
was Lys, which was higher in E. glabrescens than rice (Table 1). 
The percent increases were 39–123% for Ala (F  =  31786.7, 
df = 5, 17, p = 0.0001), 23–38% for Lys (F = 8350.9, df = 5,17, 
p = 0.0001), 67–147% for Pro (F = 2240.7, df = 5,17, p = 0.0001), 
42–86% for Arg (F  =  3688.8, df  =  5,17, p  =  0.0001), 40–82% 
for Ser (F  =  696.9, df  =  5, 17, p  =  0.0001), and 41–86% for 
Thr (F  =  424.4, df  =  5,17, p  =  0.0001).

Different Dietary Sources Influence 
Expression of TOR Pathway Genes
Expression of selected genes in the TOR pathway was evaluated 
in newly emerged C. lividipennis females supplied with various 
food sources. When compared to C. lividipennis feeding on 
BPH eggs from rice, the expression of several TOR pathway 
genes was decreased when diets consisted of gramineous plants 
with BPH eggs, rice plants alone, or no food (starvation). For 
example, Rheb expression was decreased by 37–65% (Figure 1A; 
F  =  38.4, df  =  8, 26, p  =  0.0001), down by 15–86% for TOR 
(Figure  1B; F  =  205.9, df  =  8, 26, p  =  0.0001), and down by 
23–88% for S6K (Figure  1C; F  =  169.7, df  =  8,26, p  =  0.0001). 
In contrast, gene expression was 28–68% higher for TSC1 
(Figure  1D; F  =  25.5, df  =  8,26, p  =  0.0001) and 30–210% 
higher for TSC2 (Figure  1E; F  =  82.5, df  =  8,26, p  =  0.0001) 
compared to C. lividipennis feeding on the BPH eggs from rice 
plants and C. cephalonica eggs. In general, there was no significant 

difference in the expression of TOR pathway genes in C. 
lividipennis females feeding on C. cephalonica eggs and BPH 
eggs inhabiting rice at 2 DAE (columns A1, A2; Figures 1A–E).

TOR Gene Expression in Response to 
Amino Acid Signals
When C. lividipennis females were supplied with artificial diets 
lacking six AAs, expression of selected TOR genes was 
significantly reduced. For example, Rheb expression was reduced 
by 57% (F  =  11.4, df  =  7,23, p  =  0.0001), TOR was down by 
87% (F  =  64.7, df  =  7, 23, p  =  0.0001), and S6K was reduced 
by 76% (F  =  77.0, df  =  7, 23, p  =  0.001) relative to females 
supplied with all AAs (Figures  2A–C). In contrast, expression 
of TSC1 was 104% higher with the −AA diet (F = 56.5, df = 7, 
23, p = 0.0001; Figure 2D) and TSC2 was up by 93% (F = 53.6, 
df  =  7,23, p  =  0.0001; Figure  2E) as compared to females 
feeding on the +AA diet at 2  DAE.

When C. lividipennis females were deprived of individual AAs, 
expression of Rheb, TOR, and S6K was reduced by 52, 73, and 
75% in Arg-deprived; 54, 73, and 74% in Lys-deprived; 43, 62, 
and 63% in Ser-deprived; 59, 33, and 62% in Pro-deprived, 54% 
in Thr- deprived (Rheb only); and 63, 25, and 46% in Ala-deprived 
groups as compared to those feeding on the complete diet (+AAs) 
at 2  DAE, respectively (Figures  2A–C). There was no significant 
difference in TOR expression levels in C. lividipennis females 
feeding on a Thr-deprived artificial diet and those feeding on a 
diet supplemented with all AAs (Figure 2B). S6K expression was 
upregulated by 25% in females fed on Thr-deprived artificial diets 
relative to those fed on the complete +AA artificial diet (Figure 2C).

Cyrtorhinus lividipennis females fed on diets lacking certain 
AAs led to upregulated TSC1 and TSC2; expression was up 
by 54 and 55% in Arg-deprived, 27 and 38% in Lys-deprived, 
45 and 0% in Ser-deprived (TSC2), and 33 and 32% in 
Ala-deprived groups as compared to females reared on all 

TABLE 1 | Free amino acid (AA) content (mg/100 g fresh weight) in rice and five different gramineous hosts as measured by HPLC-MS/MS.

Amino acid Oryza sativa Digitaria ciliaris Cynodon dactylon Leptochloa 
chinensis

Eleusine indica Echinochloa 
glabrescens

Ala* 14.70 ± 1.30a 9.27 ± 0.97c 8.04 ± 0.85c,d 6.60 ± 0.6e 9.56 ± 0.93c 10.55 ± 1.32b

Cys 0.73 ± 0.09b 0.77 ± 0.08b 0.89 ± 0.13a 0.89 ± 0.09a 0.69 ± 0.08c 0.68 ± 0.07d

Asp 5.28 ± 0.43a,b 5.15 ± 0.49a,b 5.23 ± 0.59a,b 6.29 ± 0.87a 5.57 ± 0.37a,b 5.65 ± 0.18a,b

Glu 15.14 ± 1.25a 14.45 ± 1.02a 10.21 ± 1.12c 12.54 ± 1.04b 12.41 ± 1.17b 9.02 ± 1.25d

Phe 1.42 ± 0.12b,c 1.57 ± 0.09b 1.85 ± 0.11a 1.23 ± 0.20c 1.13 ± 0.11c,d 1.20 ± 0.01c

Gly 10.37 ± 1.22a 10.15 ± 1.06a 9.88 ± 1.31a 9.99 ± 1.13a 8.35 ± 1.02a,b 11.51 ± 1.24a

His 6.42 ± 0.42a 6.80 ± 0.67a 6.04 ± 0.52a 6.60 ± 0.58a 6.93 ± 0.73a 6.70 ± 0.63a

Ile 1.60 ± 0.08a 1.26 ± 0.11b,c 1.40 ± 0.19a,b 1.63 ± 0.11a 1.32 ± 0.10b,c 1.37 ± 0.09b

Lys* 12.33 ± 1.20b 9.65 ± 0.94c 8.91 ± 0.84c,d 9.17 ± 0.95c,d 10.06 ± 1.17c 14.60 ± 1.22a

Leu 5.90 ± 0.64a 6.25 ± 0.40a 6.20 ± 0.55a 5.87 ± 0.55a 5.82 ± 0.60a 5.68 ± 0.51a

Met 0.50 ± 0.04a 0.44 ± 0.08a 0.45 ± 0.06a 0.43 ± 0.08a 0.48 ± 0.07a 0.49 ± 0.11a

Pro* 4.94 ± 0.45a 2.69 ± 0.24c 2.54 ± 0.35c 2.00 ± 0.14d 2.95 ± 0.17b,c 3.33 ± 0.28b

Arg* 6.83 ± 0.45a 3.70 ± 0.15c 3.80 ± 0.18c 3.77 ± 0.21c 3.67 ± 0.32c 4.81 ± 0.45b

Ser* 2.20 ± 0.12a 1.21 ± 0.16c 1.47 ± 0.30b,c 1.57 ± 0.10b 1.43 ± 0.10c 1.40 ± 0.09c

Thr* 1.10 ± 0.07a 0.78 ± 0.08c 0.64 ± 0.04c,d 0.59 ± 0.05d 0.76 ± 0.07c 1.02 ± 0.04a,b

Val 2.92 ± 0.25a 2.37 ± 0.30a,b 2.43 ± 0.26a,b 2.65 ± 0.38a,b 2.50 ± 0.22a,b 3.23 ± 0.27a

Tyr 6.53 ± 0.48a 6.66 ± 0.59a 5.13 ± 0.48b 6.91 ± 0.62a 6.28 ± 0.56a 6.04 ± 0.40a

*shows significantly difference six amino acids content of Oryza sativa compared to five different gramineous species. Values labeled with different lowercase letters indicate a 
significant difference at p < 0.05 by Fisher’s protection least significant difference (PLSD)-test.

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhu et al. AAs Modulate C. lividipennis Fecundity

Frontiers in Physiology | www.frontiersin.org 6 November 2020 | Volume 11 | Article 617237

AAs, respectively (Figures  2D,E). There were no significant 
differences in TSC1 or TSC2 expression levels in females 
feeding on Pro- or Thr-deprived artificial diets (Figures 2D,E). 
TSC1 expression was not significantly different in the 
Ser-deprived diet relative to the complete diet (Figure  2D). 
There was a noticeable decrease in S6K phosphorylation 
when C. lividipennis females were deprived of one or more 
AAs (Figure  2E).

TOR Pathway Transduces AA Signals to 
Regulate Vg Synthesis
Vitellogenin expression in C. lividipennis was 27.3–69.1% 
lower when diets consisted of gramineous plants with BPH 

eggs, rice plants alone, or no food (starved) as compared 
to females feeding on BPH eggs from rice plants or 
C. cephalonica eggs (Figure  3A; F  =  144.6, df  =  8, 26, 
p  =  0.0001). When C. lividipennis females were fed on diets 
lacking one or more AAs, Vg expression was down by 
31–74% as compared to females fed on a complete artificial 
diet at 2 DAE (Figure 3B; F = 220.9, df = 7, 23, p = 0.0001). 
Western blot analysis confirmed that feeding on multiple 
or single AA-deprived artificial diets resulted in a significant 
reduction of Vg protein (Figure  3F).

The efficiency of silencing Rheb, TOR, and S6K was 
approximately 74.4, 74.2, and 73.1% at 2  DAE, respectively 
(Figure  3C). Cyrtorhinus lividipennis females treated with 
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FIGURE 1 | Expression of genes in the target of rapamycin (TOR) pathway in Cyrtorhinus lividipennis females supplied with various diets. Columns represent gene 
expression in C. lividipennis supplied with the following food sources: A1, BPH eggs on Oryza sativa (rice plant); A2, Corcyra cephalonica eggs; A3, O. sativa alone; 
A4, no food source (starvation); A5, Cynodon dactylon with BPH eggs; A6, Digitaria ciliaris with BPH eggs; A7, Eleusine indica with BPH eggs; A8, Echinochloa 
glabrescens with BPH eggs; and A9, Leptochloa chinensis with BPH eggs. Panels (A–E) show expression of Rheb, TOR, S6K, TSC1, and TSC2 as measured by 
qPCR 2 days after emergence (DAE); β-actin was used as a reference gene for normalizing the data. Each treatment and control contained three replicates, and 
error bars represent the mean ± SEM. Columns labeled with different letters indicate a significant difference at p < 0.05 by the Student’s t-test.
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dsRheb, dsTOR, and dsS6K showed a 70% reduction in Vg 
expression as compared to the dsGFP control (Figure  3D). 
Western blots confirmed that S6K phosphorylation and Vg 
protein levels were reduced in dsRheb-, dsTOR-, and dsS6K-
treated females (Figures  3G–M).

Rapamycin treatment also reduced Vg expression levels, 
which were 68% lower than females treated with the ethanol 
control (Figure  3E; F  =  390.3, df  =  1,5, p  =  0.0001). Western 
blot analysis showed that both Vg levels and S6K phosphorylation 
were reduced in the rapamycin-treated females relative to the 
ethanol control (Figure  3N).

TOR Pathway Functions via JH to Regulate 
Vg Synthesis
When C. lividipennis were fed on gramineous plants with BPH 
eggs, rice plants without BPH eggs, or no food (starvation), 
JHAMT expression was down by 28–70% as compared to females 
feeding on BPH eggs from rice plants or C. cephalonica eggs 
(Figure 4A; F = 35.4, df = 8,26, p = 0.0001). When C. lividipennis 
females were deprived of multiple or individual AAs, JHAMT 
expression levels were down by 20–94% as compared to females 
feeding on a complete artificial diet (Figure  4B; F  =  91.4, 
df  =  7,23, p  =  0.0001). Rapamycin treatment significantly 

A B
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FIGURE 2 | TOR gene expression in C. lividipennis in response to amino acid (AA) signals. Columns represent gene expression in C. lividipennis supplied with an 
artificial diet containing the following AAs:+AAs (+Ala, +Arg, +Lys, +Ser, +Pro, and +Thr), without −AAs (−6 AAs: −Ala, −Arg, −Lys, −Ser, −Pro, and −Thr), or 
lacking individual AAs (−1 AA: −Ala, −Arg, −Lys, −Ser, −Pro, or −Thr). Panels (A–E) show mean expression levels of Rheb, TOR, S6K, TSC1, and TSC2 as 
measured by qPCR at DAE; β-actin was used as a reference gene. Panel (F) shows the phosphorylation status of S6K in adult females (n = 15) by western blot 
analysis. Antiserum to β-actin was used as a loading control. Each treatment and control represent three independent biological replicates, and error bars show 
means ± SEM. Columns labeled with different letters indicate a significant difference at p < 0.05 by the Student’s t-test.
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decreased JHAMT expression (down 37%) as compared to 
ethanol-treated control females (Figure 4C; F = 10.9, df = 1, 5, 
p  =  0.0298). In dsRheb-, dsTOR-, and dsS6K-treated females, 
JHAMT expression levels were down by 22, 34, and 32% as 
compared to dsGFP treatments (Figure 4D; F = 34.3, df = 1, 5, 
p  =  0.0043; F  =  24.6, df  =  1,5, p  =  0.0077; F  =  62.2, df  =  1, 5, 
p  =  0.0001).

The application of methoprene to C. lividipennis females 
treated with rapamycin, dsTOR, dsRheb, or dsS6K was partially 
rescued by Vg expression. For example, Vg expression was 
117% higher when methoprene was added to rapamycin-treated 
females as compared to rapamycin alone (Figure  4E; F  =  48.0, 
df  =  2,8, p  =  0.0002), upregulation was 86% higher when 
methoprene was added to dsRheb-treated females (Figure  4F; 
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FIGURE 3 | The TOR pathway transduces AA signals and regulates vitellogenin (Vg) synthesis. Panel (A) shows Vg expression in C. lividipennis females supplied 
with diets A1–A9 (as defined in Figure 1 legend); (B) shows Vg expression on artificial diets that vary in AAs (as defined in Figure 2 legend). Panel (C) illustrates the 
relative expression ratios of Rheb, TOR, and S6K in C. lividipennis females treated with dsRheb, dsTOR, and dsS6K, respectively. dsGFP was transfected as a 
negative control. Panel (D) shows mean Vg expression in C. lividipennis females treated with dietary dsRheb, dsTOR, and dsS6K. Panel (E) shows Vg expression in 
C. lividipennis females treated with rapamycin and ethanol (control). Panel (F) shows the Vg protein levels in adult females (n = 15) as determined by western blots 
with anti-Vg antiserum. Each treatment and control represent three independent biological replicates, and error bars show means ± SEM. Different lowercase letters 
in the histogram indicate significant differences at p < 0.05 (Student’s t-test). Panels (G–N) show Vg protein levels and pS6K phosphorylation status in C. lividipennis 
treated with dsRheb, dsTOR, dsS6K, and rapamycin. Proteins were detected with anti-Vg or anti-pS6K antisera and visualized by western blot analysis. Antiserum 
to β-actin was used as a loading control.
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F  =  143.6, df  =  2,8, p  =  0.0001), 156% higher as compared 
to dsTOR-treated females (Figure  4G; F  =  102.6, df  =  2,8, 
p  =  0.0001), and 132% higher as compared to dsS6K-treated 
females (Figure  4H). Western blots confirmed the partial or 
full restoration of Vg production by methoprene in rapamycin, 
dsRheb-, dsTOR-, or dsS6K-treated females (Figures  4I–L).

The addition of methoprene to dsRheb-, dsTOR-, or dsS6k-
treated females partially restored Rheb (Figure  5A; F  =  28.1, 
df = 2,8, p = 0.0009, up 103% as compared to dsRheb+acetone), 
TOR (Figure  5B; F  =  16.0, df  =  2,8, p  =  0.0039, up  135% 
vs. dsTOR  =  acetone), or S6K (Figure  5C; F  =  75.5, df  =  2,8, 
p  =  0.0001, up  315% vs. dsS6K  +  acetone). Western blots 
confirmed the partial or full restoration of S6K protein levels 
by exogenous methoprene in dsRheb-, dsTOR-, or dsS6K-treated 
females (Figures  5D–F).

TOR Pathway Regulates Physiological and 
Reproductive Parameters in C. lividipennis
Treatment of C. lividipennis with dietary dsTOR resulted in multiple 
physiological changes relative to dsGFP at 2 DAE. These included 

a reduction in soluble protein content in ovaries (down 48%, 
Supplementary Figure S1A; F  =  373.4, df  =  1, 5, p  =  0.0001) 
and fat bodies (down 38%, Supplementary Figure S1B; F = 19.8, 
df = 1, 5, p = 0.0112); furthermore, JH titers were reduced (down 
33%, Supplementary Figure S1C; F = 106.2, df = 1, 5, p = 0.0003). 
Dietary dsTOR treatment also led to reduced female longevity 
(down 20%, Supplementary Figure S1E), body weight (down 
31%, Supplementary Figure S1F), and predatory capacity at 
1 DAE (down 44%, Supplementary Figure S1G, F = 10.3, df = 1, 
19, p = 0.0001) and 3 DAE (down 27%, Supplementary Figure S1H, 
F  =  6.3, df  =  1, 19, p  =  0.0001). Interestingly, dietary dsTOR 
treatment led to increased ecdysteroid titers (up  43%, 
Supplementary Figure S1D, F  =  98.3, df  =  1, 5, p  =  0.0006).

Treatment with dietary dsTOR caused reproductive changes 
in C. lividipennis relative to dsGFP. These included a reduction 
in the number of eggs laid (down 52%, Figure  6A, F  =  23.1, 
df  =  1, 29, p  =  0.0001), a prolonged preoviposition period 
(up  37%, Figure  6B, F  =  7.7, df  =  1,29, p  =  0.0098), and a 
reduced oviposition period (down 26%, Figure  6C, F  =  39.9, 
df  =  1, 29, p  =  0.0001). Females treated with dsRheb, dsTOR, 
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FIGURE 4 | The TOR pathway functions via JH to regulate Vg synthesis. (A) JHAMT expression in C. lividipennis females supplied with diets A1–A9 (as defined in 
Figure 1 legend). (B) JHAMT expression in females supplied with artificial diets that vary in AAs (as defined in Figure 2 legend). (C) JHAMT expression in females 
treated with rapamycin and ethanol (control). (D) JHAMT expression in C. lividipennis treated with dietary dsRheb, dsTOR, and dsS6K. (E) Vg expression in females 
treated with 0.2 nM rapamycin and rapamycin with methoprene (100 ng/nl); the ethanol + acetone treatment served as solvent control. Panels (F–H) show Vg 
expression in females fed on dietary dsRheb, dsTOR, and dsS6K and exposed to methoprene or acetone. Females treated with dietary dsGFP and acetone served 
as a control. Panels (I–L) show Vg protein levels in C. lividipennis (n = 15) treated with rapamycin, methoprene, dsRheb, dsTOR, and dsS6K. Proteins were detected 
with anti-Vg antibodies and visualized by western blot analysis; antiserum to β-actin was used as a loading control. Each treatment and control consisted of three 
independent biological replicates. Error bars represent means ± SEM. Columns labeled with different lowercase letters indicate significant differences at p < 0.05 by 
Student’s t-test.
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or dsS6K exhibited stunted, undeveloped ovaries (Figures 6E–G) 
and the absence of Vg staining in ovarioles of adult females 
compared to dsGFP treatment (Figure  7). These results were 

consistent with the changes in gene expression and protein 
production observed in dsRheb-, dsTOR-, or dsS6K-
treated females.

A D
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FIGURE 5 | Effects of JH analog (JHA) methoprene on the expression of TOR pathway genes after dsRNA treatment at 2 DAE. Panels (A) Rheb expression in dsRheb- 
and methoprene-treated C. lividipennis females; (B) TOR expression in dsTOR and methoprene-treated C. lividipennis females; and (C) S6K expression in dsS6K and 
methoprene treated females; dsGFP and acetone were included as negative controls. Detection of phosphorylated SK6 in C. lividipennis treated with (D) methoprene 
and dsRheb; (E) methoprene and dsTOR, and (F) methoprene and dsSK6. Proteins were detected with anti-pS6K antiserum and visualized by western blot analysis. 
Antiserum to β-actin was used as a loading control. Each treatment and control consisted of three independent biological replicates. Error bars represent means ± SEM.
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TOR Pathway Regulates Number of 
Offspring, Hatching Rate, and PGI
Dietary dsTOR resulted in reduced offspring number (F1), 
hatching rate, and PGI in females, which were down by 46, 
14, and 37% as compared to the dsGFP treatment group, 
respectively (Table  2). Interestingly, dsTOR treatment had no 
impact on the gender ratio (Table  2).

DISCUSSION

Nutrients play a critical role in regulating insect reproduction 
(Attardo et  al., 2005). Earlier studies demonstrated that a diet 
of gramineous plants containing eggs of BPH resulted in reduced 

development and reproduction in C. lividipennis compared to 
insects feeding on BPH eggs from rice plants or C. cephalonica 
eggs (Yu et  al., 1996). However, the regulatory mechanism of 
this phenomenon was unclear. The present study shows that 
rice plants contain higher concentrations of Ala, Lys, Pro, Arg, 
Ser, and Thr than the five gramineous species (Table  1), 
suggesting that these six AAs might be  associated with 
development and reproduction of C. lividipennis. We also found 
that TOR was significantly upregulated when C. lividipennis 
was supplied rice plants containing BPH eggs as compared to 
gramineous species with eggs based on transcriptomic data 
(data not shown). Using a defined artificial diet (Ge et  al., 
2020b), we  infer that the TOR signaling pathway senses these 
six AA signals and regulates downstream genes and proteins, 
thus leading to an increase in Vg synthesis, reproduction, and 
population growth of C. lividipennis.

Target of rapamycin is a serine/threonine kinase that 
consolidates nutritional signals via AAs (Kim and Guan, 2011). 
The disruption of the TOR signaling pathway has been associated 
with the reduced reproductive capacity that occurred when 
nutrients were limiting in Tribolium castaneum, B. germanica, 
and A. aegypti (Hansen et  al., 2004, 2005; Parhasarathy and 
Palli, 2011). When C. lividipennis was supplied with a diet of 
gramineous plants plus BPH eggs or rice plants alone, multiple 
genes in the TOR pathway were repressed (Figure  1), and 
similar results were obtained with diets lacking one or multiple 
AAs (Figure 2). The TOR signaling pathway regulates multiple 
cellular functions including proliferation, apoptosis, growth, 
and autophagy by integrating a multitude of nutritional signals 
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FIGURE 6 | TOR pathway regulates reproductive parameters in C. lividipennis females. (A) Number of eggs laid, (B) preoviposition period, and (C) oviposition 
period for females treated with dsGFP and dsTOR. Histogram shows means ± SEM, and columns labeled with different lowercase letters were significantly 
difference at p < 0.05 using the Student’s t-test. Each treatment and control were from 15 independent biological replicates. Structural changes were shown in the 
ovaries of C. lividipennis females subjected to silencing of TOR pathway-related genes at 7 DAE. Representative images from dsGFP-treated control females (D); 
and dsRheb- (E), dsTOR- (F), and dsS6K- (G) treated females. Reproductive tracts were dissected from at least 10 females from each group and photographed 
with a Leica DMR connected to a Fuji FinePix S2 Pro digital camera (Tokyo, Japan). Scale bar, 500 μm.

TABLE 2 | Effects of dietary dsTOR and dsGFP (control) on offspring number, 
hatching rate, gender ratio, and population growth index (PGI).

Treatmentsa Number of 
offspringb

Hatching 
ratec

Sex ratioc PGI (N1/N0)d

dsGFP 209.8 ± 13.6a 0.78 ± 0.04a 1.10 ± 0.06a 33.8 ± 2.72a

dsTOR 114.0 ± 12.4b 0.67 ± 0.05b 1.01 ± 0.06a 21.2 ± 1.89b

aTreatments included: dsTOR treated females mated with untreated males (treatment 
group); and dsGFP-treated females mated with untreated males (control group).
bValues labeled with different letters indicate a significant difference at p < 0.05 by the 
Student’s t-test.
cHatch rates and sex ratios were calculated as described by Ge et al. (2019).
dThe PGI was expressed by the ratio N1/N0; this was determined by dividing the total 
number (N1) of adults of next generation + unhatched eggs by the number of adults 
released (N0 = 8, 4 pairs).

https://www.frontiersin.org/journals/physiology
www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhu et al. AAs Modulate C. lividipennis Fecundity

Frontiers in Physiology | www.frontiersin.org 12 November 2020 | Volume 11 | Article 617237

(Yang et  al., 2006). The tumor suppressors, TSC1 and TSC2, 
function in both Drosophila and mammals as negative regulators 
of Rheb (Fingar and Blenis, 2004; Pan et  al., 2004; Yang et  al., 
2006). TORC1, which is sensitive to rapamycin, modulates 
cellular growth and protein biogenesis by phosphorylating the 
translational regulators 4EBP1 and S6K (Kwiatkowski, 2003). 
Previous research demonstrated that AA-dependent nutritional 
signaling mediates S6K phosphorylation in the TOR signaling 
pathway (Maestro et  al., 2009). In this study, RNAi-mediated 
knockdown of Rheb, TOR, and S6K led to repressed expression 

of Vg and reduced Vg synthesis and a decline in S6K 
phosphorylation (Figure  3). Similarly, the TOR inhibitor 
rapamycin also led to reduced levels of Vg and S6K 
phosphorylation in C. lividipennis at 2  DAE (Figure  3).

Target of rapamycin is known to transduce nutritional signals 
in many organisms including vertebrates, invertebrates, and yeast 
(Wang and Pround, 2009; González and Hall, 2017). In the 
red flour beetle, T. castaneum, the two primary regulators of 
Vg transcription were JH and nutrition (Parthasarathy et al., 2010; 
Sheng et al., 2011). With respect to JH, we showed that JHAMT 
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FIGURE 7 | Silencing of TOR pathway-related gene changes Vg accumulation in ovarioles of adult females at 7 DAE. Left panels (A,D,G,J) show DAPI-stained 
nuclei; middle panels (B,E,H,K) show Vg protein detected with goat anti-rabbit IgG-labeled with Dylight 488 (green); right panels (C,F,I,L) showed merged images. 
Fluorescent images were captured with a Zeiss LSM 780 confocal microscope (Carl Zeiss MicroImaging, Göttingen, Germany). Fc, follicular cell; Oo, oocyte. Bars, 
100 μm.
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expression was reduced when C. lividipennis was fed on the 
gramineous plants containing N. lugens eggs or supplied with 
diets lacking one or more of six identified AAs. RNAi-mediated 
knockdown of the TOR pathway genes (Rheb, TOR, and S6K) 
or injection with the TOR inhibitor rapamycin also resulted 
in a dramatic reduction in JHAMT expression (Figure  4). 
Thus, the TOR signaling pathway in C. lividipennis regulated 
JH biosynthesis in response to AA signals. Furthermore, the 
application of the JHA methoprene to C. lividipennis females 
injected with rapamycin or treated with dsRheb, dsTOR, or 
dsS6K partially rescued Vg, Rheb, TOR and S6K expression, 
Vg levels, and S6K phosphorylation (Figures  4, 5). Therefore, 
we  inferred that AA signals were transduced through the 
TOR pathway and regulated Vg synthesis through influencing 
JH biosynthesis in C. lividipennis. In female insects, JH 
participates in the regulation of vitellogenesis (Fronstin and 
Hatle, 2008; Shiao et  al., 2008), and the regulation of JH via 
nutritional signals and the TOR pathway is well-established 
for several insect species (Tu et  al., 2005; Sheng et  al., 2011; 
Perex-Hedo et  al., 2013).

Target of rapamycin has a critical function in the development 
of insect reproductive systems (Park et al., 2006). The synthesis 
of Vg and its uptake by oocytes play a critical function in 
the invertebrate reproductive process (Tufail and Takeda, 2009). 
Results in our study demonstrate that dietary dsTOR causes 
a dramatic reduction in soluble proteins in ovaries and fat 
bodies, increases ecdysteroid titers, and decreases JH titers, 
female longevity, body weight, predatory capacity, number of 
laid eggs, and the oviposition period (Supplementary Figure S1 
and Figure  6). Furthermore, RNAi-mediated knockdown of 
TOR pathway genes interfered with normal development of 
the female reproductive system and the uptake of Vg by 
oocytes (Figures  6, 7). dsTOR treatments also led to reduced 
numbers of offspring, declined hatching rates, and reduced 
PGI (Table  2), which is consistent with TOR function in 
tissue development, cell growth and proliferation, and nutritional 
signaling (Wullschleger et al., 2006). The process of vitellogenesis 
in many insects starts with the uptake of AAs and proteins 
(Hansen et  al., 2004; Abrisqueta et  al., 2014). The AA/TOR 
and insulin pathways function as nutritional sensors, impact 
reproductive organs, and modulate the biosynthesis of 
ecdysteroids and JH (Smykal and Raikhel, 2015). Ecdysteroids 
regulate vitellogenesis and the maturation of egg when nutritional 
resources are adequate (Gaziova et  al., 2004; Terashima and 
Bownes, 2004). Previous studies demonstrated that RNAi-
mediated knockdown of TOR expression in insects can decrease 
number of eggs laid and can impact ovary development and 
fecundity (Hansen et  al., 2005; Lu et  al., 2016; Liu et  al., 
2017; Zhuo et  al., 2017).

In summary, this study shows that elevated concentrations 
of six AAs in rice plants function as key nutritional signals 
in JH and ecdysteroids biosynthesis, Vg biogenesis, ovary 
development, reproduction, and population growth in 
C. lividipennis (Supplementary Figure S2). The present study 
provides information on the AAs that foster reproduction of 
C. lividipennis illustrates the relationship between host nutrition 
and insect reproduction in predatory mirid bugs. It is important 
to note that plants produce many other secondary metabolites 
that could either promote or interfere with metabolism, neural 
transmission, or reproduction of herbivores (Wink, 1988, 2003). 
Investigations are underway to explore whether secondary 
metabolites present in gramineous species impact the 
reproduction and development of C. lividipennis, which are 
necessary steps in formulating an artificial diet that promotes 
longevity and fecundity of this important predator.
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