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ARTICLE INFO ABSTRACT

Objectives: This study reviews simulation studies of discrete choice experiments to determine (i) how survey
design features affect statistical efficiency, (i) and to appraise their reporting quality.

Outcomes: Statistical efficiency was measured using relative design (D-) efficiency, D-optimality, or D-error.
Methods: For this systematic survey, we searched Journal Storage (JSTOR), Since Direct, PubMed, and OVID
which included a search within EMBASE. Searches were conducted up to year 2016 for simulation studies
investigating the impact of DCE design features on statistical efficiency. Studies were screened and data were
extracted independently and in duplicate. Results for each included study were summarized by design char-
acteristic. Previously developed criteria for reporting quality of simulation studies were also adapted and applied
to each included study.

Results: Of 371 potentially relevant studies, 9 were found to be eligible, with several varying in study objectives.
Statistical efficiency improved when increasing the number of choice tasks or alternatives; decreasing the
number of attributes, attribute levels; using an unrestricted continuous “manipulator” attribute; using model-
based approaches with covariates incorporating response behaviour; using sampling approaches that incorporate
previous knowledge of response behaviour; incorporating heterogeneity in a model-based design; correctly
specifying Bayesian priors; minimizing parameter prior variances; and using an appropriate method to create the
DCE design for the research question. The simulation studies performed well in terms of reporting quality.
Improvement is needed in regards to clearly specifying study objectives, number of failures, random number
generators, starting seeds, and the software used.

Conclusion: These results identify the best approaches to structure a DCE. An investigator can manipulate design
characteristics to help reduce response burden and increase statistical efficiency. Since studies varied in their
objectives, conclusions were made on several design characteristics, however, the validity of each conclusion
was limited. Further research should be conducted to explore all conclusions in various design settings and
scenarios. Additional reviews to explore other statistical efficiency outcomes and databases can also be per-
formed to enhance the conclusions identified from this review.
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1. Introduction of oral anticoagulants [7]. They examined patient preferences to de-

termine which of seven attributes of warfarin and other anticoagulants

Discrete choice experiments (DCEs) are now being used as a tool in
health research to elicit participant preferences for a health product or
service. Several DCEs have emerged within the health literature using
various design approaches [3-6]. Ghijben and colleagues conducted a
DCE to understand how patients value and trade-off key characteristics

(dabigatran, rivaroxaban, apixaban) in atrial fibrillation were most
important to patients [7]. With seven attributes, each with different
levels, several possible combinations could be created to describe an
anticoagulant. Like many DCEs, they used a fractional factorial design,
a sample of all possible combinations, to create a survey with 16

* Corresponding author. Department of Clinical Epidemiology and Biostatistics, HSC 2C, McMaster University, Hamilton, ON, L8S 4L8.

E-mail address: thuva.vanni@gmail.com (T. Vanniyasingam).

https://doi.org/10.1016/j.conctc.2018.01.002

Received 15 August 2017; Received in revised form 1 December 2017; Accepted 8 January 2018

Available online 10 January 2018

2451-8654/ © 2018 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/24518654
https://www.elsevier.com/locate/conctc
https://doi.org/10.1016/j.conctc.2018.01.002
https://doi.org/10.1016/j.conctc.2018.01.002
mailto:thuva.vanni@gmail.com
https://doi.org/10.1016/j.conctc.2018.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.conctc.2018.01.002&domain=pdf

T. Vanniyasingam et al.

questions that each presented three alternatives for patients to choose
from. As patients selected their most preferred and second most pre-
ferred alternatives, investigators were able to model their responses to
determine which anticoagulant attributes were more favourable than
others. Since only a fraction of combinations are typically used in DCEs,
it is important to use a statistical efficiency measure to determine how
well the fraction represents all possible combinations of attributes and
attribute levels.

There is no single specific design to yield optimal results of a dis-
crete choice experiment (DCE). They can vary in their level of statistical
efficiency and response burden. The variation in designs can be seen in
several reviews covering various decades [8-13]. While presenting all
possible combinations of attributes and attribute levels will always
yield 100% statistical efficiency, this is not feasible in many cases. For
fractional factorial designs, a statistical efficiency measure can be used
to reduce the bias of the fraction selected. A common measure to assess
statistical efficiency of these partial designs is relative design efficiency
(D-efficiency) [14,15]. For a design matrix X, the formula is as follows:

1
Relative D — efficiency = 100 —————,
fctency Np |(XX) I[P

where X’X is the information matrix, p is the number of parameters, and
Np is the number of rows in the design [16].

To yield a statistically efficient design, a design will be orthogonal
and balanced, or nearly so. A design is balanced when attribute levels
are evenly distributed [17]. This occurs when the off-diagonal elements
in the intercept row and column are zero [16]. It is orthogonal when the
pairs of attribute levels are evenly distributed [17], that is when the
submatrix of X’X, without the intercept, is a diagonal matrix [16].
Therefore, to maximize relative D-efficiency, we need to reduce the
(X’X)~! matrix to a diagonal that equals NLdI for a suitably coded X [16].

Relative D-efficiency is often referred to as relative design optim-
ality (D-optimality) or is described using its inverse, design error (D-
error) [18]. It ranges from 0% to 100%, where 100% indicates a sta-
tistically efficient design. A measure of 100% can still be achieved with
fractional factorial designs; however, there is limited knowledge as to
how the various design characteristics impact statistical efficiency.

Identifying the impact of DCE design characteristics on statistical
efficiency will bring more power to investigators, particularly research
practitioners, during the design stage. They can reduce the variance of
estimates by manipulating their designs to construct a simpler DCE that
is statistically efficient and minimizes participants' response burden.
Currently there are several studies exploring DCE designs. These studies
range from comparing or introducing new statistical optimality criteria
[19,20] to approaches for generating DCEs [14] to exploring the impact
of different prior specifications on parameter estimates [21-23]. To our
knowledge, the results of these findings have not been summarized.
This may be due to the variation in objectives and outcomes across
studies, making it hard to synthesize information and draw conclusions.
As part of a previous simulation study, a literature review was also
performed to report the DCE design characteristics explored by in-
vestigators in simulation studies [1]. However, information on the
impact of these design characteristics on relative D-efficiency, the
common outcome among each study, was not assessed.

The primary aim of this systematic survey was to review simulation
studies to determine design features that affect the statistical efficiency
of DCEs—measured using relative D-efficiency, relative D-optimality, or
D-error; and to appraise the completeness of reporting of the studies
using the criteria for reporting simulation studies [24].
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2. Methods
2.1. Eligibility criteria

The inclusion criteria were comprised of simulation studies of DCEs
that explored the impact of DCE design characteristics on relative D-
efficiency, D-optimality, or D-error. Search terms were first searched by
variations in spelling and acronyms of individual terms and then
combined into one search. Studies were restricted to English articles.
Studies were excluded if they were not related to DCEs (or not referred
to as stated preference, latent class, and conjoint analysis), were ap-
plications of DCEs, empirical comparisons, reviews or discussions of
DCEs, or simulation studies that did not explore the impact of DCE
design characteristics on statistical efficiency. Duplicate publications,
meeting abstracts, letter, commentary, editorials and protocols, books
and pamphlets were also excluded.

2.2. Search strategy

Two rounds of electronic searches were conducted covering the
period from inception to Sept 19, 2016. The first round was performed
on all databases from inception to July 20, 2016. The second round
extended the search until Sept 19, 2016. The databases searched were
Journal Storage (JSTOR), Science Direct, PubMed, and OVID which
included a search within EMBASE. Studies identified from
Vanniyasingam et al.'s literature review, that were not identified in this
search, were also considered [1]. Table 1 (Supplementary Files) pre-
sents the detailed search strategy for each database.

2.3. Study selection

Four reviewers worked independently and in duplicate to screen
titles and abstracts of all citations identified in the search. Any poten-
tially eligible article identified by either reviewer, from each pair,
proceeded to the full-text review stage. The same authors then, in-
dependently and in duplicate, applied the above eligibility criteria to
screen the full text of these studies. Disagreement regarding eligibility
were resolved through discussion. If a disagreement was unresolved, a
third author (a statistician) adjudicated and resolved the conflict. After
full-text screening forms were consolidated amongst pairs, data was
extracted from eligible studies. Both the full-text screening and data
extraction forms were first piloted with calibration exercises to ensure
consistency in reviewer reporting.

2.4. Data extraction process

A Microsoft Excel spreadsheet was used to extract information re-
lated to general study characteristics, DCE design characteristics that
varied or were held fixed, and the impact of the varied design char-
acteristics on statistical efficiency.

2.5. Reporting quality

The quality of reporting was also assessed by extracting information
related to the reporting guidelines for simulation studies described by
Burton and colleagues [24]. Some components were modified to be
more tailored for simulation studies of DCEs. This checklist included
whether studies reported:

® A detailed protocol of all aspects of the simulation study
® Clearly defined aims
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o The number of failures during the simulation process (defined as the
number of times it was not possible to create a design given the
design component restrictions)

e Software used to perform simulations

® The random number generator or starting seed, the method(s) for
generating DCE datasets

e The scenarios to be investigated (defined as the specifications of
each design characteristic explored and overall total number of
designs created)

e Methods for evaluating each scenario

e The distribution used to simulate the data (defined as whether or not
the design characteristics explored are motivated by real-world or
simulation studies)

e The presentation of the simulation results (defined as whether au-
thors used separate subheadings for objectives, methods, results and
discussion to assist with clarity). Information presented in graphs or
tabular form but not written as detailed in the manuscripts were
counted for if they were presented in a clear and concise manner.

One item was added to the criteria to determine whether or not
studies provided a rationale for creating the different designs.
Reporting items excluded were: a detailed protocol of all aspects of the
simulation study, level of dependence between simulated designs, es-
timates to be stored for each simulation, summary measures to be
calculated over all simulations, and criteria to evaluate the performance
of statistical methods (bias, accuracy, and coverage). We decided
against checking whether a detailed protocol was reported because the
studies of interest were focussed on only the creation of DCE designs.
The original reporting checklist is tailored towards randomized con-
trolled trials or prognostic factor studies with complex situations seen
in practice [24]. The remaining items were excluded because the spe-
cific statistical efficiency measures were required for studies to be in-
cluded in the study. Also, there were no summary measures to be cal-
culated over all simulations, and no results to measure bias, accuracy
and coverage.

When studies referred to supplementary materials, these materials
were also reviewed for data extraction.

Three of the four reviewers, working in pairs, performed data ab-
straction independently and in duplicate. Pairs resolved disagreements
through discussion or, if necessary, with assistance from another sta-
tistician.

3. Data analysis
3.1. Agreement

Agreement between reviewers on the studies' eligibility based on
full text screening was assessed using an unweighted kappa. A kappa
value was indicative of poor agreement if it was less than 0.00, slight
agreement if it ranged from 0.00 to 0.20, fair agreement between 0.21
and 0.40, moderate agreement between 0.41 and 0.60, substantial
agreement between 0.61 and 0.80, and almost perfect agreement when
greater than 0.80 [25].

3.2. Data synthesis and analysis

The simulation studies were assessed by the details of their DCE
designs. More specifically, the design characteristics investigated and
their ranges were recorded along with their impact on statistical effi-
ciency (relative D-efficiency, D-optimality, or D-error). Adherence to
reporting guidelines was also recorded [24].
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4. Results
4.1. Search strategy and screening

A total of 371 papers were identified from the search and six were
selected from a previous literature search that used snowball sampling
[1]. From this, 43 were removed as duplicates and 245 were excluded
during title and abstract screening. Of the remaining 77 studies for full
text screening, three needed to be ordered [26-28] and one we were
unable to obtain a full text for [29], 18 did not relate to DCEs (or in-
clude terms such as discrete choice, DCE, choice-based, binary choice,
stated preference, latent class, conjoint analysis, or fractional factorial
design, factorial design); 17 did not perform a simulation analysis; 1 did
not use its simulations to create DCE designs; 22 did not assess the
statistical efficiency of designs using relative D-optimality, D-efficiency,
or D-error measures; 4 did not compare the impact of various design
characteristics on relative D-efficiency or D-optimality or D-error; and 1
was not a peer-reviewed manuscript. Details of the search and screening
process are presented in a flow chart in Fig. 1(Appendix).

Finally, nine studies remained after full-text screening. The un-
weighted kappa for measuring agreement between reviewers on full
text eligibility was 0.53, indicating a moderate agreement [25]. Of the 9
studies included, 1 was published in Marketing Science, 1 in the Journal
of Statistical Planning and Inference, 2 in the Journal of Marketing
Research, 1 in the International Journal of Research in Marketing, 2 in
Computational Statistics and Data Analysis, 1 in BMJ Open, and 1 in
Transportation Research Part B: Methodological.

The number of statistical efficiency measures, scenarios, and design
characteristics varied from study to study. Of the outcomes assessed for
each scenario, four studies reported relative D-efficiency [1,30-32],
two D-error [33,34], three Dy-error (a Bayesian variation of D-error)
[30,35,36], and two percentage changes in D-error [34,37]. Of the
design characteristics explored, one study explored the impact of at-
tributes on statistical efficiency [1], two explored alternatives [1,30],
one explored choice tasks [1], two explored attribute levels [1,32], two
explored choice behaviour [33,37], three explored priors [30,31,34],
and four explored methods to create the design [30,34-36]. Results are
further described below based for each design characteristic. Details of
the ranges of each design characteristic investigated and corresponding
studies are described in Table 2 (Supplementary Files).

4.2. Survey-specific components

The simulation studies had several conclusions based on the number
of choice tasks, attributes, and attribute levels; the type of attributes
(qualitative and quantitative); and the number of alternatives. First,
increasing the number of choice tasks increased relative D-efficiency
(or improved statistical efficiency) across several designs with varying
numbers of attributes, attribute levels, and alternatives [1]. Second,
increasing the number of attributes generally (i.e. not monotonically)
decreased relative D-efficiency. For designs with a large number of
attributes and a small number of alternatives per choice task, a DCE
could not be created [1]. Third, increasing the number of levels within
attributes (from 2 to 5) decreased relative D-efficiency. In fact, binary
attribute designs had higher statistical efficiency in comparison to all
other designs with varying numbers of alternatives (2-5), attributes
(2-20), and choice tasks (2-20). However, higher relative D-efficiency
measures were also found when the number of attribute levels equalled
the number of alternative [1]. Fourth, increasing the number of al-
ternatives improved statistical efficiency [1,30]. Fifth, for designs with
only binary attributes and one quantitative (continuous) attribute, it
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was possible to create locally optimal designs. To further clarify this
result, DCEs were created where two of three alternatives were iden-
tical or differed only by an unrestricted continuous attribute (e.g. size,
weight, or speed). The third alternative differed from the two others in
the binary attributes [32]. The continuous variable was unrestricted
and used as a “manipulating” attribute to offset dominating alternatives
or alternatives with a zero probability of being selected in a choice task.
This finding, however, was conditional on the type of quantitative
variable and was concluded to be unrealistic in the study [32]. Details
of the studies exploring these design characteristics are presented in
Tables 1a and 1b (Appendix).

4.3. Incorporating choice behaviour

Two approaches were used to incorporate response behaviour when
designing a DCE. First, the order of the statistical efficiency of designs
from highest to lowest were if they: (i) incorporated covariates relating
to response behaviour, (ii) incorporated covariates not relating to re-
sponse behaviour, and (iii) did not incorporate any covariates. Second,
among binary choice designs, stratified sampling strategies had higher
statistical efficiency measures in comparison to randomly sampled
strategies. This was most apparent when stratification was performed
on both expected choice behaviour (e.g. 2.5% of the population selects
Y = 1, remaining selects Y = 0) and on a binary independent factor
associated with the response behaviour. Similar efficiency measures
were found when there was an even distribution (50% of the population
selects Y = 1) across approaches [37] (Table 1c, Appendix).

4.4. Bayesian priors

Studies also explored the impact of parameter priors and hetero-
geneity priors. Increasing the parameter prior variances [30] or mis-
specifying priors (in comparison to correctly specifying priors) [34]
reduced statistical efficiency. In one study, mixed logit designs that
incorporated respondent heterogeneity had higher statistical efficiency
measures than designs ignoring respondent heterogeneity [31]. How-
ever, misspecifying the heterogeneity prior had negative implications.
In fact, underspecifying the heterogeneity prior had a greater loss in
efficiency in comparison to over specifying it [31] (Table 1d,
Appendix).

4.5. Methods to create the design

Several simulation studies compared various methods to create a
DCE design against other design settings (Table le, Appendix). First,
relative statistical efficiency measures were highest when the method to
create a design matched the method used for the reference design set-
ting [30,34,36]. For example, a multinomial logit (MNL) generated
design had the highest statistical efficiency in an MNL design setting, in
comparison to a cross-sectional mixed logit or a panel mixed logit de-
sign setting [36]. Similarly, a partial rank-order conjoint experiment
yields highest statistical efficiency for a design setting of the same type
in comparison to a best-choice experiment, best-worst experiment or
orthogonal design setting [30]. Second, among frequentist (non-Baye-
sian) approaches, the order of designs yielding the highest statistical
efficiency is d-optimal rank designs, d-optimal choice designs, near-
orthogonal, random designs, and balanced overlap designs for full rank
order and partial rank order choice experiments [35]. Third, a semi-
Bayesian d-optimal best-worst choice design outperformed frequentist
and Bayesian-derived designs, while yielding similar statistical effi-
ciency measures as semi-Bayesian d-optimal best-worst choice designs
[30].

20

Contemporary Clinical Trials Communications 10 (2018) 17-28

4.6. Reporting of simulations studies

All studies clearly reported the primary outcome, rationale and
methods for creating designs, and methods to evaluate each scenario.
Reporting the objective was unclear in two studies and no study re-
ported any failures in the simulations. In many cases, such as in
Vermeulen et al.'s study [36], the distribution from which random
numbers were selected from were described, however no study speci-
fied the starting seeds. Also, no study reported the number of times it
was not possible to create a design given the design component re-
strictions except for Vanniyasingam et al. [1], who specified that de-
signs with a larger number of attributes could not be created with a
small number of alternatives or choice task. The total number of designs
and the range of design characteristics explored were either written or
easily identifiable from figures and tables. Five studies reported the
software used for the simulation studies and one study reported the
software used for only one of the approaches to create a design. Four
studies chose design characteristics that were motivated by real-world
scenarios or previous literature, while four were not motivated by other
studies. Details of each study's reporting quality are broken down in
Table 2 (Appendix).

5. Discussion
5.1. Summary of findings

Several conclusions can be drawn from the nine simulation studies
included in this systematic survey of investigating the impact of design
characteristics on statistical efficiency. Factors recognized for im-
proving statistical efficiency of a DCE include (i) increasing the number
of choice tasks or alternatives; (ii) decreasing the number of attributes,
and levels within attributes; (iii) using model-based designs with cov-
ariates or sampling approaches that incorporate response behaviour;
(iv) incorporating heterogeneity in a model-based design; (v) correctly
specifying Bayesian priors and minimizing parameter prior variances;
and (vi) the method to create the DCE design is appropriate for the
research question and design at hand. Lastly, optimal designs could be
created using 3 alternatives with all binary attributes except one con-
tinuous attribute. Here, two alternatives were identical or differed only
by the continuous attribute and the third alternative differed by the
binary attribute. Overall, studies were detailed in their descriptions of
simulation studies. Improvement is needed to ensure the study objec-
tives, number of failures, random number generators, starting seeds,
and the software used are clearly defined.

5.2. Discussion of simulation studies

Many of the studies agree with the formula for relative d-efficiency,
however some appear to contradict it. Conclusions related to choice
tasks, alternatives, attributes, and attribute levels all agree with the
relative d-efficiency formula where increasing the number of para-
meters (with attributes and attribute levels) will reduce statistical ef-
ficiency and increasing the number of choice tasks improves it. Also,
when the number of attribute levels and alternatives are equal, in-
creasing the number of attribute levels may compromise statistical ef-
ficiency, however it can be compensated by increasing the number of
alternatives (which may increase Ng). A conclusion that cannot be di-
rectly deduced from the formula are in relation to designs with quali-
tative and unrestricted quantitative attributes. Grabhoff and colleagues
were able to create optimal designs where two alternatives were either
completely identical or only differed by a continuous variable [32].
With less information provided within each choice task (or more
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overlaps), we expect a lower statistical efficiency measure. Their design
approach first develops a design solution using the binary attributes and
then adds the continuous attribute to maximize the efficiency. This was
a continuation of Kanninen's study who explained that the continuous
attribute could be used to offset dominating alternatives or alternatives
that carried a zero probability of being selected by a respondent [38]. It
acted as a function of a linear combination of the other binary attri-
butes. This continuous attribute, however, was conditional on the type
of quantitative variable (such as size). Other types (such as price) may
result in the “red bus/blue bus” parody) [32].

5.2.1. Importance

To our knowledge, this systematic survey is the first of its kind in
synthesizing information on the impact of DCE design characteristics on
statistical efficiency in simulation studies. Other studies have focussed
on the reporting of applications of DCEs [39], and the details of DCEs
and alternative approaches [40]. Systematic and literature reviews
have highlighted the design type (e.g. fractional factorial or full fac-
torial designs) and statistical methods used to analyze applications of
DCEs within health research [2,11,13,41]. Exploration into summar-
izing the results of simulation studies is limited.

5.2.2. Strengths

This study has several strengths. First, it focuses on simulation
studies which are able to (i) explore several design settings to answer a
research question in a single study that real world applications are
unable to; (ii) act as an instrumental tool to aid in the understanding of
statistical concepts such as relative d-efficiency; and identify patterns in
design characteristics for improving statistical efficiency. Second, it
appraises the rigour of the simulations performed, through evaluating
the reporting quality, to ensure the selected studies are appropriately
reflecting high quality DCEs. Third, it provides an overview for in-
vestigators to assess the scope of the literature for future simulation
studies. Fourth, the results presented here can provide further insight
for investigators on patterns that exist in statistical efficiency. For ex-
ample, if some design characteristics must be fixed (such as the number
of attributes and attribute levels), investigators can manipulate others
(e.g. number of alternatives or choice tasks) to improve both the sta-
tistical optimality and response efficiency of the DCE.

5.2.3. Limitations

There are some caveats to this systematic survey that may limit the
direct transferability of these results to empirical research. First, the
search for simulation studies of DCEs was only performed within health
databases. Despite capturing a few studies from marketing journals in
our search, we did not explore grey literature, statistics journals, or
marketing journals. Second, we only describe the results for three
outcomes (relative D-efficiency, D-error, and D-optimality) while some
studies have reported other statistical efficiency measures. Third, with
only nine included studies, each varying in objectives, it was not pos-
sible to make strong conclusions at this stage. Only summary findings of
each study could be presented. Last, informant (or response) efficiency
was not considered when extracting results from each simulation study.
We recognize that incorporating participants' cognitive burden has a
critical impact on the effect of overall estimation precision[42]. In-
tegrating response efficiency with statistical efficiency would refine the
focus on the structure, content, and pretesting of the survey instrument
itself.

5.2.4. Further research

This systematic survey provides many avenues for further research.
First, these results can be used as hypotheses for future simulation
studies to test and compare in various DCE scenarios. Second, a review
can be performed on other statistical efficiency outcomes such as the

21

Contemporary Clinical Trials Communications 10 (2018) 17-28

precision of parameter estimates or reduction in sample size to compare
the impact of each design characteristic. Third, a larger review should
be conducted to explore simulation studies within economic, mar-
keting, and pharmacoeconomic databases.

6. Conclusions

Presenting as many possible combinations (via choice tasks or al-
ternatives) or decreasing the total number of all possible combinations
(via attributes or attribute levels) will improve statistical efficiency.
Model-based approaches were popularly used to create designs. These
models varied from adjusting for heterogeneity, including covariates,
and using a Bayesian approach. They were also applied to several dif-
ferent design settings. Overall reporting was clear, however improve-
ments can be made to ensure the study objectives, number of failures,
random number generators, starting seeds, and the software used are
clearly defined. Further areas of research to aid in solidifying the con-
clusions from this paper include a systematic survey of other outcomes
related to statistical efficiency, a survey on databases outside of health
research that also use DCEs, and a large-scale simulation study to test
each conclusion from these simulation studies.
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Appendix B. Supplementary data
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Supplementary data related to this article can be found at http://dx.doi.org/10.1016/j.conctc.2018.01.002.
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