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Abstract

Understory vegetation plays a vital role in regulating soil carbon (C) and nitrogen (N) charac-

teristics due to differences in plant functional traits. Different understory vegetation types

have been reported following aerial seeding. While aerial seeding is common in areas with

serious soil erosion, few studies have been conducted to investigate changes in soil C and

N cycling as affected by understory vegetation in aerially seeded plantations. Here, we stud-

ied soil C and N characteristics under two naturally formed understory vegetation types

(Dicranopteris and graminoid) in aerially seeded Pinus massoniana Lamb plantations.

Across the two studied understory vegetation types, soil organic C was significantly corre-

lated with all measured soil N variables, including total N, available N, microbial biomass N

and water-soluble organic N, while microbial biomass C was correlated with all measured

variables except soil organic C. Dicranopteris and graminoid differed in their effects on soil

C and N process. Except water-soluble organic C, all the other C and N variables were

higher in soils with graminoids. The higher levels of soil organic C, microbial biomass C,

total N, available N, microbial biomass N and water-soluble organic N were consistent with

the higher litter and root quality (C/N) of graminoid vegetation compared to Dicranopteris.

Changes in soil C and N cycles might be impacted by understory vegetation types via differ-

ences in litter or root quality.

Introduction

Soil carbon (C) and nitrogen (N) play important role in impacting soil capacity to maintain bio-

logical productivity [1, 2] and regulating atmospheric C and N compositions [3–5]. Among soil C

and N components, soil microbial biomass C (MBC) and N (MBN) are labile constituents in soil

organic C (SOC) and total N (TN) and indicators of changes in soil C and N pools [6]. In addi-

tion, both soil water-soluble organic C (WSOC) and N (WSON) are sensitive to land use, forest

management, and habitat disturbance. These labile constituents of soil organic matter are consid-

ered to be important indicators of soil capacity in maintaining biological productivity [7, 8].

In forest ecosystems, understory vegetation can be an important factor impacting soil C

and N processes [9] as has been documented by previous studies [10, 11]. While understory
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vegetation represents only a small portion of forest biomass, it plays an important role in

maintaining biodiversity, ecosystem stability, and sustainable productivity of forest ecosystems

[12]. However, the dependence of soil C and N processes on understory vegetation types are

not thoroughly understood [13]. Studies have shown that understory vegetation types impact

soil temperature and moisture [14], microbial richness and composition [15–18], and C/N

ratios [11, 13, 19]. For example, Wu et al. [20] reported that removing understory vegetation

from Eucalyptus forest decreased root biomass and soil organic matter input, and hence altered

soil microbial community structure. Similarly, Wan et al. [21] evaluated the effect of the

understory vegetation (Dicranopteris dishotoma) on the growth of subtropical forest canopy

vegetation (Eucalyptus) and found decreased soil moisture, soil organic matter, and soil pH

after understory vegetation was removed. So, it is critical to understand the effects of under-

story vegetation on soil C and N cycling, and further, potential effects on changes in atmo-

spheric C and N compositions [22, 23], especially in areas with intensive reforestation and

management of understory vegetation.

In the mid-20th century, the southern part of Jiangxi Province, China, was a region with

large-scale intensive soil erosion and increased runoff, especially the Xing’guo County area. To

control runoff and soil erosion and restore forest vegetation, aerial seeding of P. massoniana
has been widely implemented since the 1970s [24]. Aerial seeding plantations characterized by

faster restoration played important role in improving the ecological environment of the region.

Considering the importance of understory vegetation in aerially seeded plantations, their

effects on soil element cycling process could not be ignored. In the process of forest develop-

ment, two understory vegetation types (Dicranopteris and graminoid) have formed. As the

root system of Dicranopteris consists of clustering rhizomes, it can grow on the surface of soil

through horizontal spread, effectively reducing water loss and mitigating soil erosion [25]. The

root systems of graminoids differ from those of Dicranopteris. In addition, the dominant gra-

minoid species Paspalum thunbergii may have symbiotic relationship with N-fixing soil bacte-

ria as its congeners, which will potentially impact litter C and N characteristics and soil C and

N cycling [26]. However, the effect of understory vegetation on soil C and N cycling process in

aerially seeded plantations has not been investigated.

Here, we conducted a study in Xing’guo County to understand how soil C and N cycling

vary in aerially seeded P. massoniana plantations [24] that differ in understory vegetation

types to investigate the following questions: 1) How are soil C and N components related to

each other in aerially seeded P. massoniana plantations that differ in understory vegetation? 2)

How do vegetation functional characteristics vary between Dicranopteris and graminoid domi-

nated understories? 3) How do soil C and N characteristics vary among plantations with

understories dominated by Dicranopteris vs. graminoids? The results will provide a scientific

reference for the management of understory vegetation in aerially seeded P. massoniana
plantations.

Materials and methods

Study area

Xing’guo County (115˚01’~115˚51’ E, 26˚03’~26˚42’ N) located in the central southern part of

Jiangxi Province, subtropical China, is characterized by a mid-subtropical warm and humid

climate. The mean annual temperature is 18.9˚C and annual precipitation is 1,539 mm, with a

distinct wet season from April to June [27]. The frost-free period lasts for 280–300 days. Soils

are classified as Udic Ferralsols developed from granite weathering [28]. This area is rich in

forest resources. Presently, the main forests here are evergreen broadleaf forests, P. massoniana
forests, and Cunninghamia lanceolata plantations [27, 29]. The area of aerially seeded P.
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massoniana plantations is 64,000 ha, accounting for 29.5% of the county’s forest land area [27].

These plantations have understories dominated by either Dicranopteris linearis or Paspalum
thunbergii, respectively, which were formed 10–15 years later after P. massoniana were sowed.

The dominated proportion of Dicranopteris and graminoid vegetation were more than 90%

and 85%, respectively.

Plot establishment and soil sampling

In August 2012, a reconnaissance survey was conducted in aerially seeded P. massoniana plan-

tations. The plantations selected for this study had not been disturbed by anthropogenic activi-

ties since aerially seeding during 1986 and 1991, and had understories dominated by

Dicranopteris or graminoid species (Fig 1). The slope faced south with an intermediate slope

(S1 Table). The understory had a density of 60–80% cover. Plots were established paired and

randomly in P. massoniana plantations with understory vegetation dominated by Dicranop-
teris or graminoid species (S1 Table; Fig 1). The plot size was 400 m2 (20 × 20 m), with nine

replications for each understory vegetation type. No permits were required.

Soil samples were collected from the top 20 cm soil layer from three sampling points at the

upper, middle, and lower part of each plot using a soil auger (6 cm in diameter). Soil samples

of each plot were mixed together to obtain one composite sample. Approximately 1 kg of the

mixed sample was then divided into two portions. One portion was preserved at a temperature

of 4˚C for the measurement of MBC, MBN, available N (AN), WSOC and WSON. The other

portion was air-dried and processed for the determination of SOC and TN.

Understory vegetation litter, root and biomass collection

Three randomly distributed subplots (1 m×1 m) were established for collection of litter, root

and total biomass in each plot. In July 2012, plant litter and above- and below-ground biomass

were each collected by vegetation types. Root collection was performed by excavating soils

within the subplots. Specifically, subplot soil within the 0–30 cm soil layer was all collected and

passed through 0.5 mm sieve to obtain all fine roots [30]. Soil attached to roots was removed

by washing. Plant samples were taken back to the lab and dried to obtain dry biomass by plots.

Total biomass (TB) was obtained by summing above- and below-ground biomass. Root to

shoot ratio (RSR) was calculated based on dry weight of below- and above-ground biomass.

Subsamples of litter and root were processed for determination of C and N concentrations

[31].

Plant and soil C and N measurements

Soil organic C and plant sample C were measured by the potassium dichromate oxidation-

external heating method [32]. Carbon oxidation occurred in potassium dichromate solution

and C content was obtained by subsequent titration. Total N was digested by concentrated sul-

furic acid and determined by the Kjeldahl method [32]. Carbon to N ratio (C/N) was calcu-

lated based on C and N concentrations. Soil NH4
+ and NO3

- (AN) were extracted by 2 mol L-1

potassium chloride solution produced by deionized water and determined by the colorimetric

method [8]. Microbial biomass C and MBN were measured by the chloroform fumigation—

potassium sulfate extraction method [33, 34]. After extraction, MBC and MBN were measured

with a TOC-1020A analyzer (Elementar, Germany). The TOC-1020A analyzer was also used

for measurement of WSOC after extraction with deionized water (10 g soil with 20 ml water,

shaking at 25 oC for 15 min) and filtration using 0.45 μm polytetrafluoroethylene filters [35].

Water-soluble organic N was obtained by calculating the difference between total soluble N

and inorganic N.
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Statistical analyses

We conducted pairwise correlation analysis to examine the correlations among soil C and N

properties both across and within understory vegetation types to examine differences in these

correlations induced by understory vegetation types. We performed principal component

analysis (PCA) to understand the overall pattern of soil C and N variation among plots. We

Fig 1. Sampling locations of the study area (Xing’guo County, Jiangxi province, China).

https://doi.org/10.1371/journal.pone.0191952.g001
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conducted paired t tests to examine differences in soil C and N characteristics between forests

with two different kinds of understory vegetation types. No transformations were conducted

since data met the assumptions of ANOVA. Statistical analyses were conducted in JMP 9.0

(SAS Institute, Cary, NC, USA).

Results

Differences in functional traits between two understory vegetation types

Both litter and roots produced by graminoid vegetation had lower C/N relative to that pro-

duced by Dicranopteris (Table 1). In addition, Dicranopteris was higher in TB and RSR com-

pared to graminoid (Table 1).

Soil C and N correlations across understory vegetation types

Microbial biomass C was not correlated with SOC (Tables 2 and 3) but was only correlated

with WSOC (Table 3). The PCA plot showed that, except WSOC, all the other variables con-

tributed to the first principal component (Fig 2). The first principal component based on all

Table 1. Differences in functional traits (mean ± 1 s.e.) between two understory vegetation types. Significant results of paired t tests are in bold. Root C/N, root C to N

ratio; Litter C/N, litter C to N ratio. TB, total biomass, g m-2; RSR, root to shoot ratio.

Variables Dicranopteris Graminoid t ratio P
Root C/N 36.02±0.49 33.43±0.42 -5.27 0.0008

Litter C/N 40.65±0.48 33.55±0.39 -7.33 <0.0001

TB 250.10±4.69 240.28±4.29 -2.96 0.0180

RSR 1.10±0.01 1.04±0.02 -2.35 0.0468

https://doi.org/10.1371/journal.pone.0191952.t001

Table 2. Soil C and N variables (means ± 1 se) in plots with different understory vegetation types. SOC, soil organic carbon, g kg-1; MBC, microbial biomass carbon,

mg kg-1; WSOC, water-soluble organic carbon, mg kg-1; TN, total nitrogen, mg kg-1; AN, available nitrogen, mg kg-1; MBN, microbial biomass nitrogen, mg kg-1; WSON,

water-soluble organic nitrogen, mg kg-1. Statistical results are shown in Figs 3 and 4.

Type Plot SOC MBC WSOC TN AN MBN WSON

Dicranopteris 1 7.97±0.67 146.20±3.54 219.21±1.22 79.55±4.66 16.33±1.55 23.50±1.62 25.85±1.56

3 10.21±1.61 190.22±5.23 300.38±3.08 84.41±2.03 22.01±1.27 33.11±1.35 40.25±1.75

5 7.54±1.05 97.40±2.58 218.56±4.04 80.20±4.24 15.12±1.21 19.66±1.82 28.70±3.03

7 2.55±0.54 259.38±4.62 234.80±3.38 75.79±3.28 15.38±1.10 24.27±1.71 20.53±1.78

9 5.33±0.59 189.29±4.53 249.73±5.63 77.98±3.60 14.75±0.91 28.88±2.76 28.60±1.13

11 5.13±0.06 96.42±3.31 147.14±5.00 73.69±2.11 15.00±1.08 17.35±1.85 32.81±1.24

13 8.65±0.47 103.13±4.59 190.25±3.62 75.48±3.44 14.74±0.80 24.27±2.29 23.20±1.22

15 4.42±0.16 179.82±2.40 226.36±3.43 72.10±1.16 10.32±1.19 22.74±1.28 37.15±1.56

17 3.42±0.06 241.67±1.73 227.66±1.23 71.44±1.52 16.32±1.27 25.02±1.88 42.28±1.20

Graminoid 2 9.17±0.64 204.61±3.32 229.80±3.84 82.01±1.15 26.52±1.81 41.62±2.01 47.67±2.15

4 16.84±1.00 267.90±4.04 243.64±1.40 96.45±2.83 53.83±1.39 67.74±0.94 63.23±1.70

6 6.53±0.83 173.10±5.08 209.62±4.49 76.66±2.93 20.44±2.53 52.31±0.99 43.22±1.78

8 9.27±1.21 223.56±5.81 257.60±3.84 87.65±2.72 29.79±0.47 40.79±1.30 43.03±1.32

10 4.28±0.50 165.94±5.35 253.38±5.05 72.09±1.91 15.42±2.78 26.58±2.41 20.59±2.19

12 6.62±0.92 177.52±3.62 234.42±3.83 86.80±2.32 17.36±2.28 32.72±1.85 38.00±1.23

14 13.35±0.62 337.33±11.91 257.07±5.30 89.13±3.45 32.72±1.56 57.69±3.44 62.38±2.27

16 8.29±0.63 199.81±1.85 244.29±2.00 87.89±2.07 15.46±2.33 19.67±3.98 40.72±2.16

18 13.36±1.53 317.08±2.54 248.63±7.30 95.22±2.59 36.94±2.22 53.15±1.54 48.05±2.81

https://doi.org/10.1371/journal.pone.0191952.t002
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Table 3. Pairwise correlation coefficients (R) of soil carbon and nitrogen variables in the studied plots. SOC, soil organic carbon, g kg-1; MBC, microbial biomass car-

bon, mg kg-1; WSOC, water-soluble organic carbon, mg kg-1; TN, total nitrogen, mg kg-1; AN, available nitrogen, mg kg-1; MBN, microbial biomass nitrogen, mg kg-1;

WSON, water-soluble organic nitrogen, mg kg-1.

Variables MBC WSOC TN AN MBN WSON

SOC 0.47 0.33 0.88�� 0.88�� 0.77�� 0.75��

MBC 0.57� 0.57� 0.64�� 0.68�� 0.66��

WSOC 0.45 0.32 0.35 0.31

TN 0.81�� 0.69�� 0.70��

AN 0.89�� 0.79��

MBN 0.81��

�, P<0.05

��, P<0.01.

https://doi.org/10.1371/journal.pone.0191952.t003

Fig 2. Principal components analysis (PCA) of C and N variables based on measurements from all plots. Filled circles,

Dicranopteris; filled squares, graminoids.

https://doi.org/10.1371/journal.pone.0191952.g002
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variables explained 70.2% of the variations among all plots (Fig 2). The cumulative percentage

of the first two components was 83.7% (Fig 2).

Understory vegetation effects on soil C and N characteristics

Correlation analysis of soil C and N variables under the two different vegetation types showed

that both SOC and AN were correlated significantly with TN while WSOC was correlated with

MBN for Dicranopteris plots (Table 4). For plots dominated by graminoid species, SOC, MBC,

TN, AN, and WSON were correlated with each other while MBN was correlated with SOC,

AN, and WSON (Table 4).

Except for WSOC (t = 1.20, P> 0.05), all the measured soil C and N variables were signifi-

cantly higher in soils in plots dominated by graminoid species compared to those in plots

dominated by Dicranopteris (Figs 3 and 4). Specifically, SOC, MBC, AN, MBN, and WSON

were 58.8%, 37.5%, 77.5%, 79.3%, and 45.6% higher, respectively, in graminoid plots compared

to Dicranopteris plots (Figs 3 and 4).

Discussion

Correlations between WSOC and MBC differ across and within understory

vegetation types

Except WSOC, most of the variables correlated with each other across understory vegetation

types [36]. Water soluble organic C has been commonly used as an indicator for microbial

activities as it is readily available for microbes [37–39], which is consistent with the significant

correlation between WSOC and MBC in this study (Table 3). When analyzed separately by

understory vegetation, no correlations were observed between WSOC and MBC (Table 4).

Although the study area had 18 plots, all plots were characterized by similar slope, tree diame-

ter, canopy density and stand density (S1 Table), suggesting different effects of understory veg-

etation on MBC or WSOC. In addition, results of the PCA showed that WSOC was the only

variable correlated positively with the second principal component, while all other variables

positively correlated with the first component (Fig 2). Based on the spatial distribution of the

Table 4. Pairwise correlation coefficients (R) of soil carbon and nitrogen variables in plots dominated by Dicranopterisor graminoids. SOC, soil organic carbon, g

kg-1; MBC, microbial biomass carbon, mg kg-1; WSOC, water-soluble organic carbon, mg kg-1; TN, total nitrogen, mg kg-1; AN, available nitrogen, mg kg-1; MBN, micro-

bial biomass nitrogen, mg kg-1; WSON, water-soluble organic nitrogen, mg kg-1.

Vegetation type Variables MBC WSOC TN AN MBN WSON

Dicranopteris SOC -0.56 0.26 0.76� 0.55 0.33 0.01

MBC 0.56 -0.17 0.14 0.52 0.20

WSOC 0.58 0.52 0.88�� 0.34

TN 0.72� 0.51 -0.11

AN 0.60 0.23

MBN 0.25

Graminoid SOC 0.85�� 0.34 0.86�� 0.94�� 0.79� 0.90��

MBC 0.58 0.73� 0.70� 0.66 0.76�

WSOC 0.35 0.27 0.01 0.11

TN 0.74� 0.49 0.73�

AN 0.86�� 0.79�

MBN 0.81��

�, P<0.05

��, P<0.01.

https://doi.org/10.1371/journal.pone.0191952.t004
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data points with different treatments as well as MBC and WSOC, the results further indicated

labile soil C variable (WSOC or MBC) was differently altered across understory vegetation

types (Fig 3).

Soil MBC and N variables increased by graminoids vegetation

Understory vegetation participates in the nutrient cycling of soil C and N process through sev-

eral different ways. The graminoid vegetation has a fibrous root system, with higher decompo-

sition rates compared with the rhizomes of Dicranopteris, which would potentially increase

soil organic matter inputs [40, 41]. Additionally, due to differences in functional traits, under-

story vegetation types might alter litter decomposition rates and microbial activities by affect-

ing soil moisture, temperature, and other environmental factors [42, 43]. Changes in the litter

decomposition environment might alter litter decomposition rate and hence C and N releasing

rate [44, 45]. Moreover, litter produced by different plant species or genotypes might differ in

Fig 3. Dependence of soil C variables on understory vegetation types. Results of paired t tests are shown.

https://doi.org/10.1371/journal.pone.0191952.g003
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litter quality (e.g., lower C/N or higher N concentration) [46]. Both litter and root C/N of gra-

minoids were significantly lower relative to Dicranopteris (Table 1). Higher litter quality (e.g.,

lower C to N ratio) might be associated with faster litter decomposition and hence faster nutri-

ent releasing rate [44, 46], indicating graminoid vegetation might be more beneficial to

enhancing nutrient cycling rates in areas it dominated. Due to differences in their functional

traits, the quantity and quality of C and N released from decomposing litter and roots might

differ among vegetation types [47, 48]. For example, Fu et al. [49] studied the effect of four

shrub-grass types on SOC and TN in the Loess Plateau and found higher SOC in soils with

vegetation characterized by higher aboveground biomass and underground root density. Chen

et al. [50] proposed that soil N recycling rate and availability in soils with graminoid Agropyron
desertorum was higher than that in soils with Artemisia plants due to differences in litter

quality.

Fig 4. Dependence of soil N variables on understory vegetation types. Results of paired t tests are shown.

https://doi.org/10.1371/journal.pone.0191952.g004
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Except for WSOC, we found significantly increased SOC, MBC, AN, MBN, and TN in soils

dominated by graminoids compared those with Dicranopteris, which is consistent with the

higher litter and root quality of the graminoids (Table 1). In this study, the dominant species

in plots with graminoids is Paspalum thunbergii, which is characterized by N fixing ability. The

N-fixing ability might induce higher N levels in P. thunbergii soils [26], which would further

increase the litter quality produced by P. thunbergii. Indeed, both litter and root N concentra-

tion were higher in graminoid areas, accompanied by higher soil N availability [44]. Stokdyk

and Herrman [18] reported N-rich Frangula alnus leaf litter enhances soil N mineralization.

Therefore, if there are no differences in soil abiotic factors, higher litter quality might be fol-

lowed by faster C and N return rate and hence soil C and N availability. In addition, the posi-

tive effects of graminoids on soil C and N components were also consistent with the lower

RSR of graminoids relative to Dicranopteris, indicating higher soil nutrient availabilities in

these graminoid soils. Hence, the colonization of graminoid in plantations dominated by

Dicranopteris should be promoted to improve the soil quality of aerially seeded Pinus massoni-
ana plantations.

While soil microbial community and enzyme activity could have contributed to changes in

soil C and N processes [51–53], which should be considered in further studies examining

understory vegetation effects on soil C and N process. In addition, this study was conducted in

areas with similar erosion levels before the colonization of both studied understory vegetation

types. Areas with different erosion levels might also differ in understory vegetation types and

soil element cycling. Future studies with manipulation levels of soil erosion and understory

vegetation types would be necessary in understanding the effects of understory vegetation

types on soil C and N cycling in aerially seeded plantations.

Conclusion

Our results suggest that understory vegetation generated different effects on soil C and N pro-

cesses. Graminoid understory vegetation with higher litter and root quality increased soil C

and N components. Considering their significant contribution to atmospheric compositions

and mitigations of global climate change, variation in soil C and N as affected by different

understory vegetation should be considered in future studies, especially those in degraded

areas where aerial seeding afforestation has been widely implemented with different under-

story vegetation types.

Supporting information
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