
Infrared Attenuated Total Reflectance
Spectroscopy: An Innovative Strategy for
Analyzing Mineral Components in
Energy Relevant Systems
Christian Menno Müller1,2, Bobby Pejcic1, Lionel Esteban1, Claudio Delle Piane1, Mark Raven3

& Boris Mizaikoff2

1CSIRO, Energy Flagship, 26 Dick Perry Ave, Kensington, WA, Australia, 6151, 2University of Ulm, Institute of Analytical and
Bioanalytical Chemistry, Albert-Einstein-Allee 11, 89081 Ulm, Germany, 3CSIRO, Land and Water, Waite Campus, Glen Osmond,
SA, 5064 Australia.

The direct qualitative and quantitative determination of mineral components in shale rocks is a problem
that has not been satisfactorily resolved to date. Infrared spectroscopy (IR) is a non-destructive method
frequently used in mineral identification, yet challenging due to the similarity of spectral features resulting
from quartz, clay, and feldspar minerals. This study reports on a significant improvement of this
methodology by combining infrared attenuated total reflection spectroscopy (IR-ATR) with partial least
squares (PLS) regression techniques for classifying and quantifying various mineral components present in
a number of different shale rocks. The developed multivariate classification model was calibrated using pure
component mixtures of the most common shale minerals (i.e., kaolinite, illite, montmorillonite, calcite, and
quartz). Using this model, the IR spectra of 11 real-world shale samples were analyzed and evaluated. Finally,
the performance of the developed IR-ATR method was compared with results obtained via X-ray diffraction
(XRD) analysis.

I
n recent years, there has been an increased interest in exploring and commercially exploiting gas reserves
hosted by shale rocks to meet future global energy needs1,2. Shales are a group of sedimentary rock that consist
of fine grain mineral particles mixed with organic matter, which has significant potential as a natural source of

hydrocarbon. The organic matter fractions in shales may have various origins, and the abundance, type, and
thermal maturity may also vary significantly3. In particular, oil shales contain large quantities of organic material
as kerogen, which is a complex mixture of insoluble hydrocarbons derived from decomposed plant and animal
matter. In contrast, gas shales consist of natural gas, which is adsorbed/absorbed at or into the organic matter
fraction or trapped in between the mineral particles. The mineral constituents and the general rock properties
play a crucial role whether a particular shale is economically viable, and whether useful quantities of gas and/or oil
may be harvested from this composite4. Although the mineral content may vary widely, most shales are typically
composed of variable amounts of clays along with quartz, carbonates, feldspars, and iron oxides as the most
prominent constituents5. Understanding the relationship between shale composition and the geological factors
that govern gas/oil production is an issue that has not been satisfactorily addressed.

A detailed physical and chemical characterization of shale rocks is therefore a crucial aspect for understanding
and minimizing exploration risks, and for optimizing harvesting and production strategies. Josh and co-workers
recently described a series of laboratory methods (i.e., mercury, injection porosimetry, X-ray computer tomo-
graphy, and ultrasonic methods) commonly applied for determining the physical and mechanical properties (i.e.,
porosity, permeability, dielectric, elasticity, and mechanical strength) of shales6. On the other hand, mineral
identification and quantifying the mineral content requires specific analytical techniques providing additional
chemical information. X-ray diffraction (XRD) is the most commonly applied tool providing extensive informa-
tion on the chemical and mineral composition of shale rocks7–9. As the X-ray diffraction pattern is unique for each
crystalline constituent, identification may be achieved by determining the interplanar spacing/distance of the
crystal via the Bragg equation, and comparing the obtained result with comprehensive powder diffraction
databases (e.g., International Centre for Diffraction Data). In fact, XRD is a well-established standard method
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for mineral identification and characterization, and a number of
papers have been published showing that it provides invaluable
quantitative information of complex multi-component mixtures
such as shales10,11. However, the presence of certain clays along with
various natural organic matter and amorphous components may
give rise to quantitative errors, which need to be considered and/or
corrected8–10. In some cases the shale samples are treated with dif-
ferent solutions/chemicals to remove various components and to
improve the identification of certain clay minerals11. Consequently,
a complete chemical characterization of shale rocks is apparently not
feasible using only XRD, and complementary methods such as ther-
mogravimetry (TGA) or infrared spectroscopy (IR) are required12–14.

Fourier transform infrared (FTIR) spectroscopy is an optical tech-
nique that has been used for characterizing a wide range of miner-
als13,15–17. Compared to XRD, IR spectroscopy is rapid, and capable of
providing both chemical and structural information on a wide range
of amorphous, semicrystalline, and crystalline materials. In particu-
lar, IR spectroscopy is attractive for analyzing shales, as information
on the organic matter fraction is directly accessible18,19, and simulta-
neously providing discriminatory information on the different types
of minerals present within the sample18,20,21.

A variety of measurement techniques are available for collecting
spectra in the mid-infrared (MIR; 3–20 mm) spectral region. Among
the conventional methods used for sample preparation during shale
characterization has been the preparation of pressed KBr pellets19,21,22.
In this procedure, a small quantity of sample (typically a few mg) is
dispersed within an IR-transparent KBr matrix by hand in a mortar,
and then compacted into a pellet for IR transmission-absorption ana-
lysis. Although KBr pellets are highly useful for analyzing small sample
quantities, several issues such as particle agglomeration, water absorp-
tion, reproducible mixing22, particle size effects21 and weighing errors13

limit reliable quantitative analysis. Most of these problems can be
avoided and/or minimized by using appropriate procedures (i.e., redu-
cing the particle size to , 2 mm, minimizing water absorption by KBr
by heating at .110uC, ensuring proper homogenization of sample and
KBr, etc.), and it has been shown that if these practices are adopted
then reliable quantitative data can be obtained23. However, Kaufhold
et al.13 studied many different clays and concluded that the IR method
based on KBr pellets is not a suitable substitute for XRD character-
ization and quantification.

To avoid some of these sample preparation artefacts, reflectance
methods including diffuse reflectance infrared Fourier transform
(DRIFT) spectroscopy7, and infrared attenuated total reflectance
(IR-ATR) spectroscopy have been evaluated for characterizing oil
shales24. In particular, Palayangoda and Nguyen recently showed that
IR-ATR in combination with principal component regression may
be used to provide quantitative information on some mineral con-
stituents of oil shales24. Although only synthetic oil shale samples
were prepared and used in this study, the chemometrics approach
appeared promising. Other studies have revealed that IR-ATR spec-
troscopy may readily discriminate between bentonites of different
origin25.

However, despite a number of reports on the utility of IR spectro-
scopy for the characterization of shale rocks, comparatively few
results have been published using ATR methods for quantifying
the mineral composition of natural samples collected from shale
formations. Hence, the objective of the present study was to evaluate
the performance of IR-ATR spectroscopy for the qualitative and
quantitative analysis of relevant mineral constituents present in nat-
ural shale rocks, and comparing the obtained data with XRD analysis
results. Although IR is able to provide information concerning the oil
yield26, the organic matter/total organic carbon content27, and the
kerogen type28 the focus of the present paper was to investigate the
fundamental suitability of IR-ATR in conjunction with partial least
squares (PLS) regression for quantifying the mineral components in
natural shale samples. Currently, no suitable IR based method exists

for accurately determining the mineralogical composition of shales.
We believe that if IR spectroscopy is to be embraced by the scientific
community in providing accurate quantitative information of shale
rocks then further research is needed to develop appropriate meth-
ods for distinguishing the many different mineral constituents that
occur in such complex natural materials. The overall aim is to
develop a portable ATR based infrared technology that can be
deployed in the field to provide rapid and reliable information con-
cerning the chemistry of energy-related resources in geological
systems.

Results
Qualitative analysis. In the first phase of this study, infrared spectra
were collected on a small number of minerals that usually occur in
shale rocks. According to several reports18,22,29, quartz, clays (i.e.,
kaolinite, illite, and montmorillonite), carbonates (i.e., calcite and
dolomite,) and feldspars (i.e., albite and orthoclase) are common
minerals occurring in shales, and were selected as reference
minerals for qualitative and quantitative analysis of natural shale
samples. Figure 1a) illustrates a typical spectrum of quartz. The
major absorption features of quartz are the peaks in the range of
1200 to 900 cm21 assigned to the asymmetric stretching vibration
of the Si–O groups with a peak maximum at 1080 cm21, the
symmetric stretch at 800 and 780 cm21, and the symmetric and
asymmetric Si–O bending mode at 695 cm21, 520 cm21, and
45021, respectively30.

The spectra of clay minerals are shown in Figure 1b). To highlight
the important features within clay mineral spectra, spectral regions
without relevant signatures, e.g., 3500 to 1800 cm21 were omitted
here. IR spectra of clay minerals are usually characterized by three
main areas: (i) the stretching and bending vibrations of the inner
surface –OH groups observed in the region of 3700 to 3600 cm21, (ii)
the stretching and bending vibrations of the Si–O groups, and (iii)
the Si–O–M (with M 5 Al, Mg, etc.) vibrations with (ii) and (iii)
extending from 1200 to 400 cm21 31.

The illite sample used in the present study contains 28% quartz,
and therefore, several signals are overlapping or may be assigned to
typical vibrations of quartz. Additional peaks are located at
3630 cm21 and 828 cm21, and were assigned to the stretching vibra-
tions of the –OH groups in the octahedral sheet, and the Al–OH–Mg
vibration, respectively32,33. Furthermore, a shoulder arising from the
Al–OH–Al bending vibration is evident at 915 cm21 31.

As water-bearing mineral, the most distinct features evident
within the montmorillonite spectra are the bending vibration of
the OH group at 1635 cm21 16. Otherwise, the spectra of montmor-
illonite are similar to illite with only subtle differences of the spectral
features. A weak shoulder at 885 cm21 is attributed to the Fe–Al–OH
vibration, which is not as recognizable in the illite spectrum. Further
peaks such as e.g., the Al–OH–Al stretching vibration at 3625 cm21,
and the broad Si–O asymmetric stretch feature from 1200 to
900 cm21 have already been described31.

The IR spectrum of kaolinite is very well described in literature34.
Kaolinite is readily discriminated against other clay minerals herein
due to its unique pattern in the spectral region of the inner surface
–OH vibrations. Four clearly distinctive peaks at 3695 cm21,
3670 cm21, 3650 cm21, and 3620 cm21 are attributed to the in-phase
and out-of-phase motion modes, and to the stretching vibration of
inner-surface –OH groups35.

The spectra of the feldspar minerals albite and orthoclase are
shown in Figure 1c). The albite spectrum displays multiple broader,
yet partly overlapping absorption features ranging from 1200 to
900 cm21, 800 to 700 cm21, and 650 to 375 cm21. A detailed assign-
ment of the fundamental vibrations is given elsewhere36.

The orthoclase sample used in the present study contained 16 wt%
of albite. This, and the fact that albite and orthoclase have only minor
compositional differences leads to an almost identical IR spectrum
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with little features to discriminate these feldspars. However, success-
ful attempts have already been reported for discriminating feldspar
minerals using IR spectroscopy37.

Figure 1d) shows the carbonate minerals calcite and dolomite. The
fundamental vibrations arise from the carbonate CO3

22 ion, and are
assigned to the asymmetric stretch (n3) at 1400 cm21 and the out-of-
plane bending (n2) vibration at 875 cm21; these are considered the
most prominent absorption features within carbonate spectra38. The
peaks resulting from the in-plane bending vibration (n4) at 712 cm21

and 727 cm21 may be used to discriminate calcite from dolomite,
respectively39. The absorption feature located at 1020 cm21 is result-
ing from the in plane Si–O–Si stretch vibration caused by a talc
impurity40. Hence, all mineral spectra obtained herein are well
understood and are in agreement with literature.

The shales studied herein are natural samples, retrieved from deep
wells, and hence, comprise substantial variety of mineral phases, and
occasionally even remains of organic matter. Therefore, prior to IR
spectral analysis, all shales were extensively characterized via XRD.

Figure 1 | Infrared spectra of the mineral standards used in the IR-ATR study.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6764 | DOI: 10.1038/srep06764 3



Figure 2 | Infrared spectra of samples from each shale group.
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Figure 3 | Mineral spectra of (a) quartz, (b) illite, (c) montmorillonite, (d) kaolinite, (e) albite, (f) orthoclase, (g) calcite and (h) dolomite (black) with

respective selectivity ratios (red).
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Besides the mineral phases considered herein (i.e., quartz, illite,
smectite, kaolinite, albite, orthoclase, calcite, and dolomite), the shale
samples also contained varying amounts of siderite, anatase, pyrite,
chlorite, hematite, and anhydrite. With few exceptions, the content
of these minerals in the shales was determined to be ,5%.

The shales analyzed in this study were obtained from five different
locations. Spectra of selected shale samples representing each loca-
tion are given in Figure 2. Clay minerals are readily indentified via
the vibration at 3600 cm21. It is not possible to discriminate illite and
smectites in such complex natural mixtures, whereas kaolinite may
be easily identified in sample E1. Sample A1, C1, and D1 contain
carbonate. Using the weak signals at 713 cm21, calcite was identified
in A1 and D1, as well as dolomite in C1 using the signal at 727 cm21.
Sample B2 apparently contains remains of organic matter, as evi-
denced by the C–H vibration at 2950 to 2850 cm21. The vibrational
bands arising from the organic matter occur in a different region of
the IR spectra, and this should in principle render the determination
of the mineral content of the shale samples less problematic. All
shales show overlapping absorption features in the spectral range
of 1200 to 375 cm21. Hence, for unambiguous signature assignment
of quartz, clays and feldspars multivariate data analysis within this
spectral region is required.

Multivariate data analysis. The aim of this study was to provide a
straightforward strategy for the evaluation of the mineralogy of shale
samples via IR-ATR spectra. However, as the main structural units of
these minerals are based on Si–O bonds, most relevant IR absorption
features overlap rendering simultaneous quantification somewhat
challenging. Therefore, a multivariate regression model based on
PLS using the SIMPLS algorithm was established capable of
extracting the unique spectral features for each mineral spectrum
facilitating identification41. Eight latent variables (LVs) were
selected, which captured 93.92% of the variance within the
calibration data set. Applying a 2nd derivative Savitzky-Golay filter
to reduce interferences from noise and mean centring to pre-process
the spectra yielded a robust calibration model. The calibration was
validated using cross-validation, i.e., random samples of the
calibration set were removed from the model, and were then
validated via a model built from the remaining calibration data set.

In addition, a number of mineral mixtures were prepared to evaluate
the predictive capabilities of the model, as discussed later.

Establishing initial calibration models, it was found that the pre-
diction for the validation set were acceptable, deviating by 1–5% from
the initial weight, whereas the calibration yielded less satisfying
results for the shale samples with errors up to 20%. This is associated
with using the entire IR spectra (4000–375 cm21) for establishing the
calibration model calibration. The real-world shale spectra include
information that is not captured by the calibration model, which
predominantly results from organic matter and absorption features
caused by minerals not considered within the model. One option for
minimizing the influence of non-calibrated signals is to reduce the
spectral range (i.e., spectral region selection), and thereby eliminate
wavelengths that do not contribute relevant information42. Yet, it was
necessary to investigate which regions of the spectra could be omitted
without compromising the predictive capabilities of the calibration
model.

The usefulness of variables within a calibration model may be
rated using so-called selectivity ratios, i.e., a numerical assessment
of the relevance of each variable43. The larger the value of the select-
ivity ratio, the more relevant the associated wavelength is considered
for prediction. Wavelengths with low selectivity ratios may therefore
be left out to improve the model performance. Consequently, the
selectivity ratios for each mineral were calculated and compared to
the corresponding IR spectra, which are shown in Figure 3. The
selectivity ratios correlate well with the corresponding spectra, thus
enabling the identification of the relevant wavelengths to be used by
the model for predicting each mineral species. For minerals with a
unique absorption feature like the sharp –OH interlayer vibrations of
the kaolinite species or the CO3

22 vibrations of the carbonate miner-
als, one would readily expect that the model focuses on such pro-
nounced spectral features for calibration. However, for the other
minerals with less distinct signatures these plots reveal excellent
insight on the wavelengths that are most relevant for each specific
mineral. It is crucial to note that the overall selectivity ratios for
orthoclase and dolomite are very low – max. 1.3 and 3.8, respectively,
which leads to the assumption that the predictive power for those
minerals will be moderate within the final calibration model even
after spectral region selection.

Figure 4 | Selectivity ratios including the whole spectral range (black) vs. new model with limited wavenumbers (red).
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Finally, the selectivity ratios for each mineral were added up, and a
threshold of 1 was selected as a limit for the wavelengths to be
included into further modelling (Figure 4). A significant spectral
region was excluded from establishing the final calibration model
(i.e., the spectral range from 3500 to 1700 cm21 along with several
wavenumbers within the remaining regions).

Using this strategy of spectral region selection, a new calibration
model was established, as summarized in Table 1. The root mean
square error of calibration (RMSEC) indicates how well the estab-
lished model fits the data set, whereas the root mean square error of
cross validation (RMSECV) indicates how well the model predicts
samples that were not included during the model development. As
expected from the low selectivity ratios, the regression quality of
orthoclase and dolomite are moderate with a coefficient of deter-
mination of 0.857 and 0.927, respectively.

In their work on a chemometric analysis of mineral constituents on
simulated oil shales, Palayangoda and Ngyuen used a PCR model to
quantify the main components and obtained RMSEC and R2 values
ranging from 0.574–1.501 wt% and 0.977–0.991 respectively24.
However, their analysis included only five components and the
minerals used for calibration modelling were not revised on
impurities.

Given that the mineral standards from which the regression model
was calculated were of natural origin and contained impurities along
with overlapping spectral features, the coefficients of determination
(R2) ranging from 0.857 to 0.994 are highly satisfying.

However, even after spectral region selection the shale spectra still
contain residuals that are not fully explained by the calibration

model, as can be inferred from Figure 5. The Q residuals indicate
the residual between the sample and its projection into the latent
variable space. The Q residuals of all shale samples are outside the
95% confidence limit. Consequently and importantly, it is shown
herein that a model established based on almost pure mineral sam-
ples may only describe details of a complex real-world matrix such as
shales to a certain extent. The root mean square error of prediction
(RMSEP) for the validation and the shale set are summarized in
Table 1.

The calculated regression functions along with the validation data
set and the shale data are shown in Figure 6.

The wt% for the prediction of the IR-ATR measurements com-
pared to the initial weight is given in Table 2. Evidently, the initial
weight does not sum up to 100 wt% for all validation samples, as only
the eight minerals of interest were considered. In turn, few predic-
tions resulted in negative wt% values (e.g., a dolomite content of
27% was predicted for sample Val.-6). Negative predictions were
predominant for dolomite resulting from the limitations of the cal-
ibration model even after spectral region selection, were therefore set
to 0 wt%. For the remaining samples within the validation data set
the established calibration model yields satisfying results that are in
agreement with the specified weight. The finally obtained results of
the IR-ATR studies are summarized in Table 2.

Discussion
Noteworthy is the prediction error for illite and smectites within the
natural shale samples. While the illite content throughout all shale
samples is over predicted, the results for smectite with the exception

Figure 5 | Hotelling T2 vs Q Residuals plot. Calibration set (black dots), shale set (red triangles) and confidence limit (blue dashed line).

Table 1 | Calibration statistics for each mineral component

[wt%] RMSEC RMSECV R2 RMSEP - Validation RMSEP - Shale

Quartz 2.2 2.7 0.979 4.0 5.7
Illite 2.0 2.3 0.986 2.5 17.2
Montmorillonite 2.3 3.0 0.982 3.6 14.6
Kaolinite 1.2 1.4 0.962 1.7 2.3
Albite 0.9 1.1 0.984 1.2 3.1
Orthoclase 1.9 2.2 0.857 1.9 4.0
Calcite 1.0 1.3 0.994 1.8 2.4
Dolomite 1.6 1.9 0.927 4.3 4.0
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of group A and D are under predicted, although the prediction error
of illite and montmorillonite content in the validation set was at 2.5
and 3.6 wt%, respectively. Similar issues were experienced by
Kaufhold et al. (2012)13. Based on 57 reference materials, manual

pattern addition of the respective IR spectra was used to quantify
the mineralogical composition of real world bentonites and clays.
Due to the similarity of the illite and smectite IR spectra, the sum of
both minerals was determined instead of the individual content.

Figure 6 | Regression lines calculated by the PLS model.
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Their established method overestimated the content of the illite1s-
mectite and it was presumed that using illite/smectite mixed layer
minerals for calibration, instead of the pure smectite or illite, should
yield better results. A possible influence of mixed layer illite1smec-
tite could not be investigated, as no illite/smectite mixed layer miner-
als were available for calibration in the present study. As the most
abundant representative of the smectite minerals, montmorillonite
was used for calibration purposes44. However, montmorillonite is not
necessarily the only smectite occurring within the studied shale sam-
ples, and since spectral differences between different smectites are
existing (e.g., Fe-related vibrations in nontronite45) an influence of
different smectite minerals cannot be excluded. However, it is antici-
pated that larger calibration data sets combining neat mineral sam-
ples (without impurities) and synthetic mixtures more closely
resembling the variance of natural shale samples along with
improved chemometric algorithms will assist minimizing these
effects in future. Nonetheless, satisfactory results were achieved for
most of the minerals, thus demonstrating the potential and utility of
the developed methodology for the direct analysis of shales via IR-
ATR spectroscopy and multivariate data analysis.

Using IR-ATR spectra, a multivariate calibration model for direct
mineral composition identification was developed from 30 pure
mineral mixtures facilitating the simultaneous quantification of 8
different minerals. After validation, the model was then applied to

predict the composition of 11 natural shale samples providing data in
excellent agreement with associated XRD studies. Recent achievements
by Washburn et al.27 combining ATR-FTIR and multivariate analysis,
show that the combination of IR-ATR spectroscopy as a direct analyt-
ical technique requiring only little sample preparation combined with
multivariate data analysis offers a rapid and less destructive methodo-
logy for the analysis OF ORGANIC CONSTITUENTS of shale rocks.
As the general rock composition and properties play a crucial role in
determining the economic viability of shales in terms of their content
in gas and/or oil that may be harvested from such composites, the
presented methodology provides an interesting strategy for the rapid
assessment of mineral constituents.

Methods
Materials and reagents. A series of natural reference minerals were used in this study
for calibration purposes, and for mineral quantification in shales. However, even the
reference minerals were contaminated with impurities (i.e., other minerals), which
had to be considered when developing the calibration model. The following minerals
with provided purity in brackets were studied: calcite (89%), kaolinite (96%),
dolomite (95%), quartz (99%), orthoclase (73%), montmorillonite (89%), albite (98%)
and illite (,72%). Since montmorillonite was used to establish the calibration model,
the term montmorillonite is used whenever an unambiguous assignment of the
mineral is possible; smectite is used, if the assignment is not unambiguous. All
reference materials were obtained from Sibelco Australia, Ward’s Natural Science
(Illinois) and Worker Ceramics Australia and used as purchased. A total of 11 natural

Table 2 | Comparison between the initial weight [I.W.] or XRD results and the results of the infrared [IR] prediction, respectively. The results of
the IR prediction are given as mean 6 standard deviation

Sample [wt%] Quartz Illite
Montmorillonite/

Smectite Kaolinite Albite Orthoclase Calcite Dolomite

Val.-1 IR 51.8 6 2.6 25.4 6 0.8 2.4 6 0.3 12.2 6 0.9 7.4 6 0.9 2.3 6 1.1 0.7 6 0.2 0.0 6 0.6
I.W. 55.5 24.4 0.0 14.0 6.1 0.0 0.0 0.0

Val.-2 IR 25.0 6 1.3 0 6 0.8 54.7 6 0.6 12.0 6 1.0 10.9 6 0.6 0.3 6 1.0 0.0 6 0.2 0.0 6 1.8
I.W. 28.2 0.8 47.9 10.6 11.5 0.0 0.0 0.0

Val.-3 IR 44.2 6 2.5 37.6 6 0.2 6.4 6 0.5 1.0 6 0.6 6.7 6 0.2 0.4 6 0.5 4.8 6 0.3 0.0 6 1.7
I.W. 49.0 36.0 2.8 0.0 7.1 0.0 4.5 0.1

Val.-4 IR 36.9 6 0.5 49.7 6 1.3 4.3 6 0.4 0.2 6 0.4 2.8 6 0.2 4.8 6 1.5 0.7 6 0.2 0.4 6 0.3
I.W. 42.2 51.7 0.0 0.0 2.7 3.4 0.0 0.0

Val.-5 IR 28.7 6 0.3 35.7 6 0.7 10.1 6 1.2 2.6 6 0.2 14.7 6 0.2 3.6 6 1.0 0.1 6 0.1 4.1 6 0.1
I.W. 28.8 32.6 8.9 2.4 16.5 5.4 0.2 4.9

Val.-6 IR 32.1 6 0.5 0.0 6 0.5 22.9 6 0.7 6.6 6 0.4 1.8 6 0.6 0.1 6 1.0 39.8 6 0.8 0.0 6 0.9
I.W. 26.0 0.4 26.7 4.8 1.5 0.0 35.6 0.8

Val.-7 IR 37.7 6 0.7 10.5 6 0.7 0.3 6 0.1 9.3 6 0.2 4.6 6 0.6 9.9 6 0.8 13.2 6 0.4 11.4 6 0.4
I.W. 39.0 8.2 0.0 14.3 2.5 11.2 13.6 10.0

Val.-8 IR 6.3 6 0.3 18.5 6 0.6 16.8 6 0.4 0.1 6 0.2 20.0 6 0.4 3.0 6 0.9 25.2 6 1.1 7.0 6 1.1
I.W. 6.6 14.5 17.7 0.0 20.5 0.0 22.8 15.0

A-1 IR 29.1 6 0.4 50.3 6 1.0 7.1 6 0.9 0.3 6 0.4 4.6 6 0.6 3.0 6 1.0 6.6 6 0.2 0.0 6 0.0
XRD 28.0 50.1 2.9 0.0 7.0 0.0 5.0 1.0

A-2 IR 25.3 6 0.8 54.0 6 1.3 5.2 6 0.5 0.4 6 0.4 3.4 6 0.4 3.0 6 1.2 8.8 6 0.4 0.1 6 0.2
XRD 28.0 50.1 2.9 0.0 7.0 0.0 5.0 1.0

A-3 IR 24.8 6 0.3 53.7 6 1.5 6.3 6 2.2 0.0 6 0.0 4.6 6 0.3 3.0 6 1.7 6.3 6 0.2 0.8 6 0.7
XRD 27.0 52.2 2.8 0.0 6.0 0.0 9.0 1.0

B-1 IR 10.3 6 2.0 37.5 6 1.9 18.7 6 1.2 6.6 6 0.4 9.6 6 0.8 9.5 6 0.9 0.7 6 0.4 6.6 6 0.3
XRD 19.0 1.0 54.0 1.0 9.0 4.0 0.0 0.0

B-2 IR 26.5 6 0.3 33.0 6 1.3 18.4 6 0.4 2.5 6 0.2 5.2 6 1.4 7.2 6 0.4 0.5 6 0.3 6.2 6 0.4
XRD 32.0 1.0 50.0 4.0 7.0 4.0 0.0 0.0

C-1 IR 23.4 6 0.9 41.8 6 0.7 19.1 6 1.4 2.5 6 0.3 5.3 6 0.5 0.5 6 0.7 4.8 6 0.2 1.6 6 1.2
XRD 29.0 30.0 19.0 4.6 8.1 3.7 1.5 1.0

D-1 IR 10.7 6 1.5 44.5 6 2.6 5.2 6 0.5 0.4 6 0.3 3.2 6 1.1 10.7 6 1.0 4.4 6 0.5 20.6 6 0.8
XRD 14.0 41.0 0.0 0.0 0.0 5.0 0.0 29.0

E-1 IR 31.6 6 1.4 39.5 6 0.8 5.9 6 0.5 0.6 6 0.6 11.4 6 0.4 7.6 6 1.1 1.3 6 0.3 1.9 6 1.3
XRD 35.0 30.2 4.8 0.0 18.0 3.0 0.0 0.0

E-2 IR 29.8 6 0.4 42.0 6 1.2 3.7 6 0.8 11.3 6 0.8 5.4 6 0.1 5.3 6 2.4 1.7 6 0.2 0.6 6 0.7
XRD 36.0 29.9 7.1 14.0 6.0 2.0 1.0 0.0

E-3 IR 23.4 6 1.3 46.5 6 0.6 3.9 6 0.8 17.1 6 0.7 6.5 6 0.3 0.7 6 0.5 1.3 6 0.4 0.6 6 0.5
XRD 28.0 31.0 7.0 17.0 9.0 0.0 0.0 1.0

E-4 IR 20.7 6 1.1 43.6 6 1.6 5.5 6 1.4 13.5 6 1.1 7.5 6 0.8 4.3 6 0.2 1.5 6 0.6 3.1 6 0.9
XRD 31.0 28.4 6.6 16.0 10.0 0.0 0.0 1.0
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shale rock samples collected at 5 different locations were also analyzed and labelled as
sample A to E, respectively.

Instrumentation. IR-ATR measurements were collected using a Bruker Alpha FTIR
spectrometer (Bruker Optics GmbH, Ettlingen, Germany) equipped with a
deuterated triglycine sulfate (DTGS) detector. The Alpha-P ATR accessory is
equipped with a single-reflection diamond ATR hemisphere and a spring-loaded
mechanical press for compacting solid samples at the ATR waveguide surface with
uniform and reproducible pressure. Data were recorded in the MIR spectral range
from 4000–375 cm21 at a spectral resolution of 2 cm21. 200 scans were averaged for
background and sample spectra, respectively. All experiments were performed at
ambient conditions (T 5 21 6 1uC).

XRD measurements were collected using a PANalytical X’Pert Pro multipurpose
X-ray diffractometer using Fe filtered Co Ka radiation, 1/4u divergence slit, 1/2u
antiscatter slit and X’Celerator Si strip detector. Details of the acquisition procedure
are given in Delle Piane et al.46 Quantitative analysis was performed on the XRD data
using the commercial software package SIROQUANT from Sietronics Pty Ltd.

Sample preparation. For establishing calibration and validation samples, the
obtained reference minerals were mixed at different compositions, homogenized for
10 min using an agate mortar and pestle, as too extensive grinding can cause
amorphization or particle size related shifts in the IR spectra13,47. In total, 30 different
mixtures were prepared for establishing the calibration model. The calibration
samples were prepared to match the mineral content usually found within natural
shale samples. The compositional range of the minerals used for preparing the
calibration samples was as follows: quartz (10–55 wt%), illite (0–55 wt%),
montmorillonite (0–60 wt%), kaolinite (0–15 wt%), albite (0–25 wt%), orthoclase
(0–15 wt%), calcite (0–55 wt%) and dolomite (0–20 wt%).

In addition, eight mixtures were prepared as model validation samples, and 11
natural shale samples were prepared as real-world examples analysed at the same
conditions. Prior to any solid sample deposition, the surface of the diamond ATR
waveguide was cleaned by soaking with acetone and wiped using lens-cleaning tissues
(Whatman International Ltd., Maidstone, England). Prior to recording background
spectra, acetone was allowed to evaporate for at least 15 min. For each measurement,
approx. 100 mg of solid dry sample was firmly pressed against the waveguide surface.
Each sample spectrum was independently recorded three times to ensure repro-
ducibility of the measurement procedure.

For XRD measurements of the shale rocks, bulk samples were pre-ground for 15
seconds in a tungsten carbide mechanical mill, and passed through a 0.5 mm sieve. A
1 g sub-sample was further ground for 10 minutes in a McCrone micronizing mill
under ethanol. The resulting slurry was oven dried at 60uC, and then thoroughly
mixed in an agate mortar and pestle before being lightly pressed into stainless steel
sample holders for X-ray diffraction analysis (see details in Delle Piane et al.46).

Multivariate calibration and data analysis. The obtained IR spectral data was pre-
processed using the software package OPUS (Bruker Optics GmbH, Ettlingen,
Germany). Atmospheric compensation for reducing the influence of CO2 and H2O
absorption bands, and baseline correction was applied to every recorded spectrum
prior to multivariate analysis. The multivariate analysis was performed using the PLS
toolbox (Eigenvector Research, Wenatchee, WA, USA) for MatLab (MathWorks Inc.,
Natick, MA, USA) using the entire spectral range from 4000–375 cm21. A linear
regression model was established using partial least squares (PLS) with the SIMPLS
algorithm based on 8 latent variables using 90 calibration spectra. Prior to evaluating
natural shales based on this model, the quality of the model was tested using the
validation sample set.
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