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Snapshotting quantumdynamics atmultiple
time points

Pengfei Wang 1,2,9, Hyukjoon Kwon 3,9 , Chun-Yang Luan 2,4,5,9,
Wentao Chen2, Mu Qiao2, Zinan Zhou2, Kaizhao Wang2, M. S. Kim 3,6 &
Kihwan Kim 1,2,7,8

Measurement-induced state disturbance is a major challenge in obtaining
quantum statistics at multiple time points. We propose a method to extract
dynamic information from a quantum system at intermediate time points,
namely snapshotting quantum dynamics. To this end, we apply classical post-
processing after performing the ancilla-assisted measurements to cancel out
the impact of the measurements at each time point. Based on this, we
reconstruct a multi-time quasi-probability distribution (QPD) that correctly
recovers the probability distributions at the respective time points. Our
approach can also be applied to simultaneously extract exponentially many
correlation functions with various time-orderings. We provide a proof-of-
principle experimental demonstration of the proposed protocol using a dual-
species trapped-ion system by employing 171Yb+ and 138Ba+ ions as the system
and the ancilla, respectively. Multi-time measurements are performed by
repeated initialization and detection of the ancilla state without directly
measuring the system state. The two- and three-time QPDs and correlation
functions are reconstructed reliably from the experiment, negativity and
complex values in the QPDs clearly indicate a contribution of the quantum
coherence throughout dynamics.

A striking difference between quantum mechanics and classical
mechanics arises from understanding the measurements. In quantum
mechanics, the uncertainty principle asserts that it is impossible to
define a joint probability distribution of statistical properties of non-
commuting variables, thus prohibiting a description of quantum
physics using classical probability theory. This leads to the introduc-
tion of quasi-probability distributions (QPDs), a prototypical example
of which is the Wigner function1 describing quantum phase space.
Another important class of QPDs is the Kirkwood-Dirac (KD)
distribution2–4, which can be applied to any two incompatible sets of

measurement operators. The nonclassical features in these QPDs,
characterized by negative1,5 or even non-real values2,3, have been
investigated within the realms of quantum foundations6,7, closely
connected to quantum contextuality8–13, and recently recognized as a
resource in quantum computing14–19 and quantum metrology20–23.

The same principle is applied when performing sequential mea-
surements during the evolution of a quantum state. The double-slit
experiment serves as an illustration of this phenomenon: attempting
to extract path information causes the final interference patterns to
disappear. Consequently, one cannot obtain a classical joint
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probability distribution that simultaneously describes both the which-
path information and the final position of the particle. The absence of
the classical probability description of quantummechanical processes
gives rise to the nonclassicality of temporal correlation described by
the Leggett-Garg inequality7 and the no-go theorem for defining work
observables in quantum thermodynamics24. Meanwhile, with recent
advances in quantum information science, there has been an increas-
ing demand to study multi-time quantum statistics to explore exotic
features of quantum dynamics, such as information spreading
throughout quantum dynamics25,26. Recently, it has also been shown
that monitoring the dynamics of a quantum system at multiple time
points can witness entanglement27.

On the other hand, a major challenge arises when attempting to
access these quantum correlations over time in experiments. As
observed from the double-slit experiment, direct measurements per-
formedon a quantum state wash out quantumcoherences so that they
can no longer contribute to the subsequent dynamics. The destructive
and irreversible effect ofmeasurements on a quantumsystem raises an
ongoing question: Is it possible to extract information about the sys-
tem at intermediate points in time throughout quantum dynamics
while minimizing the impact of the measurement on subsequent
events? The most widely adopted method is the use of weak
measurements28–33 (see refs. 34–39 for experimental realizations) to
gain little information with little disturbance of the system40–42. Over
the years, various quantum measurement schemes31,32,43 beyond weak
measurement have been proposed to extract temporal quantum cor-
relation functions. Alternative approaches have also been explored,
including those utilizing long-time entanglement between the system
and the ancilla44–47, as well as methods involving multiple copies of
quantum states for each trial24,48,49.

In this work, we propose a method to simultaneously extract
multiple types of quantum system’s dynamical information through
ancilla-assisted measurements at intermediate time points, which we
term snapshotting quantum dynamics (see Fig. 1). The key idea is to
cancel out the impact of the measurements via classical post-
processing of the outcomes, which enables us to obtain multi-time
QPDs as well as both time-ordered and out-of-time-ordered quantum
correlation functions. We experimentally demonstrate the proposed
method in a 171Yb+-138Ba+ trapped-ion system by reconstructing QPD
and quantum correlation functions with the full contribution of
coherence up to three time points.

Results
QPD for multiple time points
Suppose a quantum state is ρti

at ti and evolves in time. The quantum
state at a certain time tj can be expressed as

ρtj
=N ti!tj

ðρti
Þ, ð1Þ

where N ti!tj
is a completely positive trace-preserving quantum

channel describing the evolution from time ti to tj. To obtain the
information of the quantum state at time ti, one may perform
measurements given by a set of projection operators Πxi

= ∣xi

�
xi

�
∣

satisfying
P

xi
Πxi

=1, which leads to the outcome distribution of xi at
time ti, pðxi; tiÞ=Tr½ρti

Πxi
�. After the measurement is performed, the

state collapses to ∣xi

�
xi

�
∣. Such a projective measurement incurs a

critical issue when obtaining quantum statistics for more than two
sequential time points. For example, the joint distribution of outcomes
by performing projective measurements at times t1 and t2 can be
written as pproj:ðx1, x2; t1, t2Þ=pðx1; t1ÞTr½N t1!t2

ð∣x1ihx1∣ÞΠx2
�. However,

the marginal distribution at time t2 was obtained from the joint
distribution pproj.(x1, x2; t1, t2) does not match the statistics without the
measurement at time t1, i.e.,

P
x1
pproj:ðx1, x2; t1, t2Þ≠pðx2; t2Þ. This

invokes the so-called measurement problem that the wave-function
collapse induced by the measurement cannot be explained as a direct

consequence of the Schrödinger equation50–52. Consequently, the joint
distribution of projectivemeasurement outcomes becomes unsuitable
for providing a complete description of quantum dynamics.

To address such a problem, one can introduce an alternative two-
time joint distribution,

pðx1, x2; t1, t2Þ �Tr½N t1!t2
ðρt1

Πx1
ÞΠx2

�
= Tr½ðMx2

�N t1!t2
�Mx1

Þðρt1
Þ�, ð2Þ

where MxðρÞ � ρΠx . We note that p(x1, x2; t1, t2) is well-normalized,P
x1 , x2

pðx1, x2; t1, t2Þ= 1, and correctly indicates the marginal distribu-
tion,

P
x1
pðx1, x2; t1, t2Þ=pðx2; t2Þ. However, p(x1, x2; t1, t2) can have

complex values, i.e., being a QPD, and can be understood as the KD
distribution2,3 of the two different measurement operators Πx1

and
N y

t1!t2
ðΠx2

Þ53. Such a distribution has been recently rediscovered to
provide a usefulmathematical formalism to explore the concept ofwork
and the fluctuation theorems in quantum thermodynamics24,47,53–58.

The QPD based on the KD distribution was also generalized to
multiple-time points23,54. In this paper, we define N-time QPD as

p x1, x2, � � � , xN ; t1, t2, � � � , tN
� �

� Tr ðMxN
�N tN�1!tN

� � � � �Mx2
�N t1!t2

�Mx1
Þðρt1

Þ
h i

:
ð3Þ

When the quantum state at each time point commutes with the mea-
surement operator, i.e., ½ρti

,Πxi
�=0 for all ti, the distribution coincides

with the classical joint distribution obtained from sequential projective
measurements. Consequently, nonclassical values, i.e., negative or non-
real values in theQPD, capture the coherenceof the systemstatewithin
the measurement basis by witnessing the non-commutativity between
the state and the measurement operator (see, e.g., refs. 11–13,59 for
more detailed analysis). Throughout the manuscript, we will also use
the simplified notation p(x1, x2, ⋯ , xN) = p(x1, x2, ⋯ , xN; t1, t2, ⋯ , tN)
when the time sequence is trivial from the context.

An important property of the N-time QPD is that it correctly
reproduces marginal distributions, satisfying

X
xk

pðx1, � � � , xNÞ=pðx1, � � � , xk�1, xk + 1, � � � , xNÞ ð4Þ

for any k = 1, 2,⋯ ,N, where pð� � � , xk�1, xk + 1, � � � Þ � Tr½ð� � � �Mxk + 1
�

N tk�1!tk + 1
�Mxk�1

� � � � Þðρt1
Þ� is a joint QPD without performing a

measurement Mtk
at time tk. This is known as the Kolmogorov con-

sistency condition in classical probability theory60. In other words, the
N-time QPD incorporates all the information from the k-time QPDs
pðxi1 , xi2

, � � � , xik
; ti1 , ti2 , � � � , tik Þ for any sub-time sequences with

1 ≤ i1< i2< ⋯ < ik≤N. In particular, the marginal distribution of the
QPD at a single time ti, p(xi), becomes real and non-negative, correctly
indicating the probability distribution of themeasurement outcome xi
at time ti.

We also note that theN-timeQPD cannot simply be expressed as a
product of two-time QPDs, since it does not obey the Markov chain
property60, i.e., p(x1, ⋯ , xN) ≠ p(xN∣xN−1) ⋯ p(x2∣x1)p(x1) with
pðxk jxk�1Þ= pðxk�1 , xk Þ

pðxk�1Þ . We highlight that the quantum channel N tk!tk + 1
for each time interval is Markovian, hence the non-Markovianity arises
from the effect of Mxk

.

Snapshotting quantum dynamics
The primary challenge in dealing with QPDs is that experimental
reconstruction is not straightforward due to the presence of negative
or non-real values. For the N-time QPD defined in Eq. (3), this stems
from the fact that Mxi

ðρti
Þ= ρti

Πxi
at each time, ti is a non-physical

process that does not yield a Hermitianmatrix. Our key observation to
overcome this issue is that Mx can be alternatively expressed as a
weighted sumofKmðρÞ � KmρK

y
m =pKðmÞρK

m, which canbe interpreted
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as the result of a generalized measurement with outcome m61. The
probability of the outcome is given by pKðmÞ=Tr½KmðρÞ�=Tr½ρKy

mKm�,
and the state after the measurement becomes ρK

m = KmρK
y
m

pKðmÞ . The mea-
surement operators compose a set of Kraus operators {Km}, satisfy-
ing

P
mK

y
mKm =1.

More explicitly, we aim to prove the following expression,

MxðρÞ=
X
m

γxmKmðρÞ, ð5Þ

t1 t2 t3 tN

Classical 
post-processing

Ancilla-assisted 
measurement

System’s time 
evolution

Observed trajectories
( 1, 2, 3, … , )

N-time QPD: 
( 1, 2, 3, … , )

Quantum 
correlation functions

t1

t2

t3

tN

Marginal
distributions

Time-ordered 
correlation functions

( 1, 2, … , )

Out-of-time ordered
correlation functions

( 2, … , , 1)

……

1,… , , , … , +1

……
( , … , 2, 1)

11 2 3

……

…

Fig. 1 | Schematic procedure for snapshottingquantumdynamics.Various types
of information on quantum dynamics are obtained simultaneously through clas-
sical post-processing of the intermediate measurement outcomes. These include

the multi-time quasi-probability distribution (QPD) with the correct marginal
probabilities at the respective time points, as well as both time-ordered and out-of-
time-ordered correlation functions.
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with complex-valued coefficients γxm. The complex coefficients can be
implemented via classical post-processing by weighting the measure-
ment outcomes differently, which will be discussed in more detail. For
example, the projection onto the computational basis of a qubit
system, Πx = ∣xi xh ∣ with x =0, 1, can be decomposed into

ρΠx =
ρ� ZρZ +4ΠxρΠx � ið�1ÞxSρSy + ið�1ÞxSyρS

4
, ð6Þ

where S= ∣0i 0h ∣+ i∣1i 1h ∣ is the phase gate. We further note that any
Kraus operators can be realized by ancilla-assisted measurements61.
For the qubit case in Eq. (6), the CNOT gate between the system
and the ancilla followed by the ancilla measurement in the x-, y-, and
z-bases leads to the set of Kraus operators, fKmg=
Π0ffiffi
3

p , Π1ffiffi
3

p , Syffiffi
6

p , Sffiffi
6

p , 1ffiffi
6

p , Zffiffi
6

p
n o

(see Fig. 2(a)).
This observation can be further generalized to any d-dimensional

quantum system as follows:

Theorem 1. For any set of projectors fΠxgd�1
x =0 acting on ad-dimensional

quantum state ρ, one can always construct a set of Kraus operators
{Km} from ancilla-assisted measurement and find coefficients γxm
satisfying Eq. (5). The Kraus operators are determined by the infor-
mationally complete measurement on a d-dimensional ancilla state
after its interaction with the system.

The proof of Theorem 1 with more details can be found in
Methods.

Now, we introduce a protocol for snapshotting quantum dynam-
ics via intermediatemeasurements. As an illustrative example,we show
that the two-timeQPDp(x1, x2; t1, t2) can be obtained by ancilla-assisted
measurements at times t1 and t2 as follows. At time t1, we interact the
state ρt1

with the ancilla and measure the ancilla state. For the ancilla

state’s outcomem1, the system state is updated to ρK
t1
ðm1Þ=

Km1
ðρt1

Þ
pK
t1
ðm1Þ

with

probability pK
t1
ðm1Þ=Tr½Km1

ðρt1
Þ�. Subsequently, the system evolves to

ρK
t2
ðm1Þ=N t1!t2

ðρK
t1
ðm1ÞÞ from time t1 to t2. We then perform the sec-

ondmeasurement at time t2.When the outcome ism2, the system state

is updated to ρK
t2
ðm1,m2Þ=

Km2
ðρK

t2
ðm1ÞÞ

pK
t2
ðm2 jm1Þ

with conditional probability

pK
t2
ðm2jm1Þ=Tr½Km2

ðρK
t2
ðm1ÞÞ� for a given first measurement outcome

m1. The joint probability of the sequential measurement outcome
(m1, m2) becomes pKðm1,m2Þ=pK

t1
ðm1ÞpK

t2
ðm2jm1Þ=Tr½ðKm2

�N t1!t2
�

Km1
Þðρt1

Þ�. We note that this joint probability is a classical probability

distribution that can be obtained directly from the outcome statistics.

We emphasize that the QPD p(x1, x2) and the classical joint
distribution pKðm1,m2Þ are linked through Eq. (5) in the form of
pðx1, x2Þ=

P
m1 ,m2

γx1m1
γx2m2

pKðm1,m2Þ. Therefore once the prob-
ability distribution pKðm1,m2Þ is obtained from the measurement
outcomes, p(x1, x2) can be reconstructed via classical post-
processing by the weighted sum of these probabilities.

As shown in Fig. 2(b), it is straightforward to repeat this protocol
formultiple time points,which leads to the following expression of the
N-time QPD:

pðx1, � � � , xNÞ=
X

m1 , ��� ,mN

pKðm1, � � � ,mNÞ
YN
i = 1

γximi

" #
=E

YN
i= 1

γximi

" #
,

ð7Þ

where E½�� denotes averaging over all possible sequential measure-
mentoutcomes (m1,⋯ ,mN), whichcanbeunderstood as theobserved
trajectories of the quantum dynamics following the distribu-
tion pKðm1, � � � ,mNÞ=Tr½ðKmN

�N tN�1!tN
� � � � �N t1!t2

�Km1
Þðρt1

Þ�.
We note that the number of observed trajectories to be collected

to reconstruct quantum statistics p(x1, ⋯ , xN) is greater than that for
classical statistics pKðm1, � � � ,mNÞ with the same precision. More pre-
cisely, the number of trajectoriesMtraj to estimate p(x1,⋯ , xN) for each
time point within a fixed precision ϵ with probability 1 − δ scales as

Mtraj =
2ðmax

x,m
jγxmjÞ2N

ϵ lnð2=δÞ from Hoeffding’s inequality62. Our protocol
can also be applied to local projectors of multi-qubit systems with the
same sampling overhead. We also provide a systematic algorithm to
find the optimal coefficient γxm to reconstruct the joint probability
with the minimum number of measurement outcomes (see
“Methods”).

Our method shares an advantage with sequential weak
measurements32,37–39, requiring a short interaction time between the
system and the ancilla. However, the main difference lies in the ability
of our protocol to completely cancel out the measurement effect
through classical post-processing without approximating the system
state in the weakly interacting regime. The resource requirement of
the proposed protocol can be compared to other schemes for
obtaining the KD distribution, while explicit comparisons between
these protocols are challenging due to their different natures (see also
refs. 53,54 for an overview). Compared to the two-pointmeasurement-
based scheme43, which requires the measurement of multiple mea-
surement distributions to infer the KD distribution, our protocol only
requires a single measurement distribution pKðm1,m2Þ. The main dif-
ference compared to the weakmeasurement-based schemes31,32 is that

(b)

(a)

System

Ancilla
1

0 0

t1

2

0

t2 tN

……

|0 , |1⟩} |0 , |1 ⟩} |0 , |1 ⟩}
0

{Π0, Π1} { † , †} { , }System

Ancilla | | ⟩}

-basis -basis
| ⟩

-basis

( )

( )
1→ 2 2→ 3 −1→

Fig. 2 | Quantum circuit for ancilla-assisted measurement. a Ancilla-assisted
measurement for realizing Kraus operators. By performing z-, y- and x-basis mea-
surements on the ancilla, the system state is updated depending on the measure-
ment outcome. b The quantum circuit to obtain the QPD p(x1, ⋯ , xN) for a qubit

system.N tN�1!tN
describes the dynamics of the system from tN−1 to tN. The ancilla-

assistedmeasurement is performedateach time tiwith theoutcomemi. The system
state is updated toρK

tN
ðm1, � � � ,mN Þwhen themeasurementoutcomes read (m1,⋯ ,

mN), which happens with probability pKðm1, � � � ,mN Þ.
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ourprotocol does not need to implement aweak couplingbetween the
system and the ancilla to ensure that the system is undisturbed. While
the schemes63,64 entailing strong measurements for two-time points
share a similar structure with our protocol, our protocol provides a
straightforward multi-time generalization. Another scheme based on
characteristic function estimation44 requires classical post-processing
of the inverse Fourier transform, while our protocol has a relatively
simple post-processing with pre-determined coefficients γximi

. The
interference-based scheme47 requires overlapping measurement and
tomography of a quantum state on some occasions, both of which are
not required in our scheme. A recently proposed quantum circuit
model basedon theblock-encoding65 could have a lower sampling cost
than our protocol, but its application is limited to unitary dynamics
and requires the implementation of the inverse unitary channel.

Taking into account the physical constraints, our protocol has a
short time of system-ancilla coherence during ameasurement process
at each time, which has an advantage over interferometric schemes44,47

that require a long time of system-ancilla coherence throughout the
entire protocol. While applying measurements in sequential times
could also be a challenging task, it has been realized on various phy-
sical platforms37,49,66–69. We also note that such intermediate measure-
ment has been an active research area, as being an essential technique
for quantum information processing, such as syndrome detection for
quantum error correction61.

In the following section, we discuss that the classical post-
processing of the sequentialmeasurement outcomes leads to a unique
feature of our approach, which allows the simultaneous extraction of
exponentially many correlation functions.

Extraction of multi-time correlation functions
While the N-time QPD provides valuable information about the mar-
ginal distribution at each time, its utility can even go beyond that. We
demonstrate that correlation functions with different time orderings
can be obtained simultaneously from the N-time QPD. The quantum
correlation function of an observable A throughout unitary quantum
dynamics given by Uti!tj

is defined as

Cðt1, � � � , tNÞ � hAðt1Þ � � �AðtNÞi � Tr½ρt0
Aðt1Þ � � �AðtNÞ�, ð8Þ

where AðtiÞ=Uy
t0!ti

AUt0!ti
is an observable in the Heisenberg picture.

If the time sequence is given in increasing order, i.e., t1≤ t2≤⋯ ≤ tN, the
correlation function is called time-ordered, otherwise, it is called out-
of-time-ordered.

Using the eigenvalue decomposition of the observable,
A =∑xaxΠx, the time-ordered correlation function can be expressed in
terms of the QPD as

Cðt1, � � � , tNÞ=
X

x1 , ��� , xN

ax1
� � �axN

pðx1, � � � , xNÞ: ð9Þ

Furthermore, as the N-time QPD contains any k-time QPD with k≤N, all
lower-order correlation functions can also be obtained from
p(x1, ⋯ , xN). For example, one can simultaneously obtain a complete
set of time-ordered correlation functions {C(t1), C(t2), C(t3)},
fCðt1, t2Þ,Cðt2, t3Þ,Cðt1, t3Þg, and C(t1, t2, t3) from the three-time QPD
p(x1, x2, x3).

More surprisingly, the snapshotting method can be utilized to
obtain a family of out-of-time-ordered quantum correlation functions,
summarized by the following observation.

Observation 1. All correlation functions Cðtμ1
, . . . , tμj

, tμj + 1
, . . . , tμk

Þ
with μ1≤ μ2≤⋯ ≤ μj−1≤ μj and μj≥ μj+1≥⋯ ≥ μk−1 ≥ μk for some μj≤N can
be simultaneously deduced from the distribution of observed trajec-
tories pKðm1, � � � ,mNÞ.

This can be shown by expressing the correlation function as
Cðtμ1

, � � � , tμj
, � � � , tμk

Þ=Tr½Aðtμj + 1
Þ � � �Aðtμk

Þρt0
Aðtμ1

Þ � � �Aðtμj
Þ�, with

two monotonically increasing sub-time sequences tμ1
≤ tμ2

≤ � � � ≤ tμj

and tμk
≤ tμk�1

≤ � � � ≤ tμj + 1
. The correlation function is then expressed in

terms of pKðm1, � � � ,mNÞ by noting that ρti
A, Aρti

, and Aρti
A can be

simultaneously decomposed as a linear sum of Kmi
ðρti

Þ at each time ti
(see “Methods” for detailed discussions). We highlight that our
approach allows a systematic protocol to obtain both time-ordered
and out-of-time-ordered correlation functions from a single set of
measurement data pKðm1, � � � ,mNÞ, without changing the setting for
each correlation function. For example, in the three-time case, one can
additionally access the out-of-time-ordered correlation functions
C(t3, t2, t1), C(t2, t3, t1), and C(t1, t3, t2). The number of correlation
functions that can be obtained from the N-time distribution
pKðm1, � � � ,mNÞ scales exponentially as ≈ 2N, since there are two
choices for A(ti) to be placed either on the left or on the right sides of
the quantum state ρti

at each time ti. The out-of-time-ordered QPDs
can also be obtained in the same way by taking AðtiÞ=Πxi

ðtiÞ.
As a special case, we can obtain the OTOC throughout quantum

dynamics, which has been widely adopted as a quantifier of quantum
information scrambling throughout complex quantum dynamics25,26

and has recently been studied in the context of QPDs47,54,70. The OTOC
of a quantum system under unitary dynamics Uτ is defined as the
absolute square of the commutator between two operators V and W,

COTOC � h½W ðτÞ,V ð0Þ�y½W ðτÞ,V ð0Þ�i, ð10Þ

whereV(0) =V andW ðτÞ=Uy
τWUτ . Wenote that theOTOC is essentially

a linear sum of four-point functions containing both time-ordered and
out-of-time-ordered correlation functions. For example, if bothV andW
are Hermitian and unitary, COTOC = 2(1 − 〈W(τ)V(0)W(τ)V(0)〉). Even
though COTOC in Eq. (10) contains terms with reversed time ordering,
pKðm1,m2,m3Þ obtained from the three-time snapshotting method
enables us to evaluate its value described as follows (see “Methods”):

Observation 2. COTOC can be obtained from the sequential measure-
ment outcomes (m1, m2, m3) at three time points (t1, t2, t3) under the
unitary dynamics Ut1!t2

=Uτ and Ut2!t3
=Uy

τ as

COTOC =E
Y3
i= 1

γOTOCmi

" #
, ð11Þ

with the Kraus operator described in Theorem 1 and some complex
coefficients γOTOCmi

.
Compared to interference-based schemes for obtaining the

OTOC46–48,71,72, our scheme offers the advantage that an ancilla state is
required to remain coherent only for a short time during each ancilla-
assisted measurement. We highlight that the time-reversal unitary is
applied only once in our scheme. This can be contrasted with other
ancilla-assistedmeasurement schemes47,54,73,74, which possess the same
advantage as our scheme in ancilla coherence time but require two
time-reversals. On the other hand, the stability of the protocol against
imperfect implementations of the time-reversal unitary75,76 remains
open for quantitative comparison with an interference-based scheme
without time reversals47,48. While a similar approach utilizing classical
post-processing of generalized measurement outcomes was
studied73,74 for a qubit system under specific conditions V 2 =1=W 2,
our results hold for any diagonalizable operators V andW of a general
d-dimensional system. Another important difference is that our
scheme cancels the impact of the measurement at each time point via
classical post-processing, whereas in refs. 73,74, the latter measure-
ments undo the earlier measurements from the condition V2 =1 =W 2.
We also note that both OTOC and QPD can be obtained from the same
scheme in our approach without requiring the subcircuits proposed
in ref. 74.
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Experimental realization
We experimentally demonstrate the proposed protocol with trapped
ions. A crucial part of the protocol is the repeated measurement (ICD)
and initialization (ICI) of the ancilla without influencing the system77–81,
which are also core technologies for quantum error correction. In
trapped-ion systems, the ICD and ICI can be achieved by adopting ion
shuttling82–86 or multiple types of qubits79,87–94. Here, we employ two
different species trapped in a single trap, 171Yb+ and 138Ba+ ions92,95,96,
which are used for the system qubit and the ancilla qubit, respectively.
Both trapped ions are controlled by lasers with different wavelengths
so that they can be controlled independently with minimal influence
on each other92.

In the experiment, the system qubit is encoded in the hyperfine
levels of the S1/2 manifold of the 171Yb+ ion, ∣F =0,mF =0

�
= ∣0iYb and

∣F = 1,mF =0
�
= ∣1iYb with a splitting of 12.6428GHz. The ancilla qubit is

encoded in Zeeman levels of the S1/2 manifold of the 138Ba+ ion,
∣sj = 1=2

E
= ∣0iBa and ∣sj = � 1=2

E
= ∣1iBa with an energy splitting of

16.2MHz. Raman transitions are used to individually manipulate the
171Yb+ and 138Ba+ ion qubits with 355 nm and 532 nm lasers, respectively.
For the entangling operations for both qubits, we simultaneously
apply the 355 nm and 532 nm laser beams with appropriately chosen
frequencies (see Supplementary Fig. 1).

As a concrete example, we reconstruct the three-time QPDs fol-
lowing the quantum circuit of Fig. 2b. The initial state of the system
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Fig. 3 | Experimental reconstruction of the three-time QPD and marginal dis-
tribution by the ancilla-assistedmeasurement. a The system qubit’s evolution is
given by two successive rotations Ut1!t2

=RX ðθÞ and Ut2!t3
=RY ðθ2Þ with θ =0.74π.

Note that the measurements are performed at three time points t1, t2, and t3. b The
normalized observed trajectories from the measurements at times t1, t2, and t3 are
represented by the 2D bar charts, wherem1,m2 2 f∣0x

�
, ∣0y

E
, ∣0i, ∣1x

�
, ∣1y
E
, ∣1ig. The

bar charts on the left and right represent the observed trajectories ofm3 = ∣0i and
m3 = ∣1i, respectively, which are the measurement results of time t3. c The three-
time QPD p(x1, x2, x3) was reconstructed from the observed trajectories by classical

processing. (i) The left blue bars indicate the real parts of the reconstructed three-
time QPD, and the negativity of the real QPD is verified for p(x1 = 0, x2 = 1, x3 = 0) (in
the blue-line box), which is −0.123(± 0.060). (ii) The right red bars indicate the
imaginary parts of the reconstructed three-time QPD. d Themarginal distributions
for times t1, t2, and t3 under the unitary dynamics Ut1!t2

and Ut2!t3
show the

snapshotting of the state evolution. The distributions are marginalized over all the
other time points of the QPDs. For all figures, error bars indicate standard devia-
tions (STDs).
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qubit (171Yb+ ion) is prepared to ρYb = ð∣1x
�
1x
�

∣ÞYb, where ∣1x
�
Yb = ð∣0iYb �

∣1iYbÞ=
ffiffiffi
2

p
as described in Fig. 3a. At time t1, the first ancilla-assisted

measurement is performed. Then the systemevolves from t1 to t2 under
the unitary evolution Ut1!t2

=RX ðθÞ= e�i θ2X . At time t2, the second
ancilla-assisted measurement is conducted. From time t2 to t3, the
system evolves under the unitary evolution Ut2!t3

=RY ðθ2Þ= e�iθ
2
2 Y and

at time t3, the system is directly measured (see Methods for further
details).

The initial state and the time evolutions are chosen to illustrate
how measurements can influence the subsequent dynamics of a
quantum system and how the dynamics without the measurement
effects can be reconstructed by our protocol discussed in the theory
section. In particular, since the unitary evolution from time t1 to t2 is
a rotation around the x-axis, the system state remains the same if
no measurement is performed at time t1. However, when a measure-
ment is made on the z-basis, the state collapses to ∣0i or ∣1i and then
rotates under the evolution Ut1!t2

. From time t2 to t3, the unitary
evolution rotates the system qubit around the y-axis with angle θ2,
which leads to non-trivial behaviors of the QPDs and correlation
functions beyond sinusoidal functions of θ. The three-timeQPD is then
expressed as

pðx1, x2, x3Þ
=Tr Ut2!t3

Ut1!t2
ρt1

Πx1
Uy

t1!t2
Πx2

Uy
t2!t3

Πx3

h i
= h1x jx1i x1

�
∣eiðθ=2ÞX ∣x2

�
x2
�

∣eiðθ
2=2ÞY ∣x3

�
x3

�
∣e�iðθ2=2ÞY e�iðθ=2ÞX ∣1x

�
,

ð12Þ

where ρt1
= ρYb = ð∣1x

�
1x
�

∣ÞYb and Πx = jxihxj with x ∈ {0, 1} is an eigen-
projector of Z.

Figure 3 shows the experimental results for the above procedure.
The distribution of observed trajectories from three-time measure-
ments, pKðm1,m2,m3Þ, for the case of θ =0.74π is shown in Fig. 3b. At
times t1 and t2, we have themeasurement results in the x-, y- and z-basis
and only the z-basis measurement results for time t3. As shown in the
circuit of Fig. 2(b), x-, y- and z-basis measurements of the ancilla yield
six measurement outcomes, mi 2 f∣0x

�
, ∣1x

�
, ∣0y

E
, ∣1y
E
, ∣0i, ∣1ig. We

post-select the data with only dark state outcomes to avoid heating of
the vibrational modes (see Supplementary Fig. 6 for further details).
We repeat each measurement configuration 100 times, for a total of
3600 measurements.

From the distribution of observed trajectories in Fig. 3b, the three-
time QPDs p(x1, x2, x3) are reconstructed as shown in Fig. 3c. The quasi-
probability of p(x1 = 0, x2 = 0, x3 = 0), as an example, is obtained directly
from the relation of Eq. (7),

P
m1 ,m2,m3

γ0m1
γ0m2

γ0m3
pKðm1,m2,m3Þ,

where γ0m can be calculated from Eq. (6). In our actual reconstruction,
we perform an optimization procedure to obtain a proper γximi

for all

experimental data (see “Methods”). Some data points in Fig. 3c deviate
from the theoretical expectations bymore than one standard deviation.
This is because several observed trajectories shown in Fig. 3b deviate
from the ideal values. However, these deviations are mainly due to
technical imperfections rather than fundamental problems. We discuss
experimental limitations related to fluctuations of experimental control
parameters in the last section before the discussion section of the paper
(see Supplementary Note 3 for further details). Despite these deviations,
our experimental results reveal the essential features of theQPDs, which
are different fromclassical probability distributions. Classically, the joint
probabilities at multiple time points can only have positive values.
However, as shown inFig. 3c, thenegative value forp(x1 = 0, x2 = 1, x3 =0)
and the imaginary values are observed for most cases.

The three-time QPDs enable us to evaluate the correct probability
distribution of the system state during its unitary evolution. By taking
the marginals of the QPDs, we recover the probability distribution at
each point in time, which is not influenced by the previous measure-
ments. As shown in Fig. 3d, themeasurement results at times t1, t2, and
t3 are consistent with those distributions where no measurements
were performed before. The clear difference with and without pre-
viousmeasurements can be seen in the probability distribution at time
t3. If projective measurements were performed at time t1 or t2, the
distribution of the measurement results at time t3 should be 0.5 for
each basis, which is not the case, as shown in Fig. 3d.

We can obtain any combination of two-time QPDs from the three-
time QPDs and observe nonclassical features as shown in Fig. 4. The
two-time QPDs are straightforwardly obtained from the three-time
QPD by taking its marginals, pðx1, x2Þ=

P
x3
pðx1, x2, x3Þ,

pðx1, x3Þ=
P

x2
pðx1, x2, x3Þ, and pðx2, x3Þ=

P
x1
pðx1, x2, x3Þ. We note

that it is not always possible to do the reverse, that is, the recon-
struction of the three-time QPDs from two-time QPDs, even with all
possible combinations. Some data points in Fig. 4 deviate from the
ideal values by more than their standard deviations. Despite these
deviations, we observe imaginary and negative values in two-time
QPDs, as shown in Fig. 4, which indicate the coherenceof the statewith
respect to the measurement basis11–13,59.

Imaginaryandnegativevalues in two-timeQPDsare shown inFig. 4a,
b, andFig. 4b, c, respectively. For theunitary evolutionof the single-qubit
state, the occurrence of imaginary and negative values in two-time QPDs
can be understood from the relationship between the representation of
the quantum state and the rotation axis in the Bloch sphere when the
state contains coherence. For Ut1!t2

, the initial quantum state is repre-
sentedon the x-axis, and the rotation axis for the unitary evolution is also
aligned along the x-axis in the Bloch sphere. In this case, the QPDs reveal
imaginary values, as shown in Fig. 4a. ForUt2!t3

, the quantum state is on
the x-axis of the Bloch sphere, but the axis of rotation is along the y-axis,
perpendicular to the state. In this case, the QPDs reveal negative values,
as shown in Fig. 4c. Fig. 4b describes the process from time t1 to t3, which
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Fig. 4 | The two-timeQPDsobtained fromthe three-timeQPDs.The blue and red
bars indicate the real and imaginary parts of the QPDs. a The two-timeQPD p(x1, x2)
from the unitary evolution Ut1!t2

. b The two-time QPD p(x1, x3) from Ut1!t3
. c The

two-time QPD p(x2, x3) from Ut2!t3
. For all figures, the error bars indicate the STD,

and the theoretical expectations are shown as dashed bars (see Supplementary
Note 4 for details). We note that all the results here are derived directly from the
three-time QPD, rather than from a separate experiment.
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includes both parallel (time t1 to t2) and perpendicular (time t2 to t3)
relationships between the initial state and the rotation axis.

We also obtain quantum correlation functions from the observed
trajectories. For different values of θ, time-ordered three-time corre-
lation functions (Fig. 5d) and all combinations of two-time correlation
functions (Fig. 5c) are deduced from the three-time QPDs. We also
reconstruct out-of-time-ordered correlation functions based on
Observation 1. We present C(t3, t2, t1) with the reversed time-ordering
and C(t1, t3, t2) with an increasing-decreasing time-ordering in Fig. 5e, f,
respectively. The solid lines are from theoretical calculations, where
their explicit forms can be found in Supplementary Note 4. Although
certain data points exhibit deviations exceeding the error bars, the
overall trends observed in the data are generally consistent with the
theoretical predictions.

The majority of the experimental deviations stem from technical
imperfections in controlling experimental parameters rather than
fundamental issues in the underlying theoretical framework. Fluctua-
tions in the parameters of the Mølmer-Sørensen (M-S) gates are pri-
marily responsible for the observed experimental deviations. In
particular, more than 90% of the data points that deviate from theo-
retical predictions in Fig. 3b can be explained by fluctuations in the
rotation angle of the M-S gates and the relative phase between two
successive gates (see Supplementary Note 3). In the analysis, the
amounts of the fluctuations in rotation angle and relative phase are
required to be 0.03π (corresponding to 11.8% fluctuations) and 0.04π
(approximately 4.4% fluctuations), respectively. We investigate the
performance of theM-S gate using quantum process tomography, but
we highlight that this data is not used for obtaining the joint dis-
tribution. The relateddetails andother experimental imperfections are
discussed in Supplementary Note 3.

Figure 6 indicates the fidelity Fðp,pexp:Þ=
P

x3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx3Þpexp:ðx3Þ

p
between the theoretical distribution at time t3 without intermediate
measurements, pðx3Þ=Tr½ρt3

Πx3
�, and the marginal distribution of the

QPD, pexp:ðx3Þ=
P

x1 , x2
pexp:ðx1, x2, x3Þ, obtained from the experimental

data. The marginal distribution obtained experimentally at time t3 is
closer to the ideal distribution compared to the case when inter-
mediate projective measurements are performed at times t1 and t2.

Discussion
We have introduced a protocol named snapshotting to extract quan-
tum statistics at multiple times from ancilla-assisted measurements
and demonstrated it experimentally using the 171Yb+-138Ba+ trapped-ion
system. The key features of our approach are that the measurement
effect can be entirely canceledout through classical post-processingof
the ancillameasurementoutcomes and that themeasurement requires
only a short-time system-ancilla interaction at each immediate time
point. By snapshotting quantum dynamics, the QPD at multiple time
points and various types of quantum correlation functions can be
simultaneously obtained from a single distribution of observed
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Fig. 5 | The results of the two- and three-time correlation functions. Here, blue
and red colors indicate the real and the imaginary parts of the correlation functions,
respectively. Experimental data and theoretical expectations are shown asdots and
solid lines, respectively. The bands indicate the STD of the experimental data.

a–c The two-time correlation functions reconstructed from the three-time QPDs.
d The time-ordered three-time correlation function reconstructed from the three-
time QPDs. e, f C(t3, t2, t1) with the reversed time-ordering and C(t1, t3, t2) with an
increasing-decreasing time-ordering respectively.

θ/π

snapshotting protocol advantage

Fig. 6 | Fidelity between the distributions for the z-basis measurement at time
t3. The error bars represent the standard error of the mean. Red dots refer to the
fidelity between the marginal distribution from theory (p(x3)) and the experimen-
tally obtained three-time QPD (pexp:ðx3Þ=

P
x1 , x2

pexp:ðx1, x2, x3Þ). A fidelity of 1
refers to two distributions are equal. The blue line refers to the theoretical fidelity
between p(x3) and pproj.(x3) when projective measurements are performed at times
t1 and t2. The blue dots refer to the corresponding experimental result. The pink
shaded area indicates the advantage of the snapshotting protocol compared to
projective measurements.
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trajectories. We highlight that this method is applicable to any quan-
tum system and dynamics, serving as a valuable experimental tool for
exploring the quantum statistics of both open and closed quantum
systems.

The potential applications of the proposed protocol include
exploring quantumdynamics inmany-body physics. In principle, when
considering local observables, the number of samples required to
reconstruct QPDs and correlation functions does not scale with the
size of the system or the number of qubits. This property is promising
for obtaining various critical quantities based on correlation functions,
such as OTOC, in quantum many-body systems25,26. As the KD dis-
tribution itself has recently been recognized as an essential tool for
investigating information scrambling and quantum
thermodynamics47,53,54,70, its direct reconstruction from experimental
data will shed light on experimentally testing the nonclassical phe-
nomena arising from quantum dynamics.

Methods
Proof of Theorem 1
Let us consider a slightly more general scenario such that the opera-
tors A=

Pd�1
x =0 ax ∣xi xh ∣ and B=

Pd�1
x =0 bx ∣xi xh ∣ diagonal in the same

basis f∣xigd�1
x =0 are acting on the left and right sides of a d-dimensional

quantum state, respectively, given as

EB,AðρÞ=BρA=
X
m

γmðB,AÞKmðρÞ, ð13Þ

where KmðρÞ=KmρK
y
m. We note that A and B are not required to be

Hermitian. Theorem 1 in the main text to obtain the QPD
p(x1, x2, ⋯ , xN) is a special case with A=Πx = ∣xi xh ∣, B=1,
and γxm = γmð1,ΠxÞ.

We then construct a set of Kraus operators {Km} to satisfy the
condition in Eq. (13):

Proposition 1. For the operators A=
P

xax ∣xi xh ∣ and B=
P

xbx ∣xi xh ∣
diagonal in the same basis f∣xig, there always exists γm(B, A) satisfying
Eq. (13) for a set of Kraus operators {Km} with

Km =
Xd�1

x =0

hϕmjxiffiffiffi
α

p
� �

∣xi xh ∣, ð14Þ

where ∣ϕm

�
ϕm

�
∣

	 

is a set of informationally complete projectors and

satisfies
P

m∣ϕm

�
ϕm

�
∣=α1.

Proof. For the diagonal operators A =∑x axΠx and B =∑x bxΠx, let us
rewrite Eq. (13) as

EB,AðρÞ= BρA

=
Xd�1

y=0

byΠy

 !
ρ
Xd�1

x =0

axΠx

 !

=
Xd�1

x, y=0

axbyΠyρΠx

=
Xd�1

x, y=0

hxj
Xd�1

x0 , y0 =0

ax0by0 ∣x
0� y0
�

∣

 !
j yiΠyρΠx

=
Xd�1

x, y=0

hxjOðB,AÞjyiΠyρΠx ,

ð15Þ

where we define OðB,AÞ= Pd�1
x, y=0 axby ∣xi y

�
∣. We note that any

operator O can be expressed in terms of the informationally complete
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Fig. 7 | Experimental realization of unitary evolution and ancilla-assisted
measurement with 171Yb+-138Ba+ trapped-ion system. a For step (i), the unitary
operationUtj�1!tj

is performedby applying Raman laser beams to the system qubit

represented by the pink ball. Later, the ancilla-assisted measurement is realized
with the following three steps: (ii) initialization of the 138Ba+ qubit represented by
the blue ball to ∣0iBa by optical pumping (OPT), (iii) application of a CNOT gate
between two qubits through an entangling operation, and (iv) measurement of the

ancilla qubit withfluorescence detection (DET).bTheCNOTgate consists of anM-S
gate and four single-qubit rotations. The M-S gate can be described as
expð�i π4 X � X Þ, where X is the Pauli operator. The single-qubit rotation is defined

as Rðθ,ϕÞ= cosðθ2Þ �ie�iϕ sinðθ2Þ
�ieiϕ sinðθ2Þ cosðθ2Þ

� �
. c The final time measurement can be

performed by direct measurement in basis mN 2 f∣0i, ∣1ig on the system qubit.
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projectors f∣ϕm

�
ϕm

�
∣g as O=

P
mc

O
m∣ϕm

�
ϕm

�
∣ with some complex

coefficients cOm. This leads to an alternative expression

O ðB,AÞ=
X
m

cOðB,AÞm ∣ϕm

�
ϕm

�
∣: ð16Þ

By substituting this form into Eq. (15), we obtain

EB,AðρÞ

=
X
m

Xd�1

x, y=0

cOðB,AÞm hxjϕmihϕmjyiΠyρΠx

=
X
m

αcOðB,AÞm

Xd�1

y=0

hϕmjyiffiffiffi
α

p Πy

 !
ρ
Xd�1

x =0

Πx
hxjϕmiffiffiffi

α
p

 !

=
X
m

γmðB,AÞKmρK
y
m

=
X
m

γmðB,AÞKmðρÞ,

ð17Þ

where we take Km =
Pd�1

y=0
hϕmjyiffiffiffi

α
p Πy to satisfy the normalization condi-

tion
P

mK
y
mKm =1 and define γmðB,AÞ=αcOðB,AÞm .

To complete the proof of Theorem 1, we show that these Kraus
operators can be realizedby the ancilla-assistedmeasurements. To this
end, we introduce a d-dimensional ancilla state, initially prepared in
∣0iR. After applying the CSUM gate, a generalized CNOT gate,
UCSUM =

Pd�1
x, y=0 ∣x, x � y

�
x, y
�

∣ followed by the ancilla measurement
with respect to the set of informationally complete projectors
f∣ϕm

�
ϕm

�
∣g, the Kraus operators for each measurement outcome

become

Km =
Xd�1

x =0

hϕmjxiffiffiffi
α

p
� �

Πx =
ϕm

�
∣UCSUM∣0iRffiffiffi

α
p : ð18Þ

For ad-dimensional system, a set of informationally complete projectors
f∣ϕm

�
ϕm

�
∣g has at least d2 elements. For example, the measurement set

discussed in the main text, f∣ϕmig= f∣0i, ∣1i, ∣0yi, ∣1yi, ∣0xi, ∣1xig has 6
elements, which ismore than d2 = 4, thus being overcomplete. However,
this measurement set is easier to realize in experiments since all the
projectors are the eigenvalues of the Pauli matrices.

Theorem 1 can be extended to local operators A and B of a multi-
qudit system. This can be achieved by replacing Πx with
1� � � � � 1� Πx � 1� � � � � 1, where the projection is only applied to
the target qudit. Consequently, Km only acts on the target qubit while
maintaining the same form as in Eq. (18), ensuring that the corre-
sponding ancilla-assisted measurement requires only the interaction
between the ancilla state and the target qudit. Since the coefficient
γm(B, A) for the local operators A and B remains the same as in the
single-qudit case, the protocol does not scale with the size of the
system as long as A and B act on a single-qudit.

We also note that there can be various choices of weight vectors
γm(B, A) that satisfy Eq. (13) for a given set of Kraus operators {Km}.
In this case, the optimal choice would be to minimize jγðB,AÞjmax :

=maxmfjγmðB,AÞjg as the number of samples to collect for a fixed
precision scale with jγðB,AÞj2max from Hoeffding’s inequality62.
More precisely, the optimization problem can be formalized as
follows:

for given : A, B, fKmg ð19Þ

minimize : jγjmax = max
m

fjγmjg ð20Þ

subject to : B� AT =
X
m

γmKm � K *
m: ð21Þ

By vectorizing the density matrix ρ in Eq. (13), we note that Eq. (21) is
equivalent to the condition that Eq. (13) holds for any ρ.

For A=
Pd�1

x =0 ax ∣xi xh ∣ and B=
Pd�1

x =0 bx ∣xi xh ∣ and the measure-
ment operators described in Eq. (18), the condition in Eq. (21) is
reduced to

Tγ =αξ , ð22Þ

where [T]x+yd, m= 〈ϕm∣y〉〈x∣ϕm〉, [γ]m= γm, and [ξ]x+yd= axby. From
numerical optimization for the measurement set
f∣ϕmig= f∣0i, ∣1i, ∣0yi, ∣1yi, ∣0xi, ∣1xig with α = 3, which leads to
fKmg= Π0ffiffi

3
p , Π1ffiffi

3
p , Syffiffi

6
p , Sffiffi

6
p , 1ffiffi

6
p , Zffiffi

6
p

n o
, we obtain γmax =maxx,mfjγmð1,ΠxÞjg

	 1:775. This is a more efficient decomposition than that in Eq. (6),
which yields γmax = 3.

Derivation of Observation 1
From the cyclic property of the trace, the correlation function can be
rewritten as

Cðtμ1
, � � � , tμj

, � � � , tμk
Þ

=Tr½Aðtμj + 1
Þ � � �Aðtμk

Þρt0
Aðtμ1

Þ � � �Aðtμj
Þ�: ð23Þ

Then we note that both tμ1
≤ tμ2

≤ � � � ≤ tμj
and tμk

≤ tμk�1
≤ � � � ≤ tμj + 1

are
monotonically increasing time sequences,which leads to the following
expression:

Cðtμ1
, � � � , tμj

, � � � , tμk
Þ

=Tr½ðEBN ,AN
� UtN�1!tN

� � � � � U t1!t2
� EB1 ,A1

Þðρt1
Þ�, ð24Þ

where Uti!tj
ðρÞ=Uti!tj

ρUy
ti!tj

and we take ðBi,AiÞ= ð1,AÞ when A(ti) is
applied to the right side ðBi,AiÞ= ðA,1Þ when A(ti) is applied to the left
side, and (Bi, Ai) = (A, A) when A(ti) is applied to both sides.

Since each EBi ,Ai
can be expressed as a linear combination of the

actions of the Kraus operators {Km} from Proposition 1, we obtain the
following form,

Cðtμ1
, � � � , tμj

, � � � , tμk
Þ=E

YN
i= 1

γmi
ðBi,AiÞ

" #
, ð25Þ

by averaging over all possible observed trajectories following the
distribution pKðm1,m2, � � � ,mNÞ=Tr½ðKmN

� U tN�1!tN
� � � � � Ut1!t2

�
Km1

Þ ðρt1
Þ�.

We highlight that the correlation functions with different time
sequences ðtμ1

, � � � , tμk
Þ are obtained by only replacing the coefficients

γmi
ðBi,AiÞ, which can be easily done in classical post-processing using

the same data used to obtain pK.

Obtaining COTOC from intermediate measurements
Let us express the OTOC for the two operators W ðτÞ=Uy

τWUτ and
V(0) = V as

COTOC = h½W ðτÞ,V ð0Þ�y½W ðτÞ,V ð0Þ�i
= hW yðτÞV yð0ÞV ð0ÞW ðτÞi � hV yð0ÞW yðτÞV ð0ÞW ðτÞi
� hW yðτÞV yð0ÞW ðτÞV ð0Þi + hV yð0ÞW yðτÞW ðτÞV ð0Þi

= Tr½VUy
τWUτρU

y
τW

yUτV
y� � Tr½VUy

τWUτρV
yUy

τW
yUτ �

� Tr½Uy
τWUτVρU

y
τW

yUτV
y�+Tr½WUτVρV

yUy
τW

y�
=Tr½ðEV ,V y � U�1 � EW ,W y � U � E1,1ÞðρÞ�
� Tr½ðEV ,1 � U�1 � EW ,W y � U � E1,V y ÞðρÞ�
� Tr½ðE1,V y � U�1 � EW ,W y � U � EV ,1ÞðρÞ�
+Tr½ðEW ,W � U � EV ,V y ÞðρÞ�,

ð26Þ

where we denote UðρÞ=UτρU
y
τ and U�1ðρÞ=Uy

τρUτ , respectively.
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One can then construct the intermediate measurements
fKV

m1
g= fKV

m3
g and fKW

m2
g from Proposition 1 to express E1,1, E1,V y , EV ,1,

and EV ,V y as a weighted sum of KV
m1

or KV
m3
, and EW ,W y as a weighted

sum of KW
m2

. From this, all four terms in COTOC can be obtained simul-
taneously from pKðm1,m2,m3Þ=Tr KV

m3
� U�1 �KW

m2
� U �KV

m1

� �
ðρÞ

h i
.

Experimental setup
We implement the quantum circuit in Fig. 2 to reconstruct the multi-
time QPD for a qubit system. The experimental realization for the
essential parts of the circuit is shown in Fig. 7. At the beginning of the
protocol, we optically pump the system qubit to ∣0iYb, then prepare
the state of ρYb by using a single-qubit rotation performed by
applying 355 nm Raman laser beams. As depicted in Fig. 7a, the
Raman lasers have a frequency difference that matches the tran-
sition frequency of the 171Yb+ ion-qubit. This frequency matching
allows the Raman lasers to drive unitary evolutions, specifically
single-qubit rotations, on the 171Yb+ ion-qubit. At each time
t1, ⋯ , tN−1, we perform the ancilla-assisted measurement as illu-
strated in Fig. 2b and Fig. 7a. The measurement procedure con-
sists of initializing the ancilla qubit, applying a CNOT gate, and
detecting the ancilla qubit state, where the first and third steps
are regarded as the ICI and ICD. We perform the CNOT gate by
using the M-S gate97 and single-qubit operations shown in Fig. 7b.
The z-basis measurement of the 138Ba+ ion is realized by fluores-
cence detection after shelving ∣0iBa to the D5/2 manifold. The
x- and y-basis measurements are realized by rotating the axis of
the 138Ba+ ion state before the z-basis measurement. To repeat the
protocol, we take the following steps at each cycle: (i) apply the
unitary evolution to the system qubit, (ii) reset the ancilla qubit
to realize the ICI, and (iii) perform the ancilla-assisted measure-
ment. We simplify the final measurement by using a projection
measurement on the system qubit of 171Yb+ ion in the basis
mN 2 f∣0i, ∣1ig, since no further measurements are performed
after that.

Data availability
The data that support the findings of this study are available from
Zenodo.

Code availability
The code used in data analysis is available from Zenodo.
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