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Hepatitis B surface antigen (HBsAg) seroclearance during treatment is associated with a better prognosis among patients with
chronic hepatitis B (CHB). Significant gaps remain in our understanding on how to predict HBsAg seroclearance accurately and
efficiently based on obtainable clinical information. -is study aimed to identify the optimal model to predict HBsAg sero-
clearance. We obtained the laboratory and demographic information for 2,235 patients with CHB from the South China Hepatitis
Monitoring and Administration (SCHEMA) cohort. HBsAg seroclearance occurred in 106 patients in total. We developedmodels
based on four algorithms, including the extreme gradient boosting (XGBoost), random forest (RF), decision tree (DCT), and
logistic regression (LR).-e optimal model was identified by the area under the receiver operating characteristic curve (AUC).-e
AUCs for XGBoost, RF, DCT, and LR models were 0.891, 0.829, 0.619, and 0.680, respectively, with XGBoost showing the best
predictive performance. -e variable importance plot of the XGBoost model indicated that the level of HBsAg was of high
importance followed by age and the level of hepatitis B virus (HBV) DNA.Machine learning algorithms, especially XGBoost, have
appropriate performance in predicting HBsAg seroclearance.-e results showed the potential of machine learning algorithms for
predicting HBsAg seroclearance utilizing obtainable clinical data.

1. Introduction

HBV infection remains an urgent public health issue
worldwide. Roughly 257 million individuals have been in-
fected with HBV, and more than 350 million patients are
living with CHB [1]. It is well documented that HBsAg
seroclearance is an important milestone for prognosis
during the treatment of CHB [2–4]. -e annual incidence of
spontaneous HBsAg seroclearance in chronically HBV-
infected patients varied from 0.45% to 2.38% worldwide,

indicating that HBsAg seroclearance is a rare event [5–10].
Previous studies have suggested a potential association
between spontaneous or therapy-induced HBsAg sero-
clearance and a better prognosis, liver histological im-
provement, a diminished risk of hepatocellular carcinoma
(HCC), and extended survival [11–13]. -erefore, HBsAg
seroclearance is an important endpoint achieving a better
outcome of antiviral therapy.

Evidences on relevant viral factors and host character-
istics of HBsAg seroclearance have been reported in previous
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studies. Researchers have investigated that low serum
HBsAg levels alone or joined up with a low serum HBV
DNA load were important determinants of HBsAg sero-
clearance [8, 14]. As for the host characteristics, age is one of
the most important characteristics in HBsAg seroconversion,
followed by factors of gender, fatty liver, cirrhosis at baseline
or developed during follow-up, and alanine aminotransferase
(ALT) levels at baseline [6]. However, previous studies de-
veloping prediction models were mainly based on long-term
tracking of limited factors and traditional statistical methods,
of which the estimates maybe biased due to the potential
collinearity issue for high-dimensional medical data. To ad-
dress the knowledge gap, in this study, we used machine
learning algorithms instead of traditional models to determine
the association between obtainable clinical variables and
HBsAg seroclearance. Machine learning algorithms have
attracted considerable attention in health domain in recent
years. It has been successfully applied as powerful classifica-
tion methods to extract effective information from the high-
dimensional, correlated, nonlinear, and imbalanced clinical
datasets and make accurate diagnosis and predictions de-
cisions [15, 16]. However, no existing models have been
identified to achieve the best performance for HBsAg sero-
clearance prediction. In this study, we generated multiple
appropriate machine learning models including XGBoost, RF,
DCT, and LR according to the characteristics of the dataset
(highly dimensional and imbalanced) and aimed to identify
the optimal one. -e main purpose of this study is to identify
the optimal machine learning model for predicting the HBsAg
seroclearance in a retrospective cohort of patients with CHB.

2. Materials and Methods

-is study included chronic hepatitis B patients enrolled into
the SCHEMA cohort (South China Hepatitis Monitoring
and Administration cohort) between January 2006 and June
2015. Each patient was diagnosed following the “Guideline:
prevention and treatment of viral hepatitis” revised in 2010
and followed up by staff in the Infectious Diseases De-
partment of the -ird Affiliated Hospital, Sun Yat-sen
University. For the current study, we excluded patients
who met at least one of the following conditions: (1) lost
follow-up for over 6months; (2) had an HBV DNA baseline
under detection; (3) received interferon treatment pre-
viously; (4) developed comorbidities such as hepatitis A/C/E
virus infection, decompensated liver disease, autoimmune
liver diseases, malignant tumors, and renal insufficiency; and
(5) received immunosuppressive (transplantation) therapy.
-ere were 2235 CHB patients included in this study.

-e endpoint (HBsAg seroclearance) was defined as loss
of HBsAg detectability during follow-up by the qualification
method using ECL kits (Roche Laboratories, Germany;
lower limit of detection (LLOD), 0.05 IU/ml). We collected
the following information for each patients: age, gender,
BMI (body mass index), drinking history, family history,
diagnosis of the disease phase, treatment (including lam-
ivudine (LAM), telbivudine (LDT), entecavir (ETV), ade-
fovir (ADV), and tenofovir (TDF) and the changing times of
treatment was recorded as lines), virological response after

treatments, routine pathology measurements, and other
clinical measurements. Regular follow-ups were performed
every 1–3months. -irty features including laboratory tests,
clinical manifestations, and drug treatment strategies were
recorded at baseline before the occurrence of HBsAg
seroclearance. Verbal informed consent was obtained for all
participants upon their first and subsequent follow-up visits.

Results of routine liver biochemical function tests were
also obtained including serum levels of alanine amino-
transferase (ALT), aspartate aminotransferase (AST), serum
albumin (ALB), gamma-glutamyl transferase (GGT), total
bilirubin (Tbil), direct bilirubin (Dbil), as well as a range of
erythrocyte and leucocyte markers (hemoglobin (Hb),
platelet (PLT) count, and white blood cell (WBC) count).
-e measurements were performed on Autobiochemical
Analyzer (7600-020; HITACHI, Tokyo, Japan) following a
standard protocol.

Serum HBsAg and hepatitis B virus E antigen (HBeAg)
were both measured quantitatively by Elecsys kits (Roche
Laboratories, Germany). Serum HBV DNA level was
measured using the Cobas TaqMan HBV RT-PCR test
(CAP-CTM; Roche Molecular Systems).

Radiological indicators including right liver oblique
diameter, spleen portal width, spleen length, and spleen
portal vein width were measured to reflect the thickness and
width of patients’ liver and spleen.

A total of 30 variables were included in the dataset. Ten of
them are categorical variables including gender, drinking
history, HBV family history, initial diagnosis, current di-
agnosis, lines (number of treatment replacements), initial
treatment, current treatment, and virological response. -e
rest are continuous variables including age, BMI, serum in-
dicators, and radiological indicators.-e dataset was split into
the training dataset (70%) and test dataset (30%) to train and
test the machine learning models. -e training set contains a
known output, and the model learns with these data in order
to be generalized to new data.-e test size was 0.30, indicating
that 30% of the data were withheld for testing.

In this study, the predictive models were built based on
four machine learning classification algorithms: logistic
regression, decision tree, random forest, and extreme gra-
dient boosting by using Python programming software with
version 3.6. -e generations of each model for predictions
required tuning of several key parameters. -e value of each
parameter was chosen by using grid search and 5-fold
(stratified K-fold) cross-validation, with the training dataset
split into 5 equal size subsets randomly for five times of
cross-validation. Each round of cross-validation involved a
process of performing the model generation on four subsets
(as the development set) and a process of validating on the
remaining subset (as the validation set). For evaluation
purpose, metrics including areas under the receiver oper-
ating characteristic curves (AUCs) of the models, F score,
confusion matrix, precision, and recall are calculated by 5-
fold (stratified K-fold) cross-validation. F score represents
the harmonic mean of precision and recall. Precision rep-
resents the percentage of tuples that the classifier has labeled
as positive is actually positive. Sensitivity represents the true-
positive recognition rate:
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F-score �
2∗TP

2∗TP + FP + FN
,

Precision �
TP

TP + FP
,

Sensitivity �
TP

TP + FN
.

(1)

where true positive (TP) represents positive case correctly
identified as positive, false positive (FP) represents negative
case incorrectly identified as positive, and false negative
(FN) represents positive people incorrectly identified as
negative.

Logistic regression model is a classic statistical clas-
sification method developed in 1958 by David Cox which is
widely used for modelling binary-dependent variable and
is now very commonly used in scientific study, including
biology, medicine, health, and clinical research [17]. Lo-
gistic regression investigates the correlation between
binary-dependent variable and -independent variables by
estimating probabilities using a logistic function, which is
the cumulative logistic distribution.

Decision tree is a nonparametric supervised learning
method used for classification and regression that uses a
tree-like graph or model of decision to predict the value of a
target variable by learning simple decision rules inferred
from the data features. It can handle both numerical and
categorical data, and nonlinear relationships between pa-
rameters do not affect tree performance.

Random forest model is a powerful bagging and en-
semble learning method for classification and regression
tasks and can provide the relative importance of the input
variables by comprising multiple decision trees at training
set and predictive values of classification and regression trees
[18]. Random forest is one of the most accurate algorithms
by averaging votes of multiple deep decision trees from
different random subsets of the training set to reduce the
variance.-emain limitation of random forest is that a large
amount of trees can make the algorithm slow and ineffective
for real-time predictions.

Extreme gradient boosting was initially raised as a ter-
minal application in a research project by Tianqi Chen which
could be configured using a LibSVM configuration file [19].
Comparing with other machine learning models, XGBoost
algorithms were designed to be highly efficient and flexible
and are of impressive predictive accuracy. XGBoost imple-
ments a scalable parallel classification and regression trees
(CART) boosting system under the Gradient Boosting
framework which can widely solve data science problems in a
fast and accurate way [20]. Gradient Boosting is a boosting
learning algorithm which combines the estimates of a set of
simpler and weaker models. Because XGBoost internally
provides hyperparameters for cross-validation, regularization,
user-defined objective functions, tree parameters, scikit-learn
compatible API, and so on, it usually has better fitness than
other models, especially in solving different types of datasets
or distributions.

3. Results

Among 2235 CHB patients, a total of 106 patients had been
identified as HBsAg seroclearance. -e summary of par-
ticipant’s characteristics including demographic character-
istics and laboratory measurements for patients is shown in
Table 1.-emean age of the patients was 40.58± 12.07 years,
and 73.2% patients were male.

-e whole dataset was randomly partitioned into 1564
instances of the training set and 671 instances of the testing
set measured by use of a 70%/30% split of the data. Table 2
shows the tuning parameters and values of the final models.

-e performances of four models are shown in Table 3,
and the receiver operating characteristic (ROC) curves for
each model are shown in Figures 1–4. -e AUCs reflecting
the total discriminative abilities of the XGBoost, RF, DCT,
and LR were 0.891 (95% confidence interval (CI): 0.889,
0.895), 0.829 (95% CI: 0.824, 0.834), 0.619 (95% CI: 0.614,
0.624), and 0.680 (95% CI: 0.677, 0.683), respectively.
XGBoost model exhibited the best AUC, and the perfor-
mance was significantly better than the rest models. In terms
of other measures, the F scores of the XGBoost, RF, DCT,
and LRwere 0.97, 0.97, 0.95, and 0.97, respectively. Using the
variables exhibiting the highest coefficients of permutation
importance for HBsAg seroclearance in the XGBoost model,
the variable importance plot suggested that the level of
HBsAg was the most important predictor of HBsAg sero-
clearance followed by age and DNA (Figure 5). -e con-
fusion matrix showed that logistic regression was severely
influenced by the high degree of imbalance of the dataset, as
it classified the whole sample to the negative class.

4. Discussion

HBsAg seroclearance has been widely considered as one of
the most important indicators of CHB prognosis. Using
machine learning algorithms to predict disease status or
outcomes with clinical datasets is consistently gaining in-
creasing attention in medical and health field, as shown by
many previous studies inspecting relevant topics. In this
retrospective cohort study, we evaluated the performance of
four prediction models generated by utilizing obtainable
baseline clinical data fitted withmachine learning algorithms
to accurately classify individuals who were likely to result in
HBsAg seroclearance, with no need to acquire longitudinal
data. It is of remarkable significance that, in this study, we
have investigated the optimisation for machine learning
algorithms of routine clinical datasets. Our results indicated
the best performing prediction model-XGBoost obtained an
AUC of 0.891, indicating a good prediction accuracy. -e
result of the serumHBsAg level acting as the most important
variable shown in our study is consistent with previous study
[8, 14]. Following factors such as age and serum level of
DNA were also proven highly related with HBsAg sero-
clearance. As there is not enough evidence in this domain,
our findings will help achieve targets of early prediction and
detection by laboratory alternatives and assist the hepatol-
ogists in choosing the optimal therapeutic regimen.
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Amodel using serum quantitative HBsAg (qHBsAg) and
HBV DNA levels as proven clinical parameters to predict
HBsAg seroclearance and seroconversion has been de-
veloped previously with artificial neural networks (ANNs),
which is the only existing model on HBsAg seroclearance
patients according to the best of our knowledge [21].
However, some limitations should be noted in this study
including the limitation of small datasets, requirement of
longitudinal follow-up data, and limited information con-
sidered except the currently proven predictor qHBsAg, an
appropriate model with sufficient accuracy and generaliz-
ability for early predicting HBsAg seroconversion remains to
be provided. Since deep learning architectures have several
characteristic such as being more adaptive to big datasets,
more likely to overfit, cost more computational work, and
have more difficulties during practical implement by clinical
experts, we did not generate deep learning models. To the
best of our knowledge, this may be the first study utilizing
machine learning algorithms to identify patients with higher
probability developing to HBsAg seroclearance.

Our study had several limitations. First, as the features
we included in our model were based on the datasets we

Table 1: Summary of participant’s characteristics.

Variables Value
Age (years)a 40.58± 12.07
Gender (male)b 1636 (73.2)
BMIa 22.53± 3.96
Drinking historyb 256 (11.5)
HBV family historyb 1350 (60.4)
HCC family historyb 188 (8.4)
Initial diagnosisb

Inactive hepatitis B virus carrier 12 (0.5)
Chronic hepatitis B 1966 (88.0)
Hepatitis cirrhosis 216 (9.7)
Hepatocellular carcinoma 41 (1.8)

Current diagnosisb

Hepatitis B virus carrier 13 (0.5)
Chronic hepatitis B 1875 (83.9)
Hepatitis cirrhosis 222 (9.9)
Hepatocellular carcinoma 125 (5.6)

ALTa (U/L) 95.91± 167.82
ASTa (U/L) 144.68± 280.77
GGTa (U/L) 59.32± 79.35
PLTa (U/L) 175.19± 67.53
ALBa (g/L) 44.61± 5.37
TBILa (μmol/L) 25.40± 52.83
DBILa (μmol/L) 11.17± 41.19
PLTa (×109/L) 175.19± 67.53
DNAa (log/IU/mL) 5.57± 2.05
sAga (log/IU/mL) 3.42± 0.81
eAga (log/IU/mL) 0.71± 1.63
WBCa (×109/L) 6.03± 1.93
HBa (g/L) 140.66± 34.48
RLODa (mm) 114.85± 27.92
PVWa (mm) 11.37± 4.17
SLa (mm) 102.74± 21.19
SPVWa (mm) 6.17± 4.39
Initial treatmentb

None 874 (39.1)
LMV 248 (11.1)
ADV 277 (12.4)
LdT 111 (5.0)
ETV 610 (27.3)
TDF 62 (2.8)
LMV+ADV 47 (2.1)
LdT+ADV 4 (0.2)
ETV+ADV 2 (0.1)

Linesb

0 1035 (46.3)
1 818 (36.6)
2 211 (9.4)
3 93 (4.2)
4 46 (2.1)
5 18 (0.8)
6 10 (0.5)
7 1 (0.0)
8 2 (0.1)
9 1 (0.0)

Current treatmentb

None 1019 (45.6)
LMV 68 (3.0)
ADV 152 (6.8)
LdT 26 (1.2)
ETV 61 (27.4)

Table 1: Continued.

Variables Value
TDF 252 (11.3)
LMV+ADV 79 (3.5)
LdT+ADV 6 (0.3)
ETV+ADV 21 (0.9)
IFNb 115 (5.1)

VRb

IVR 332 (14.9)
EVR 976 (43.7)
SOR 976 (41.5)

aMean and standard deviation; bfrequencies and percentages; VR: viro-
logical response; IVR: initial virological response; EVR: early virological
response; SOR: suboptimal virological response.

Table 2: Summary of parameter values in each model for pre-
dicting HBsAg seroclearance.

Model Parameter Value

Extreme gradient boosting

n_estimators 153
max_depth 4

min_child_weight 2
Subsample 0.5

colsample_bytree 0.8
colsample_bylevel 0.8

reg_alpha 2.0
reg_lambda 0.3

Random forest
max_features Auto

min_samples_leaf 1
n_estimators 40

Decision tree
max_depth 29
max_features log2

min_samples_leaf 23

Logistic regression C 0.001
Penalty L1
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obtained, unknown potentially relevant features may have
been unfortunately missed. Second, the models in our study
were developed using the dataset related to HBsAg sero-
clearance, which may not be suitable for direct application
for prediction or diagnosis for other status or diseases.-ird,
in this study we only included four machine learning al-
gorithms, and further exploration on investigating better
models are still urgent to improve the prediction accuracy.
Finally, the external applicability of our findings might be

limited due to the dataset from a single center within the
specific geographic region, resulting in the limitation of the
sample’s representativeness of the whole study population,
and it may be controversial that the results might change
from other centers.
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Figure 2: Receiver operating characteristic curves of decision tree.

Table 3: Summary of predictive performance of each model.

Model TP FN TN FP Precision Sensitivity F-score AUC (95% CI)
Logistic regression 0 35 636 0 1.00 0.95 0.97 0.680 (0.677, 0.683)
Decision tree 4 31 627 9 0.97 0.94 0.95 0.619 (0.614, 0.624)
Random forest 4 31 635 1 0.99 0.95 0.97 0.829 (0.824, 0.834)
Extreme gradient boosting 9 26 632 4 0.98 0.96 0.97 0.891 (0.889, 0.895)
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Figure 1: Receiver operating characteristic curves of logistic
regression.
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Figure 3: Receiver operating characteristic curves of random
forest.
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Figure 4: Receiver operating characteristic curves of extreme
gradient boosting.

Computational and Mathematical Methods in Medicine 5



5. Conclusions

In this study, we conducted an evaluation and comparison of
four well-known machine learning algorithms by regressing
the HBsAg seroclearance status of each patient against
laboratory and demographic variables. -e results show that
machine learning algorithms, especially XGBoost, can
predict HBsAg seroclearance with an efficient accuracy. -is
study also showed a potential of machine learning algo-
rithms being used for clinical outcome predictions.
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