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Abstract

When estimating psychometric functions with sampling procedures, psychophysical

assessments should be precise and accurate while being as efficient as possible to reduce

assessment duration. The estimation performance of sampling procedures is commonly

evaluated in computer simulations for single psychometric functions and reported using

metrics as a function of number of trials. However, the estimation performance of a sampling

procedure may vary for different psychometric functions. Therefore, the results of these

type of evaluations may not be generalizable to a heterogeneous population of interest. In

addition, the maximum number of trials is often imposed by time restrictions, especially in

clinical applications, making trial-based metrics suboptimal. Hence, the benefit of these sim-

ulations to select and tune an ideal sampling procedure for a specific application is limited.

We suggest to evaluate the estimation performance of sampling procedures in simulations

covering the entire range of psychometric functions found in a population of interest, and

propose a comprehensive set of performance metrics for a detailed analysis. To illustrate

the information gained from these metrics in an application example, six sampling proce-

dures were evaluated in a computer simulation based on prior knowledge on the population

distribution and requirements from proprioceptive assessments. The metrics revealed limi-

tations of the sampling procedures, such as inhomogeneous or systematically decreasing

performance depending on the psychometric functions, which can inform the tuning process

of a sampling procedure. More advanced metrics allowed directly comparing overall perfor-

mances of different sampling procedures and select the best-suited sampling procedure for

the example application. The proposed analysis metrics can be used for any sampling pro-

cedure and the estimation of any parameter of a psychometric function, independent of the

shape of the psychometric function and of how such a parameter was estimated. This

framework should help to accelerate the development process of psychophysical

assessments.
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1 Introduction

Estimating psychometric functions is an important topic, both in basic psychophysics research

to investigate mechanisms of sensation and perception, but also in clinical assessments to diag-

nose sensory deficits, e.g., after neurological injuries. A psychometric function relates physical

stimuli to the perception, respectively performance, of the subject in detection and discrimina-

tion tasks [1]. In order to estimate a psychometric function, stimuli of different magnitudes

(also referred to as levels) have to be presented to the subject, who then has to rate the stimuli

according to the paradigm used in the experiment (e.g., yes-no, same-different, reminder or

two-alternative forced choice (2AFC) tasks) [2, 3].

The term sampling procedure usually encompasses a set of rules with procedure-specific

parameters defining the levels and order of the presented stimuli. There exist many different

sampling procedures. The classical sampling procedure is the method of constant stimuli

(MOCS) [2] presenting stimuli at predefined (i.e., fixed-grid) levels spanning the perception

range of interest. While this sampling procedure can be used to obtain the entire shape of the

psychometric function, adaptive sampling procedures have been developed to quantify only

specific features of a psychometric function (e.g., the perception threshold or slope of a sigmoi-

dal psychometric function) (see [4, 5] for reviews). These range, among others, from relatively

simple staircase [6–10], heuristic [11, 12], and stochastic approaches [13, 14] to Bayesian [15–

17] and maximum-likelihood procedures [18–20].

An ideal sampling procedure should be precise and accurate (i.e., present low inherent

method variability and be unbiased) to guarantee a high assessment reliability. In addition,

sampling procedures should be as efficient as possible (i.e., low number of required trials to

achieve a wanted precision) as, especially in clinical settings, time is scarce and costly (e.g.,

[21]). Thus, often, the number of trials is strictly limited due to time constraints or because

lengthy experiments could be detrimental for the subject’s attention and lead to mental fatigue

[22]. Resulting time-dependent alteration of perception (i.e., drift of psychometric functions)

can lead to misestimations of parameters [23–26]. Moreover, depending on the application

scenario, the inter-subject variability may differ and prior knowledge on the distribution of the

population of interest may be available or not. As a consequence, different values for the sam-

pling procedure-specific parameters of adaptive sampling procedures defining the stimulus

levels to be presented (e.g., around the threshold) may be needed for rapid convergence

towards desired features of the psychometric function. Therefore, the question arises how sam-

pling procedures and how sampling procedure-specific parameters should be selected for best

performance in a specific application scenario.

As evaluating the performance of sampling procedures through a series of behavioral

studies would be too time consuming, computer simulations offer a valuable alternative and

powerful tool to simulate psychophysical experiments and to evaluate different sampling pro-

cedures and sampling procedure-specific parameters. Besides being used to investigate the

process of fitting psychometric functions to psychophysical data [27–31], computer simula-

tions have been widely used to simulate sampling procedures and quantify their properties,

such as the efficiency [8, 11, 12, 18–20, 32–35]. To quantify the efficiency of a sampling proce-

dure, a metric called sweat factor was proposed [12, 36]. The sweat factor is defined by the

product of the variance of the estimates and the number of trials, in order to evaluate the rela-

tive benefit of a longer procedure (i.e., more trials) for a reduced measurement error. Various

other approaches and metrics have also been proposed to evaluate the performance of sam-

pling procedures. They commonly include, for example, mean or bias (e.g., [34, 35, 37]), stan-
dard deviation (e.g., [18, 34, 35]), or settling accuracy (e.g., [11, 20]). Others have additionally

used information gain in bits [35] or percentage usable [37].

Performance metrics for psychophysical sampling procedures

PLOS ONE | https://doi.org/10.1371/journal.pone.0207217 November 28, 2018 2 / 27
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However, these performance metrics are commonly used as a function of the number of tri-

als, which may not be the factor which can be acted upon in many application scenarios due to

limited time for assessments. When calculated for one given maximum number of trials, the

sweat factor’s information content is actually confined to the variability and cannot provide

additional information. Furthermore, many simulations sample only one or a very limited

number of threshold or slope parameter values [8, 11, 18, 20, 33–35, 38]. As a matter of fact,

the outcome for those metrics may depend on the actual parameter values (e.g., threshold and

slope) of the psychometric function to be estimated, and performance may not be homoge-

neous across this parameter space. Thus, performance results are very likely not representative

for other psychometric functions of the population of interest. Instead, constraining the simu-

lations to a specific number of trials given by the requirements of the application and exploring

the estimation performance for different psychometric functions covering the entire thresh-

old/slope parameter space of the population would provide relevant insight when selecting

and optimizing a sampling procedure for a specific application.

The aim of this paper is to take an application-driven approach and introduce an evaluation

framework with a comprehensive set of metrics to analyze psychophysical procedures in terms

of threshold and slope estimation performance. We suggest to use error measures widely used

in motor control and learning studies [39] in order to describe bias and variability, and intro-

duce percentage within bounds (PCTw/iB) curves, a practical measure depending on desired

estimation tolerances which can be directly related to application requirements. Based on this

concept, the normalized area under the curve (nAUC), spanning a surface in a specific thresh-

old-slope parameter space, can be computed. With the normalized volume under the surface
(nVUS) and the inhomogeneity σ, we propose measures to compare the performance across

different procedures or settings. This framework should facilitate the selection and optimiza-

tion of sampling procedures for specific applications.

Inspired by a real-world scenario—assessment of proprioceptive joint angle difference

thresholds using a 2AFC paradigm in a clinical setting—the metrics are illustrated and dis-

cussed here on six different procedures using computer simulations: (i) MOCS [2], (ii)

Weighted Up-Down method [8], (iii) slightly altered Parameter Estimation by Sequential Test-

ing (PEST) [12, 40], (iv–v) standard and accelerated Stochastic Approximation (SA) Staircases

[13, 14], and (vi) the Bayesian C (PSI) method [15] to illustrate what kind of insights can be

gained by the proposed framework.

2 Definition and parameters of the psychometric function

In the present work, the perception models consisted of psychometric functions ψ(x) defining

the proportion of correct responses at different stimulus levels x:

cðx; a; b; g; lÞ ¼ gþ ð1 � g � lÞFðx; a;bÞ ; ð1Þ

with the generic threshold parameter α, generic slope parameter β, guessing rate γ, and lapse

rate λ (taking into account stimulus-independent errors, or “lapses”). The guess rate γ depends

on the psychophysical paradigm (e.g., yes-no: γ = 0, 2AFC: γ = 0.5). The lapse rate λ is often set

to 0, to limit the complexity of computer simulations. For the generic sigmoid function F(x; α,

β), a cumulative normal function FGauss(x; μ, σ) with a mean μ and standard deviation σ
according to the following equation was chosen:

FGauss x; m; sð Þ ¼
1

2
1þ erf

x � m
ffiffiffi
2
p

s

� �� �

; ð2Þ
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where erf(x) is the standard definition of the error function:

erf ðxÞ ¼
2
ffiffiffi
p
p

Z x

0

e� t2dt : ð3Þ

As a consequence of this choice and a lapse rate λ of 0, the generic threshold parameter α cor-

responds directly to the inflection point μ and the threshold, which is defined at xT = ψ−1(Pt),
being the target probability or proportion of correct responses. The generic slope parameter β
is inversely proportional to the “spread” (i.e., standard deviation σ at this point). In order to

have comparable values across different studies using various analytic functions, it has been

recommended to use the maximum actual slope Slopeα, instead of the slope parameter β
depending on the type of cumulative distribution. This is achieved by taking the first derivative

dψ/dx|x=α [41] according to:

Slopea ¼
ð1 � g � lÞ

ffiffiffiffiffiffi
2p
p

1

s
: ð4Þ

The parameters and psychometric functions are illustrated in Fig 1.

3 Performance metrics for psychophysical procedures

In order to quantify the estimation performance of a sampling procedure, the “real” value of

the parameter in question (i.e., in this case the threshold) of the psychometric function to be

estimated should be known. This is where computers simulations come in useful, as the “real”

psychometric function can be modeled and is known. Furthermore, the psychophysical experi-

ment using the sampling procedure should ideally be simulated multiple times to obtain a dis-

tribution of estimates for high statistical power. To better distinguish between the “real”

psychometric function to be estimated and the psychometric function fitted to the data pro-

vided by a (simulated) experiment, the first is referred to as template c
>

i;jðxÞ (the symbol>

denotes a template, and indices i, j the combination of threshold α and slope Slopeα values).

The most elementary analysis consists of quantifying estimation bias (accuracy) and estima-

tion variability (precision). The following nomenclature of constant errors (CE = average

Fig 1. Psychometric function. Illustration of the psychometric function ψ(x; α, β, γ, λ) (bold black sigmoid) and

related parameters. The underlying cumulative normal function FGauss(x; μ, σ) (bold gray sigmoid) and its underlying

normal probability density function (gray) are also indicated. The slopes are indicated at the inflection points in

the same color of the corresponding sigmoids. Note that the psychometric function is illustrated for the present

application of proprioceptive joint angle assessments using a 2AFC paradigm, where the stimulus level x corresponds

to the angular difference between two stimuli to be distinguished in a trial in degrees (˚). In this application, γ was set

to 0.5, λ to 0, and the difference threshold was defined at xT = ψ−1(Pt), with Pt = 0.75.

https://doi.org/10.1371/journal.pone.0207217.g001
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signed errors) and variable errors (VE = standard deviations of errors) was used. This nomen-

clature is commonly used in motor control and learning [42]. In order to evaluate the estima-

tion performance of sampling procedure, the threshold estimation error is computed by

subtracting the threshold of the template c
>

i;j from the threshold of the estimated psychometric

function. A positive error represents an overestimation (i.e., larger threshold or larger slope

estimates compared to the template), whereas a negative error represents an underestimation

(i.e. smaller threshold or smaller slope estimates). Before calculating the slope estimation error

in the same way, an arctan(Slopeα)/(π/2) transform was applied (Fig 2). This transformed the

slope space from [0, inf) to [0, 1] in arbitrary units (a.u.), where zero and one corresponded to

a completely flat psychometric function and a perfect step function, respectively. Without

applying this transform first, slope errors around large slopes (i.e., steep psychometric func-

tions) diverge towards infinity, despite the psychometric functions looking almost identically.

Calculating and plotting the CE and VE for a fine, two dimensional grid of threshold and slope

parameter values allows to identify potential zones in the threshold-slope space, which may

suffer from poorer estimation performance. This may provide insight on how sampling proce-

dure-specific parameters could be tuned for the psychophysical assessment application.

Since the absolute errors (AE = average absolute errors) are a complex combination of CE
and VE and can be predicted from them [42], direct examination of the AE becomes superflu-

ous. However, it can be used in an application-driven approach to develop other higher level

metrics building upon it. As the required precision depends on the application, it can be useful

to describe the probability of a resulting estimation lying within an interval. Thus, the perfor-

mance of a procedure could be expressed as the percentage of simulation results of threshold

and slope estimates lying within a tolerance interval around the template values, respectively,

as a function of the interval size. This percentage within bounds (PCTw/iB) function is related

to absolute errors as illustrated in Fig 3(A)–3(C). A faster-rising PCTw/iB function would cor-

respond to a stimulus selection method with higher performance. This metric would allows

selecting the optimal sampling procedure given a required maximal error. Note that this met-

ric takes into account both accuracy and precision, but provides more information relevant to

the application compared to the elementary absolute error.

Similar to the receiver operating characteristic curve, the performance of the sampling pro-

cedure can be quantified by the area under the curve (AUC) (i.e., definite integral under the

PCTw/iB-curve). Since the AUC is not bounded in the case of the threshold and could not be

Fig 2. Slope transform. Function transforming the actual slope in stimulus units (in the present application of

proprioceptive joint angle assessments in (1/˚)) to arbitrary units (a.u.) within the range [0, 1]. This transformation

prior to the calculation of the performance metrics is essential to make the estimation errors comparable for different

slope values.

https://doi.org/10.1371/journal.pone.0207217.g002
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calculated without defining an arbitrary upper bound on the tolerance interval size, a nonlin-

ear transform 1 − e(−x) is applied to the tolerance interval axis x of the PCTw/iB-curve. With

this transform, the positive semi-infinite support [0,inf) is transformed to [0, 1] and the nor-
malized AUC (nAUC) 2 [0, 1] can be calculated (Fig 3(D)). Due to the transform applied to

the slopes before calculating the errors, the tolerance interval axis is already bounded and nor-

malized to [0, 1]. Therefore, this nonlinear transform is not required anymore and the nAUC
can be calculated directly for the slopes. The precision of nAUC can be improved by increasing

the number of simulated runs for each template c
>

i;j. A repeatedly perfect estimation of the

threshold or slope parameter would result in a nAUC of one. This metric takes all estimates

into account without having to calculate the parametric statistics, such as the arithmetic mean

for the average absolute error. This metric is still template-dependent and can be used for

more high-level metrics quantifying performance over the complete threshold and slope

parameter space.

The performance of a procedure may vary depending on the threshold and slope of the psy-

chometric function in question. Therefore, the PCTw/iB and corresponding nAUC for the

threshold and slope estimation have to be calculated for each template c
>

i;j. The nAUC can be

visualized as a surface in a three-dimensional space (Fig 3(E)). For a given threshold and slope

parameter space the normalized volume under the surface (nVUS) can be calculated after line-

arly normalizing the threshold and slope axes to [0, 1] (Fig 3(F)). As a result, the nVUS is also

2 [0, 1] and can be used to compare different procedures or method settings, as long as the

Fig 3. Explanation of performance metrics to characterize psychophysical sampling procedures. (A) Distribution of threshold estimates for a given template.

(B) Distribution of the absolute errors. (C) Percentage within bounds (PCTw/iB) as a function of the tolerance interval. Each point of this function is generated by

integrating the area of the absolute error distribution from zero to the respective error, respectively tolerance, value. (D) After a nonlinear transform of the x axis to

[0, 1], the normalized area under the curve (nAUC) can be calculated (1 corresponding to perfect estimation for this template). (E) When the nAUC is computed for

different templates within a threshold and slope parameter space, the performance can be visualized as a surface in a three-dimensional space. (F) After normalizing

the parameter space axes to [0, 1], the normalized volume under the surface (nVUS) can be calculated (1 corresponding to perfect estimation across all templates).

Note that the metrics are illustrated for the present application of proprioceptive joint angle assessments using a 2AFC paradigm, for a psychometric function

template c
>

5
�
;1=
� .

https://doi.org/10.1371/journal.pone.0207217.g003
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same application-dependent parameter space range is used. The accuracy of nVUS can be

improved by simulating a denser grid of templates c
>

i;j. A nVUS of one corresponds to perfect

estimations for all threshold and slope combinations within the evaluated parameter space.

This metric can be used for an overall performance comparison across sampling procedures.

In addition to the nVUS, the performance variability can be evaluated: The inhomogeneity

of the nAUC across the parameter space can be described by calculating the standard deviation

σ of all the nAUC values for the different templates c
>

i;j. This parameter σ should not be con-

fused with the parameter of F(x; μ, σ). To calculate the standard deviation, each axis of the

parameter space should be linearly sampled to avoid bias towards nAUC values where the sam-

pling density is higher. In case the sampling of the simulated parameter space is not linear

along one or both axes, the nAUC surface has to be resampled and interpolated along the axes

in question.

To have an overall performance measure for each threshold and slope estimate as a function

of the accepted estimation tolerance, for each tolerance interval the PCTw/iB±Tol can be pre-

sented as a surface for the parameter space, similar to the nAUC. From this surface, the overall

tolerance-dependent performance can be calculated, as done for the nVUS and σ.

4 Computer simulations

In order to illustrate and discuss the performance evaluation metrics described in the previous

section for different procedures, a computer simulation based on a concrete application exam-

ple was implemented.

4.1 Application example: Assessment of proprioceptive difference

thresholds

Accurate and sensitive assessments of proprioception may be used for diagnosis, prognosis

and treatment planning [43] for patients with somatosensory deficits affecting the upper limbs

(e.g., after neurological injuries and diseases). However, clinical assessments, such as the up-

down finger proprioception test [44], provide mostly dichotomous or ordinal scales and may

thus be used for screening, but not for assessing functional improvements [45]. The combina-

tion of psychophysical procedures to estimate psychometric functions with robotic technology

would offer more reproducible assessments with a higher resolution. There have been few

studies exploring this approach for the assessment of the upper limb [40, 46–52]. So far MOCS

has been predominantly used, with experiments typically lasting about 45 min [46–49]. How-

ever, in order to achieve clinical utility, the number of trials and the assessment duration

should be reduced to below 15 min without compromising the quality of the outcome mea-

sures. This may be achieved by using adaptive procedures (e.g., as shown in a pilot study com-

paring MOCS and the adaptive PEST experimentally [40]).

The problem with such experimental validations is that the “real” psychometric functions

are unknown. Therefore, the estimation performance and efficiency of the sampling proce-

dures cannot be directly quantified. This can be addressed in computer simulations, where the

actual psychometric function templates are known. Moreover, this allows for optimization of

sampling procedure-specific parameter settings for a specific threshold and slope range of the

population of interest. So far, experimental results on the difference threshold of angular joint

position revealed values ranging from 1 to 5˚, approximately, for elbow, wrist, and finger joints

in healthy subjects [40, 46–48, 50–53]. However, in patients with proprioceptive deficits those

values are higher and may go up to around 10˚ [54].
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The quality of estimation of difference thresholds can be affected by the used experimental

paradigm. While psychophysical experiments based on paradigms such as yes-no, reminder,

and same-different can provide quantitative results, they are contaminated by effects of the

decision criterion (i.e., response bias) [2, 3]. Despite some literature claiming that the two-

alternative forced-choice (2AFC) paradigm requires a two- to three-fold number of trials for a

given precision compared to the Yes-No paradigm [32, 55], 2AFC addresses the previously

mentioned limitations, as it is expected to be a more sensitive, more objective and almost bias-

free alternative [3].

Assessing proprioception at a specific joint using the 2AFC paradigm requires a two-inter-

val design: two different stimuli (i.e., two flexion or extension movements are consecutively

presented) before the subject rates which angle, respectively movement from a reference posi-

tion, was larger. In the present work the difference between the two angles of one trial is

referred to as level x. Prior work showed that one trial including response time lasts about 15 s

[40]. Thus within an acceptable assessment duration of 15 min around 60 trials can be

administered.

These criteria set the stage for the following computer simulations, illustrating the proposed

evaluation metrics for a real-world application example.

4.2 Methods

4.2.1 Templates. To cover the full population, a set of 240 subject templates c
>

i;j was cre-

ated with 40 different thresholds linearly spaced within the range [0.25˚, 10˚] (index i) and

slopes Slopeα 2 {0.0625, 0.125, 0.25, 0.5, 1, 2}/˚ (index j). The guess rate γ was 0.5 and the lapse

rate λ was zero for all templates. As an example, the template c
>

5
�
;0:25=

� would have a threshold

of 5˚ and a slope Slopeα of 0.25/˚. Examples of modeled psychometric functions with a thresh-

old of 5˚ and different slopes are visualized in Fig 4.

4.2.2 Simulation process. The response of a simulated subject for a given stimulus level x
was generated by comparing a randomly generated number between 0 and 1 to c

>

i;jðxÞ. A larger

random number compared to c
>

i;jðxÞ corresponded to a false response, and a smaller random

number compared to c
>

i;jðxÞ to a correct response.

Fig 4. Examples of psychometric templates. Examples of psychometric templates c
>

5
�
;j with a threshold of 5˚ and

different slopes used in the computer simulations.

https://doi.org/10.1371/journal.pone.0207217.g004
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Six different sampling procedures were simulated. A brief explanation of the sampling pro-

cedures and follows in the section below, and the used sampling procedure-specific parameter

values are reported. The parameter values were empirically chosen based on experience and

reasonable outcomes for this application and population. Thus, we do not claim that the

parameter values result in optimal performance for each sampling procedure. Each sampling

procedure was simulated for a length of 60 trials, and each template was simulated 1000 times

for each psychophysical procedure, leading to a total of 6 × 240000 simulated psychophysical

experiments.

Even if some adaptive methods directly provide a threshold estimate, they may not always

reach convergence within the given maximum number of trials and therefore threshold esti-

mates may not be very accurate. Thus, the threshold and the slope parameters were estimated

by fitting ψ(x) to the proportion of correct responses at stimulus levels x using a Maximum

Likelihood criterion implemented in the Palamedes MATLAB routines [56]. Moreover, this

way the parameter estimation process was identical for all examined methods. The computer

simulations, as well as the following data analysis, were performed in MATLAB R2014a (Math-

Works, Natick, MA, USA).

4.2.3 Sampling procedures. 4.2.3.1 MOCS The method of constant stimuli [2] is the sim-

plest sampling procedure, where a set of stimulus levels is predefined and presented multiple

times in random order. The set of stimulus levels used in this simulation consisted of 12 levels

spaced equally 2 [0.75˚, 9˚]. Each level was presented 5 times.

4.2.3.2 Weighted Up-Down In contrast to the Simple Up-Down [7] and the Transformed

Up-Down [9] methods, the Weighted Up-Down method proposed by Kaernbach [8] can con-

verge to any desired point on the psychometric function using the equilibrium condition stepup
Pt = stepdown(1 − Pt) for the convergence point xt = ψ−1(Pt). Thus, for a target probability Pt =

75%, the ratio stepup/stepdown results in 1
3= . Each correct or incorrect response leads to a

decrease, respectively increase, of the stimulus level according to the following rules:

• −3 stepunit after 3 correct responses,

• +1 stepunit after 2 correct and 1 incorrect response,

• +2 stepunit after 1 correct and 1 incorrect response,

• +3 stepunit after 1 incorrect response,

where stepunit was 0.5˚ and the start level x0 was 5.5˚.

4.2.3.3 PEST (log) The adaptive procedure called Parameter Estimation by Sequential Test-

ing was introduced by [12]. The desired convergence point (percentage of correct responses)

can be selected, no prior assumptions on the subject’s psychometric function are required, and

it is based on a set of heuristic rules defining step sizes as follows:

• The step size is halved on every direction reversal.

• The first and second step in the same direction are of same size.

• The third step is double the second if the step immediately preceding the last reversal

resulted from a doubling, or same otherwise.

• The fourth and additional steps in the same direction are the double of their predecessor.

According to the Wald sequential likelihood-ratio test, the level is maintained if Ncorrect 2

(Ntotal × Pt ±W) and changed otherwise. Ncorrect and Ntotal correspond to the number of cor-

rectly responded trials and the total number of subsequent trials at the same level. A value of

Pt = 0.75 leads to a convergence towards 75% correct responses in a 2AFC experiment. The
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deviation limit W of the sequential test was set to W = 1, as suggested in [12]. This parameter

defines the trade-off between quick (highly dynamic behavior of PEST) and powerful (slower

level changes but with higher statistical confidence) decisions. PEST requires two starting

parameters: the start level x0 and the stepstart, which were set to 5.5˚ and 2˚, respectively.

Despite PEST having three termination conditions in addition to a total maximum number of

trials (i.e., maximum number of consecutive trials at the same level x or a step below a mini-

mum threshold stepmin), they were not used in the present simulations to reach always 60

trials.

PEST is often used in psychoacoustic experiments where auditory stimulus levels are given

in dB [4, 12, 19]. However, when PEST is applied to an experiment estimating a joint angle dif-

ference threshold, zero crossings of the level x when continuously decreasing the level leads to

potential problems and undesired behavior of the algorithm (convergence towards the upper

or lower difference threshold, and reduction of efficiency through temporally divergence from

the threshold). To address these issues, a logarithmic mapping f: Stimulus! PEST, f(x) = log x
between the stimulus domain in degrees and the PEST domain was introduced [40]. Conse-

quently, the stimulus levels always remain positive, even if the PEST level performs zero cross-

ings. Because the mapping depends on absolute values, the mapping functions f(x) and f−1(x)

cannot be directly applied to a step. Instead, a step has to be regarded as a vector and the map-

ping functions have to be applied to the initial and terminal points separately, after which the

two values are subtracted to define the step length in the specific domain (i.e., Stimulus- or

PEST-domain).

4.2.3.4 SA Staircases (standard) The standard Stochastic Approximation (SA) Staircases

[14] can converge to any target probability Pt using asymmetric upward and downward steps.

The step size is defined by the following rule and decreases with the number of trials n:

xnþ1 ¼ xn �
stepunit

n
zn � Ptð Þ ; ð5Þ

where zn is the binary response (0 incorrect, 1 correct) at trial n. The start level x0 and stepunit
were set to 5.5˚ and 4˚, respectively, with Pt = 0.75.

4.2.3.5 SA Staircases (accelerated) Kesten proposed an accelerated version of the Stochas-

tic Approximation (SA) Staircases [13]. The first two trials of the procedure are identical to the

standard SA Staircase. For the subsequent trials (n> 2) the step size is changed only when the

response changes according to the following rule:

xnþ1 ¼ xn �
stepunit

2þmshift
zn � Ptð Þ ; ð6Þ

where mshift is the number of shifts in response category (i.e., reversals). The start level x0 and

stepunit were set to 5.5˚ and 4˚, respectively, with Pt = 0.75.

4.2.3.6 PSI method TheC method was developed by [15] to estimate the threshold and

slope: The posterior probability distribution across the two-dimensional space (threshold and

slope) of psychometric functions is updated following Bayes’ rule. Subsequently, the psycho-

metric function is estimated by computing the mean of the posterior probability distribution.

The next level is defined by a one-step ahead minimum search of an entropy-based cost func-

tion in order to optimize information gain. The detailed equations are presented in [15]. The

threshold grid used in the simulations was [0.25˚, 10˚] in steps of 0.125˚. The slope (Slopeα)

grid consisted of 12 logarithmically spaced values from 0.0625/˚ to 2/˚. The guessing rate γ and

lapse rate λ were set to 0.5 and 0. Levels were restricted to x 2 [0.25˚, 10˚] in steps of 0.125˚.
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4.3 Results

4.3.1 Example sequences. A set of procedure sequence examples (from one simulation

run) for the six different tested procedures illustrating stimulus placement and adaptiveness

(where applicable) are shown in Fig 5 in combination with the template function c
>

5
�
;0:25=

� and

the resulting estimated psychometric function.

4.3.2 Constant and variable errors of threshold and slope estimates. For each psycho-

metric template and procedure, the CE and VE were calculated for the estimation of the

threshold (Figs 6 and 7) and the slope (Figs 8 and 9). In these figures, it can be observed that

for all sampling procedures except MOCS the absolute value of the threshold CE was below

0.1˚ for the largest part of the threshold and slope parameter space. For the PSI method, the

CE was around 0.01˚. In the case of MOCS and Weighted Up-Down, the threshold CE pre-

sented ripples depending on the threshold axis with absolute biases up to 0.4˚ and 0.2˚, respec-

tively. All methods showed decreasing performance towards the boundaries of the parameter

space, especially for the smallest slopes. The standard SA Staircases showed a large negative

bias for increasing thresholds and decreasing slopes (CE up to −1.5˚) and large positive bias

for low thresholds and small slopes (CE up to 1.2˚). Similar but less pronounced effects could

be found for the accelerated version of the SA Staircases. For the PSI method, the CE increased

up to 0.8˚ for low thresholds.

The VE of the threshold showed much less consistent results compared to the CE with

more oscillations along the threshold axis. The VE increased severely for small slopes in all

methods. For thresholds larger than around 6˚, VE started to increase non-monotonically to

more than 1˚ for both standard and accelerated SA Staircases. For MOCS and the PSI method

this was only the case for thresholds larger than 9˚. The Weighted Up-Down method was the

only sampling procedure not showing effects depending on the threshold value, neither for the

central region of the parameter space, nor for the boundary. The PSI method showed the low-

est VE of around 0.1˚ for almost the entire parameter space, compared to the other sampling

procedures.

The slope CE showed an overestimation of the slope in the whole parameter space for all

simulated sampling procedures. Similar to the threshold CE, slope CE ripples were found for

MOCS and Weighted Up-Down. Both SA Staircases methods showed increasing bias for large

thresholds and small slopes, whereas the standard SA Staircases also showed an increased bias

for low thresholds. MOCS, Weighted Up-Down and PEST showed increasing overestimation

for lower slopes, but bias decreased again for slopes smaller than 0.5/˚. The most homogeneous

CE across the parameter space (around 0.1) could be found for the PSI method and it was the

only procedure for which bias decreased monotonically with smaller slopes. For illustration, a

CE of 0.2 corresponds to an estimated slope of 1/˚ for a slope template of 0.5/˚.

The slope VE showed similar behavior across the parameter space as the slope CE. For all

methods the VE lay between 0.15 and 0.3. The main difference compared to the slope CE was

the decreasing variability for small thresholds for MOCS and the standard SA Staircases.

4.3.3 Percentage within bounds. The PCTw/iB curves are presented for each sampling

procedure in Fig 10 for the threshold estimates and Fig 11 for the slope estimates. In general,

the PCTw/iB curves for the threshold estimates followed the shape of exponential cumulative

density functions. All methods had in common that for smaller slopes the PCTw/iB curve

increases less rapidly, and the variability across thresholds was lower compared to the variabil-

ity across different slopes. PEST, the PSI method, and the accelerated SA Staircases demon-

strated the best performance and smallest variability across thresholds (e.g., reaching up to

between 80% and 90% for a slope of 2/˚ and a threshold tolerance of ±0.1˚). However, for

slopes of 0.0625/˚ even these methods achieved only between 60% and 70% within a tolerance
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Fig 5. Examples of simulated sequences and psychometric functions for different sampling procedures. Examples for a template c
>

5
�
;0:25=

� and

comparison of the psychometric function of the template with the resulting fit using a Maximum Likelihood criterion. The size of the black dots indicates

the number of repetitions at same stimulus level.

https://doi.org/10.1371/journal.pone.0207217.g005
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interval of ±1˚. On the other hand, MOCS and standard SA Staircases showed the largest vari-

ability and lowest ratio of estimates for given tolerance bounds.

In contrast to the PCTw/iB curves for the threshold estimates, the derivative of the PCTw/iB
curves did not monotonically decrease for the slope estimates. For all procedures except both

SA Staircases, the PCTw/iB for small slope tolerance intervals was higher for smaller slopes

compared to larger slopes, but was the other way around for larger intervals (i.e., larger than

±0.2). In the case of both SA Staircases, PCTw/iB was higher for larger slopes independently of

the slope tolerance interval. The PSI method showed the best overall performance and reached

80% for all slopes for a tolerance of ±0.3. As for the threshold PCTw/iB, MOCS and standard

SA Staircases showed the largest variability.

The tolerance-dependent overall PCTw/iB curves are presented for each sampling proce-

dure in Fig 12 for the threshold estimates and Fig 13 for the slope estimates. For the threshold

estimates, overall PCTw/iB reached 80% for all methods except MOCS for a tolerance interval

of ±0.3˚. PEST, accelerated SA Staircases, and the PSI method showed similar performance

and outperform the others. The overall PCTw/iB for the slope was the highest for the PSI

method and the accelerated SA Staircases, mostly independent of the slope tolerance interval

size.

4.3.4 Normalized area under the curve. The nAUC values computed individually for

each combination of the two-dimensional parameter space are shown as surfaces for each sam-

pling procedure in Fig 14 for the threshold estimates and Fig 15 for the slope estimates. These

nAUC surfaces reflected the area under the PCTw/iB curves, showing a decrease of nAUC for

smaller slopes for threshold estimates across all methods. In addition to Fig 10 the nAUC

Fig 6. Constant errors of threshold estimates. Constant errors (CE) of the threshold estimates for the six different simulated sampling procedures. The color bar

indicated the CE values in (˚).

https://doi.org/10.1371/journal.pone.0207217.g006
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surfaces revealed threshold-dependent differences in performance, such as visible for both ver-

sions of the SA Staircases. For the slope estimates, both versions of the SA Staircases showed

monotonically decreasing nAUC for smaller slopes, whereas in particular MOCS and

Weighted Up-Down showed a large increase of performance for slopes below 0.5/˚.

4.3.5 Normalized volume under the surface. The nVUS and inhomogeneity parameter σ
are listed for each sampling procedure in Fig 14 for the threshold estimates and Fig 15 for the

slope estimates. To compare the overall performance of the methods, these metrics are pre-

sented as ellipses (with center nVUS and half-axis σ, for both threshold and slope) in Fig 16.

For the threshold estimates, PEST, accelerated SA Staircases, and the PSI method performed

almost identically in nVUS (around 0.88) and σ (around 0.08). The overall best slope estimates

were provided by the PSI method (nVUS = 0.85, σ = 0.03) followed by the accelerated SA Stair-

cases. MOCS showed by far the worst performance for both threshold (nVUS = 0.72, σ = 0.07)

and slope (nVUS = 0.72, σ = 0.07) estimates, and the standard SA Staircases showed the largest

inhomogeneities (threshold: σ = 0.12, slope: σ = 0.08).

4.4 Discussion

The aim of this work was to introduce metrics to quantify the performance of psychophysical

sampling procedures in application-driven simulations. The usefulness of the proposed met-

rics for in-depth analysis to identify how the procedures or their parameters could be tuned to

potentially improve estimates and for choosing the best procedure for a specific application

given some requirements (e.g., tolerance interval for the estimates) was illustrated using

Fig 7. Variable errors of threshold estimates. Variable errors (VE) of the threshold estimates for the six different simulated sampling procedures. The color bar

indicated the VE values in (˚).

https://doi.org/10.1371/journal.pone.0207217.g007
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computer simulations. These included the simulation of six different sampling procedures

using values and ranges from a real-world application example.

4.4.1 Strengths of this analysis framework. The efficiency in terms of variability multi-

plied by the number of trials [12, 36] has been evaluated for many sampling procedures using

computer simulations [8, 11, 12, 18–20, 32–35]. This approach aims at evaluating the benefit

of adding more trials for better estimates. While this may be beneficial in some applications or

for benchmarking, this analysis approach is incomplete and of limited use for real applications,

where a sampling procedure should be selected and tuned to a specific distribution of psycho-

metric functions of the population to be assessed. Furthermore, the performance of sampling

procedures is often investigated for a single psychometric function or for a very limited num-

ber of threshold and slope parameters [8, 11, 18, 20, 33–35, 38]. As a matter of fact, this defini-

tion of efficiency corresponds to the square of the VE multiplied by a constant number for a

given number of trials. Thus, when computed for a specific psychometric function, the effi-

ciency would correspond to a single point on the VE-surface plots (e.g., Fig 7).

As shown in the present work, the performance of sampling procedures can vary consider-

ably for different parameter values of psychometric functions. Therefore, results may not be

representative for other values. As it has been noted by Klein: “It is always a good idea to carry
out Monte Carlo simulations of one’s experimental procedures, looking for the unexpected.” [57].

With the presented analysis method we could demonstrate the importance of simulating a

wide range of psychometric functions covering the full parameter space of interest (i.e., thresh-

old and slope) and illustrate the benefits of the different metrics for selecting and improving

psychophysical sampling procedures.

Fig 8. Constant errors of slope estimates. Constant errors (CE) of the slope estimates for the six different simulated sampling procedures. The color bar indicated

the CE values in (a.u.).

https://doi.org/10.1371/journal.pone.0207217.g008
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The raw errors can describe bias (CE) and variability (VE). Their representation in the

parameter space allows to detect suboptimal performance, for example, due to poor selection

of parameters of a sampling procedure or decreases in performance towards the boundaries of

the parameter space. By applying the transformation to arbitrary units on the slopes, errors in

slope estimates can also be calculated and analyzed the same way, without penalizing slope

errors in steep psychometric functions. For applications where a certain tolerance of estima-

tion errors can be accepted, a new metric (PCTw/iB) based on the absolute errors (AE) was

introduced. This metric is useful to assess the probability of the estimated parameter falling

into a defined tolerance interval, and can be plotted for different psychometric functions. One

advantage of the PCTw/iB compared to the average CE and VE, or the sweat factor [12, 36] is

that this metric is robust against large outliers. As is the case in Fig 10, the plots can show very

poor performance for small slopes. However, this visual representation of simulated templates

may be misleading when deducing the overall performance. This has been addressed by post-

hoc linear resampling of the parameter space of PCTw/iB±Tol for each tolerance, from which

the overall performance (tolerance-dependent overall PCTw/iB) can be calculated (Fig 12).

This plot reveals that the overall performance for this parameter space is higher than what

could have been misinterpreted based on Fig 10. Thus, despite large threshold estimate vari-

ability for small slopes, the best simulated methods provide around 80% of the threshold esti-

mates within a tolerance interval ±0.2˚, which in the present application is around one order

of magnitude smaller than the proprioceptive difference thresholds of healthy subjects (rang-

ing from around 1˚ to 5˚) [40, 46–48, 50–53]. The PCTw/iB is similar to the concept of a

“usability index” introduced by [37], describing the percentage of times that a sampling

Fig 9. Variable errors of slope estimates. Variable errors (VE) of the slope estimates for the six different simulated sampling procedures. The color bar indicated the

VE values in (a.u.).

https://doi.org/10.1371/journal.pone.0207217.g009
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procedure produces “usable data”. While authors present the “usability index” as a function of

number of trials, our metric is a function of the acceptable tolerance and has a relation to the

specific application examples. To deduce higher-level overall performance metrics, the nAUC
surface (based on the integral of the normalized PCTw/iB) can be computed. Since the nAUC
is remotely based on the AE, which is a composite of CE and VE, the nAUC surfaces are similar

to the inverse of the CE and VE surfaces, but normalized to [0, 1]. Whereas the nAUC is calcu-

lated for each simulated psychometric function, the general performance metric (nVUS) and

inhomogeneity parameter (σ) are independent of the parameter space, and can be used to

select the optimal sampling procedure and to compare different sets of sampling procedure-

specific parameters. The latter two metrics can, in case of threshold and slope to be estimated,

be visualized as ellipses allowing a summarizing view on the performance for both parameters

(Fig 16). Furthermore, this analysis framework is independent of the parametric version of the

psychometric function and paradigm used, and can thus also be used, for example, for yes-no

experiments with psychometric functions with γ = 0. Moreover, it can also be extended to the

estimation of the lapse rate.

4.4.2 Comparison of psychophysical sampling procedures for the application exam-

ple. Before discussing differences in the performance between sampling procedures, it should

be noted that the choice of the parameters of the sampling procedures was based on experi-

mental experience and that they were not systematically optimized to achieve the highest pos-

sible performance. It is, therefore, not possible to make claims about consistent superiority of

any sampling procedure, and results are only an example of performances that could be

Fig 10. Percentage within bounds for the threshold estimates. For each slope value of the template parameter set, the percentage within bounds (PCTw/iB)

function for threshold estimation are shown with the mean (bold line) and standard deviation (shaded band) across all modeled thresholds.

https://doi.org/10.1371/journal.pone.0207217.g010
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Fig 11. Percentage within bounds for the slope estimates. For each slope value of the template parameter set, the percentage within bounds (PCTw/iB) function for

slope estimation are shown with the mean (bold line) and standard deviation (shaded band) across all modeled thresholds.

https://doi.org/10.1371/journal.pone.0207217.g011

Fig 12. Overall percentage within bounds for the threshold estimates. Overall percentage within bounds (PCTw/iB)

function for threshold estimation for a linearly resampled parameter space.

https://doi.org/10.1371/journal.pone.0207217.g012
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Fig 13. Overall percentage within bounds for the slope estimates. Overall percentage within bounds (PCTw/iB)

function for slope estimation for a linearly resampled parameter space.

https://doi.org/10.1371/journal.pone.0207217.g013

Fig 14. Normalized area under the curve for the threshold estimates. The normalized area under the curve (nAUC, represented by surfaces for the parameter

space) and corresponding normalized volume under the surface (nVUS) and inhomogeneity parameter σ are shown for the threshold estimation. nAUC and nVUS
values of 1 correspond to a perfect threshold estimation. The color bar indicates the nAUC values in (a.u.).

https://doi.org/10.1371/journal.pone.0207217.g014
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obtained. However, they serve well to illustrate insights, which can be gained by using the pro-

posed analysis framework, and identify actions to address limitations of sampling procedures.

In this application example and given the chosen parameters of the sampling procedures,

PEST provides the best overall threshold estimates (i.e., highest nVUS), as visible in Fig 16.

Yet, the PSI method and the accelerated SA Staircases perform similarly well to PEST and dis-

tinctively better than the other sampling procedures. This can be confirmed in Fig 12 showing

the tolerance-dependent estimation performance. Interestingly, the accelerated SA Staircases

performs better than, for example, the Weighted Up-Down method, despite large VE and

increased bias (CE) for high thresholds, whereas the latter shows more constant performance

across the threshold parameter space (Fig 7). These high threshold VE oscillations (appearing

for both SA Staircases) exist only for thresholds larger than the start level and may arise from

the asymmetric descending and ascending step sizes. A similar, yet not so strong, effect can be

noticed for PEST. Since with the logarithmic version of PEST steps become larger when

ascending towards higher levels, it requires more trials to converge towards a threshold with

the same precision. However, as the number of available trials is limited by administration

time requirements of this application, variability of the estimates increases. Thus, a recommen-

dation to improve the performance of these three procedures would be to select a higher start

level and converge towards the threshold with descending steps. The reason for the Weighted

Up-Down method not showing such decreases in performance for high thresholds, in contrast

to the other adaptive methods, may be the constant step size which is well chosen with regards

to the parameter space of the simulated templates. Unsurprisingly, the estimation performance

Fig 15. Normalized area under the curve for the slope estimates. The normalized area under the curve (nAUC, represented by surfaces for the parameter space)

and corresponding normalized volume under the surface (nVUS) and inhomogeneity parameter σ are shown for the slope estimation. nAUC and nVUS values of 1

correspond to a perfect slope estimation. The color bar indicates the nAUC values in (a.u.).

https://doi.org/10.1371/journal.pone.0207217.g015
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of MOCS shows ripples in both CE and VE (Figs 6 and 7). This reflects the limited number of

different stimulus levels and presentations leading to equal estimations of psychometric func-

tions for similar templates creating error ripples depending on the threshold. Both MOCS and

the PSI method present increased VE at the boundary of the parameter space (i.e., high thresh-

olds). This is attributable to the boundaries of the grid-like stimulus levels and the grid of psy-

chometric functions used for the posterior probability distribution of the PSI method. As, for

example, in the case of MOCS, the maximum stimulus level presented is 9˚. If the threshold of

the template to be estimated is higher than this maximum level, there is no data at levels with

high performance available for the Maximum Likelihood fit of the psychometric function. Fur-

thermore, each level is presented only five times, resulting in a discretization of the propor-

tions of correct responses with steps of 0.2. This is not sensitive enough to properly estimate

the psychometric function just based on data from low performance levels. Thus, to improve

MOCS and the PSI method for this application, the threshold grids should be expanded

beyond the parameter space, which would resolve the issues at the boundary. Across all sam-

pling procedures, the threshold estimation performance decreases when the psychometric

functions to be estimated have a small slope. This is an inherent problem of psychophysical

assessments, as a slowly rising psychometric function increases uncertainty and thus intro-

duces higher variability in answers. Moreover, it becomes more difficult for threshold tracking

methods to converge towards the threshold. Therefore, all sampling procedures perform

poorly for small slopes, as visible in Fig 10.

While PEST, accelerated SA Staircases, and the PSI method perform similarly well in esti-

mating thresholds, the PSI method outperforms the other methods in estimating the slope of

Fig 16. Overall performance of the six procedures. Two-dimensional plot showing the overall performance of the six

methods based on the normalized volume under the surface (nVUS) and inhomogeneity parameter σ for the threshold

and slope. The ellipses are centered at nVUS and the half-axes correspond to σ. Higher nVUS values and smaller half-

axed indicate better estimation performance.

https://doi.org/10.1371/journal.pone.0207217.g016
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the psychometric function (Figs 16 and 13). The PSI method was also in particular developed

to estimate both threshold and slope [15]. Thus, this sampling procedure places the stimulus

levels in a way to optimize the estimation of both parameters (i.e., also at levels of high and low

percentage of correct responses). This is also reflected in the “jumps” of the stimulus levels of

the sequence example shown in Fig 5. However, it should be noted that, when choosing new

stimulus levels, the PSI method can take advantage of using the parametrized psychometric

function, which in simulations often follows the same parametrization as the psychometric

function generating the responses (i.e., the psychometric function to be sampled). As a conse-

quence, the PSI method might have an advantage that may result in artificially inflated perfor-

mance. To test how much the results are affected, the presented metrics framework could

again be used. In contrast to the PSI method, the other adaptive methods (in particular PEST

and both SA Staircases) show faster asymptotic behavior towards the threshold to be estimated.

The exploration of the stimulus levels with the latter sampling procedures depends solely on

the selected start level and the initial step size, and is thus not optimized to cover a wide range

of the psychometric function. The accelerated SA Staircases procedure is more aggressive than

the standard version (because the denominator in the equation for calculating the new level is

smaller, resulting in larger steps) and thus leads to more oscillations around the threshold,

which helps to estimate the slope. Therefore, if the slope is of interest, a sampling procedure

which places trials at well separated levels should be used [57]. However, if the differences

between the levels are too large in comparison to the slope (which can be the case for MOCS

and the Weighted Up-Down method if sampling procedure-specific parameters are not well

chosen), steep slopes are difficult to estimate because the sampling procedure may not place

levels in the “slope region” of the psychometric function. In addition, due to its non-adap-

tiveness (i.e., predefined and fixed stimulus levels), MOCS places too many trials in regions of

little information content (i.e., of very low and very high percentage of correct responses) (Fig

5). Besides the proportion of correct responses suffering from low resolution, these trials do

not significantly contribute to the Maximum Likelihood fit of the psychometric function, as by

definition of the psychometric function ψ(x) the asymptotic values are already defined (i.e., 0.5

and 1). Thus, depending on whether the slope of the psychometric function to be estimated is

small or steep, non-adaptive and adaptive fixed-grid-level procedures (e.g., MOCS, Weighted

Up-Down) may perform better than threshold tracking procedures (e.g., PEST, standard and

accelerated SA Staircases), and vice versa, as can be inferred from Fig 11. The PSI method can

also be considered an adaptive fixed-grid-level procedure. While the variability of the slope

estimates improves for small slopes, the differences are small across the parameter space, as

shown by the small value of the inhomogeneity metric σ. Similar to the threshold estimates,

MOCS shows threshold-dependent ripples in the performance of the slope estimation, also

resulting in large inhomogeneity, due to suboptimal and coarse distribution of stimuli.

Many of our findings are in line with the literature, though the results from the simulations

are difficult to compare quantitatively due to a large number of different variants of sampling

procedures, analysis methods mostly focusing on overall efficiency, and other sampling proce-

dure-specific parameter values and applications. In the literature, most sampling procedures

were compared to MOCS, and all discourage from using MOCS, as it is inefficient (i.e., suffers

from higher variability) compared to adaptive methods [35, 37, 58] and provides more biased

results [59]. Especially in scenarios where there is no prior information about the parameters

of the psychometric function to be estimated (which is often the case in clinical assessments

with a large range of conditions), stimuli may (initially) be placed far from the region of inter-

est. Methods using stochastic approximation have also been investigated, with the accelerated

SA Staircase procedure showing better performance compared to the standard version and to

fixed step size staircase methods [38]. An additional advantage of the SA Staircase procedures
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is that no assumptions of shape or parameters of the psychometric function are required, and

is thus less susceptible to parameter mismatches [5, 38]. The accelerated SA Staircase proce-

dure was also shown to have a similar performance as mean-Bayesian methods, which seem to

have near-optimal performance [5]. As in the present work, it was suggested to use a clear

suprathreshold initial stimulus intensity (i.e., level at high proportion of correct responses)

and a large initial step size, which should lead to a good performance independent of the slope

of the psychometric function [38]. If the full shape of the psychometric function is desired, fast

threshold tracking methods with decreasing step sizes should be avoided [37]. This could also

be shown in the present simulations, although it is mostly valid for small slopes only.

4.4.3 Limitations. One limitation of this analysis framework is the need to representa-

tively sample the parameter space and acquire enough information to observe the behavior of

different sampling procedures (e.g., threshold-dependent ripples induced by MOCS) as well as

to run enough repetitions of the simulations to obtain representative results. As simulations

have been run only 1000 times for each template and sampling procedure, the computed met-

rics need to be regarded as stochastic variables, and their non-deterministic nature may com-

promise the interpretation of the results. However, using a jackknife resampling technique

(computing a distribution of metric values by systematically leaving out each simulation run

once) it could be shown that the maximum standard deviation of threshold nAUC across all

templates remained below 0.001 for all six sampling procedures. This is around two orders of

magnitude smaller than the inhomogeneity parameter σ, proving that 1000 simulation runs

are sufficient.

Since the shape of the psychometric function may not follow the mathematical model ψ(x)

used when fitting the psychometric function, this might introduce systematic errors. However,

this is a general concern of hybrid procedures (using heuristic adaptive sampling procedures

combined with fitting of parametric psychometric functions) and methods assuming a particu-

lar shape for the stimulus selection. Nevertheless, the presented metrics could also be used

with estimates resulting directly from the adaptive sequence instead of estimates from the fit-

ting process. Depending on the perception modality assessed and the sampling procedure,

these two types of estimates may highly correlate (e.g., [40]).

Since the performance metrics are intended to be used for an application-driven evaluation

of sampling procedures, the present quantitative illustration is limited to the example of pro-

prioceptive function, and a non-exhaustive set of different sampling procedures and method

parameters was presented. There exist other commonly used sampling procedures (e.g.,

QUEST [17]) that could be evaluated with this framework. It should be noted that this frame-

work does not allow deducing the performance of one sampling procedure from another in

absence of a theoretical analysis of the sampling procedures. Therefore, new simulations

would be required for other sampling procedures.

To simplify the simulations and the presentation of the results, the guess rate γ = 0.5 and

lapse rate λ = 0 were held constant for the templates as well as for the fitting process instead of

using free parameters. Since it has been shown that not taking lapses into account may bias the

threshold estimates [30], and that perception can be non-stationary during experiments due

to, for example, inattention, learning, or change in decision criteria [23, 25, 60–62], more real-

istic simulations should take these factors into account, and more elaborate sampling proce-

dures [16] or methods to address these specific challenges could be used in combination with

the fitting process or the sampling procedure [26, 30]. Since the perception thresholds and

slopes of the sampled population may not be linearly distributed, as assumed in this work

when resampling the PCTw/iB±Tol or nAUC space, a more realistic distribution (e.g., log–nor-

mal distribution for parameters with semi-infinite positive support) could be based on some

prior knowledge. This could be achieved by defining an n-dimensional (in the present case

Performance metrics for psychophysical sampling procedures

PLOS ONE | https://doi.org/10.1371/journal.pone.0207217 November 28, 2018 23 / 27

https://doi.org/10.1371/journal.pone.0207217


two-dimensional for the threshold and slope parameters) density function in the parameter

space to correct nVUS with a weighting factor (e.g. multiplying the volume sections by a factor)

or to calculate the inhomogeneity parameter σ based on a non-linear resampled space (i.e.,

resampling density according to the population distribution).

5 Conclusions

This work introduces a set of novel metrics to evaluate the performance of psychophysical

sampling procedures in estimating parameters of psychometric functions quantitatively, using

application-driven simulations. The analysis framework can be used for any type of sampling

procedure and parameters to be estimated (e.g., threshold, slope, lapse rate), and is indepen-

dent of the parametric versions of psychometric functions (e.g., normal, logistic, Weibull) and

the application-specific parameter spaces. In summary, the illustrative analysis of a simulation

based on a scenario of proprioceptive assessment using these metrics allowed identifying sub-

optimal parameter choices for different simulated sampling procedures and deriving sugges-

tions on how to improve the methods. Furthermore, the optimal sampling procedure could be

identified, which could be tuned and analyzed in a second iterative step using the same metrics

framework. Thus, these metrics allow a deeper understanding of the strengths and limitations

of the sampling procedures, facilitate the parameter tuning, and showed that it is important to

evaluate the procedures for different psychometric functions with metrics beyond efficiency.
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