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A B S T R A C T   

Mitochondria are essential organelles that play crucial roles in cellular energy metabolism, calcium signaling and 
apoptosis. Their importance in tissue homeostasis and stress responses, combined to their ability to transition 
between various structural and functional states, make them excellent organelles for monitoring cellular health. 
Quantitative assessment of mitochondrial morphology can therefore provide valuable insights into 
environmentally-induced cell damage. 

High-content screening (HCS) provides a powerful tool for analyzing organelles and cellular substructures. We 
developed a fully automated and miniaturized HCS wet-plus-dry pipeline (MITOMATICS) exploiting mito-
chondrial morphology as a marker for monitoring cellular health or damage. MITOMATICS uses an in-house, 
proprietary software (MitoRadar) to enable fast, exhaustive and cost-effective analysis of mitochondrial 
morphology and its inherent diversity in live cells. 

We applied our pipeline and big data analytics software to assess the mitotoxicity of selected chemicals, using 
the mitochondrial uncoupler CCCP as an internal control. Six different pesticides (inhibiting complexes I, II and 
III of the mitochondrial respiratory chain) were tested as individual compounds and five other pesticides present 
locally in Occitanie (Southern France) were assessed in combination to determine acute mitotoxicity. Our results 
show that the assayed pesticides exhibit specific signatures when used as single compounds or chemical mixtures 
and that they function synergistically to impact mitochondrial architecture. 

Study of environment-induced mitochondrial damage has the potential to open new fields in mechanistic 
toxicology, currently underexplored by regulatory toxicology and exposome research. Such exploration could 
inform health policy guidelines and foster pharmacological intervention, water, air and soil pollution control and 
food safety.   

1. Introduction 

Mitochondria play a vital role in ATP production and in many critical 
cellular processes [1,2]. Mitochondrial markers are among the first to 
change upon homeostasis disruption, such as when cells are exposed to 
environmental stress [3–5] (e.g. toxicants), and during disease [6,7] and 
aging [8]. By sensing and responding to changes in the cellular envi-
ronment, mitochondria orchestrate adaptive responses that extends well 
over cellular boundaries to impact tissue, organ and ultimately organism 

physiology [9]. The importance of mitochondria in tissue homeostasis, 
stress responses and diseases, combined to their ability to transition 
between various structural and functional states, make them excellent 
organelles for monitoring cell health [10]. 

Healthy mitochondria are usually mobile, tubular and inter-
connected, whereas cells under stress or entering apoptosis often display 
swollen or fragmented mitochondria, marked by concurrent disruption 
of metabolism and excess production of reactive oxygen species (ROS) 
[11]. Mitochondrial change in shape and size depending on their 
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functional status, for example going though cycles of fission and fusion 
to improve mitochondrial quality [12]. Thus, mitochondrial morpho-
logical phenotypes are complex and heterogeneous. The morphological 
diversity of this highly dynamic organelle varies from small punctate 
structures to well-developed reticular networks with numerous inter-
mediate states in-between. To define or classify mitochondrial 
(network) architectures, only a few terms are usually used, such as short, 
long, fragmented, interconnected, tubular, ramified, compacted, aggregated, 
dislocated, fissioned or hyperfused [13–15]. These terms are often used in 
an operator-dependent, subjective way. 

In recent years, to address the challenge of describing this inherent 
mitochondrial diversity more objectively, several approaches which 
apply image processing algorithms and morphometric methods have 
been developed [16–18], providing valuable insights into tissue physi-
ology, pathology and damage [19–21]. However, most of these pro-
grams are difficult to utilize in standard biology laboratories since they 
require extensively trained staff and only handle the morphological 
computation steps, with no visual display, statistical analysis or 
decision-making support. In most cases, only a limited number of cells or 
conditions are analyzed with such software, creating ambiguity about 
the robustness of the obtained data and ultimately as to the true utility of 
such software. 

Over the last few years, we developed a sophisticated and innovative 
pipeline (MITOMATICS) exploiting mitochondrial morphology as a 
marker for monitoring cellular health or damage. MITOMATICS uses 
computerized methods to enable accurate, fast and cost-effective anal-
ysis of mitochondrial shape and network architecture from confocal 
fluorescent images acquired from cultured living cells. Three successive 
versions of this in-house, proprietary software were produced: MitoSh-
ape (2 shape descriptors) [22], MitoTouch (31 descriptors) (Charrasse 
et al., submitted) and the here within described MitoRadar (104 shape 
descriptors). This software is easy to use and does not require any special 
skills in computer science or image processing. In contrast to previous 
versions, numerous parameters have been added to provide a multiscale 
analysis of the mitochondrial component (from solitary mitochondria to 
mitochondrial clusters present within single cells or in a cell population) 
and the segmentation step is now performed by deep learning, 
enhancing image quality and enabling accurate analysis. As a result, 
MitoRadar generates specific ‘mito-signatures’, some of which signal 
cell safety whereas others may provide early predictors of cell danger. In 
the present study, we applied MitoRadar in the context of predictive and 
environmental toxicology by assessing mitochondrial architecture in 
live human cells exposed to specific chemicals, including pesticides used 
alone or in combination. 

2. Materials and methods 

2.1. Chemicals 

Dimethyl sulfoxide (DMSO; CAS number 67–68–5), Carbonyl cya-
nide m-chlorophenyl hydrazone (CCCP; CAS number 555–60–2), Rote-
none (CAS number 83–79–4), Antimycine A (CAS number 1397–94–0), 
Mitochondrial Division Inhibitor MDIVI-1 (CAS number 338967–87–6), 
Mitochondrial Fusion Promoter M1 (CAS number 219315–22–7), Fen-
pyroximate (CAS number 134098–61–6), Pyridaben (CAS number 
96489–71–3), Mepronil (CAS number 55814–41–0), Thifluzamide (CAS 
number 130000–40–7), Azoxystrobin (CAS number 131860–33–8), 
Pyraclostrobin (CAS number 175013–18–0), Folpet (CAS number 
133–07–3), Pendimathaline, Chlorpyriphos-Methyl (CAS number 
5598–13–0), Lindane (CAS number 58–89–9), Cyprodinil (CAS number 
121552–61–2) were purchased from Sigma Aldrich. Stock solutions 
between 2 and 100 mM were made in DMSO and stored at − 20 ◦C until 
use. Treatment solutions were prepared freshly for each experiment with 
a final concentration of DMSO below 0.5% (v/v) in culture medium. 

2.2. Cell culture and treatments 

A549 (CCL-185), RPE-1 (CRL-4000), U2OS (CRL-3455), Hs68 (CRL- 
1635), MDA-MB-231 (HTB-26), THLE-3 (CRL-11233), HK-2 (CRL-2190) 
and BEAS-2B (CRL-9482) cell lines were purchased from ATCC (Amer-
ican Type Culture Collection, LGC, Germany) and cultured in a 5% CO2 
atmosphere at 37 ◦C according to ATCC recommendations. To increase 
the susceptibility of cells to mitochondrial toxicants, culture medium 
was replaced by freshly prepared glucose-free medium supplemented 
with 10 mM galactose. For treatment, indicated concentrations of 
chemicals were added to the culture medium. LD50 was determined by 
counting nuclei 24 h after drug exposure. Four biological replicates were 
performed for all experiments and each experiment was repeated at least 
3 times. For the MitoCocktail experiments, the most prominent pesticides 
were tested at concentrations from 10 to 500 µM and solutions were 
prepared according to a rule of conservative ratios, i.e., by mixing 
different pesticides with relative proportions (expressed in µM) based on 
the ATMO report (where pesticide concentrations are expressed as ng of 
substance per m3 of air). 

2.3. Cell staining and HCS Imaging 

A total number of 20,000–40,000 cells were seeded onto 96-well 
black polystyrene microplates (CLS3603, Corning®) 24–48 h prior 
conducting experiments. Mitochondrial morphology was examined after 
staining with 250 nM MitoTracker Deep Red FM (M22426) diluted in 
phenol red-free culture medium in presence of 2.5 µg/mL Hoechst 
33342 (H21492) for 30 min at 37 ◦C. Cells were then washed twice with 
PBS and labelled with 6.25 µg/mL CellMask Green Plasma Membrane 
Stain (C37608) for 5 min at 37 ◦C. All these vital dyes were purchased 
from Thermofisher Scientific (Life Technologies SAS, Courtaboeuf, 
France). Mitochondrial network, nuclei and membranes of live cells 
were imaged using the Opera Phenix® High-Content Screening System 
(PerkinElmer Inc.). Confocal image acquisition (spinning disk) was 
performed using a 63x water immersion lens (1.15NA LD C-Apochro-
mat) and 5 fields were imaged per well. Automated image capture on a 
16 bit sCMOS camera (pixel 6.5 µm) using 640 nm/488 nm/405 nm 
lasers in the indicated order, with Phenix emission filters 650–760 nm/ 
500–550 nm/435–550 nm, has been optimized to provide high image 
quality and resolution. In particular, laser power and exposure time 
were adjusted to maximize signal without saturation and to minimize 
photobleaching and background noise (20% power, 100 ms for the far- 
red channel, 80% power, 500 ms for the green channel and 100%, 200 
ms for the blue channel). 

2.4. Quantification of mitochondrial parameters using MitoRadar 

As described below, the MitoRadar software (APP deposit number: 
IDDN.FR.001.470036.000.S.P.2022.000.31235) consists of several 
modules designed for data handling, data processing, detection and 
comprehensive analysis of mitochondrial changes in HCS imaging data. 

2.5. Basic image import and processing 

First, a loading module enables the import of fluorescence images 
from high-content imaging (HCI) microscopes. A plate module can be 
used to add experimental data information during the loading stage. A 
data handling module allows for the sorting of images and assignment of 
plate data, well data, and experimental data. It can also be used to add 
and update experimental data information at any time during the 
analysis process. 

The segmentation module of MitoRadar uses deep learning and state- 
of-the-art image processing techniques to detect cells, nuclei and mito-
chondria in HCS images (Fig. S1 A) at various scales (Fig. S1 B). The 
MitoRadar segmentation technique utilizes a tri-channel fluorescence 
image input with different colors associated to nuclei, mitochondria and 
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cytoplasm. In this study, 2160 × 2160 images were analyzed at a reso-
lution of 94 nm.pix-1 (Fig. S1 C panel a). 

Next, both nucleus and cell channels undergo a normalization pro-
cess between 0 and 1 utilizing a quantile normalization approach be-
tween quantile 1% and quantile 99%. A trained convolutional network 
(Cellpose uNet) [23,24] is applied to each channel to perform instance 
segmentation of cell and nuclei. The uNet produces a probability map 
and a gradient flow which enables the reconstruction of object instances. 
This method was proven to be effective for cell segmentation of objects 
with irregular shapes [25–27]. To reduce computation time, the images 
are down-sampled to 224 pixels before entering the neural network and 
are up-sampled post-analysis using nearest neighbors followed by a 
median filtering technique to smooth edges (Fig. S1 C panel b). The 
nuclei instances are then associated with cells utilizing a 1-to-1 associ-
ation rule, with the greater intersection size used to resolve conflicts 
when necessary (Fig. S1 C panel c). 

Due to variations in mitochondrial intensity between cells within the 
same field, mitochondrial segmentation is performed cell by cell 
following the segmentation of nuclei and cells. The corresponding 
bounding box within the mitochondrial channel is extracted for each 
cell, and the average intensity inside the cell mask is utilized for back-
ground noise removal. The intensities are normalized between 0 and 1 
utilizing a quantile normalization approach between quantile 0% and 
quantile 99.9%. Next, a Gaussian difference threshold (sigma=0.9 µm, t 
= 0.05) and a Laplacian of Gaussian threshold (sigma=0.9 µm, t = 0) are 
applied to produce a mitochondrial mask for the cell. Clusters are 
defined as connected components on this mask (Fig. S1 C panel d) and 
are refined by removing small objects (size < 16 pixels or 0.13 µm2) 
followed by morphological closing. The skeletons of mitochondrial 
clusters are extracted utilizing Zhang’s algorithm [28] (Fig. S1 C panel 
e). Finally, to detect each individual instance of mitochondria, a 
watershed approach is applied to mitochondrial intensities using the 
skeleton branches as seeds and the mitochondrial mask as the mask 
(Fig. S1 C panel f). Moreover, this segmentation module can be paral-
lelized and utilizes the GPU for fast processing of a large number of 
images. 

2.6. Automated parameter quantification with integrated statistics 

After segmentation, pictures are declumped and a quantification 
module then collects 104 morphological, intensity and texture param-
eters (hereby referred to as ‘morphological descriptors’; see Table S1 for 
the exhaustive list and further details) on cells, nuclei, mitochondria and 
mitochondrial clusters. These descriptors can be used to characterize 
various aspects of mitochondrial architecture, such as size, shape, den-
sity and organization within the cellular area. Note that the current 
version of the software does not normalize descriptor values based on 
the cell size. Finally, the analysis module of MitoRadar allows users to 
make state-of-the-art statistical tests and plots on the resulting quanti-
fications and to easily compare experimental conditions. This module 
also includes integrated linear discriminant analysis (LDA) and principal 
component analysis (PCA) for exploring multivariate effects and a spe-
cific MitoRadar plot to access both significance and amplitude 
information. 

The MitoRadar analysis module can calculate a MitoScore based on a 
cross validation of the impact (difference with the basal condition) and 
number of all affected parameters. First, a hierarchical clustering is 
applied to remove redundancies among descriptors. Then, 20 LDA 
models are trained on 50% fold random samples of the data to differ-
entiate between the control and the trial conditions. These are then 
tested on the complementary folds using the average balanced accuracy 
between all LDA models as a score showing how easily a mL algorithm 
can discriminate between control and trial. The top 15 significant un-
correlated descriptors that discriminate the compared conditions are 
then shown in a MitoRadar plot and a slider is placed along a heat color 
scale, leading to the delineation of five distinct categories (No effect, 

Limited / Substantial / Measurable or Large overall effect) (Fig. 1). 

3. Results 

3.1. Design of the MITOMATICS workflow 

Quantitative imaging of cellular structures and substructures like 
mitochondria requires rethinking low-throughput experimental pro-
cedures to include the use of multi-well plates (rather than tissue culture 
petri dishes or small imaging chambers), live cell techniques (instead of 
fixed-cell imaging methods), random imaging of multiple fields (rather 
than operator-dependent monitoring of only one chosen microscope 
field encompassing multiple cells), databases of high-quality, classified 
images (rather than production of a limited number of acquired images), 
automated digital image processing (instead of manual counting) and 
rapid, massive data gathering, analysis and visualization (rather than 
slow performance data analysis with suboptimal charts, graphs or his-
tograms hindering easy and correct data interpretation). The MITO-
MATICS wet-plus-dry pipeline has been specifically designed for high- 
throughput phenotyping of mitochondrial morphology by miniatur-
izing and automating high-resolution imaging before an in-house soft-
ware application (MitoRadar) handles all fundamental operations from 
image segmentation to statistical analysis and drawing meaningful 
interpretation from custom mito-signatures (Fig. 1). The use of 96-well 
plates with random imaging of 5 fields per well enables analysis of 
multiple experimental conditions while achieving robust results. To 
image mitochondria in their cellular context, we use the potentiometric 
dye MitoTracker Deep Red (MTDR) in combination with fluorescent 
markers (green and blue, respectively) specific for cellular membranes 
(Cell Mask Green) and nuclei (Hoechst 33342). Confocal images are 
acquired on an Opera Phenix® High-Content Screening (HCS) System 
(equipped in its optimal configuration with a robotic arm and incubator) 
and directly loaded into the MitoRadar software to perform the post- 
acquisition steps. This software uses deep learning during the image 
segmentation phase (Fig. S1) and calculates about a hundred morpho-
logical descriptors (Table S1), offering one of the most comprehensive 
sets of parameters to infer mitochondrial (network) shape and overall 
cell morphology. The MitoRadar software enables the detection and 
assessment of subtle morphological characteristics, undetectable or 
barely detectable through conventional methods and has advanced 
analytical, statistical and graphical features for data representation, 
analysis and interpretation. Our miniaturized technology suits diverse 
applications among which are: testing the noxious effect of individual 
molecules on the mitochondrial network (MitoCollapse module for pre-
dictive toxicology); testing the deleterious effects of combinations of 
molecules, drugs or pollutants (MitoCocktail module for predictive as 
well as environmental toxicology); assessing changes in mitochondrial 
morphology in pathological (or aged) cells compared to their non- 
pathological (or ‘young’) counterparts (MitoMedCare module) and 
objectifying the beneficial effects of cosmetic or pharmacological 
bioactive ingredients (MitOasis module) (Fig. 1). In the present report, 
we focus only on the first two applications. 

3.2. Implementation of the MitoRadar software 

Here, we sought to validate our fully automated image analysis 
pipeline on rich datasets gathered from cultured live human cells 
exposed to specific chemicals known to induce either mitochondrial 
fragmentation (CCCP, Rot, Ant A) [29–32] or mitochondrial hyperfusion 
(MDIVI-1, M1) [33,34]. Eight human cell lines of normal and diseased 
states, from different tissue origin, were successfully imaged (Fig. S2), 
leading to an image database of approximately 30,000 microphoto-
graphs (named ‘MITOPIX-DEV’, DEV standing for ‘development’) that 
was used to develop the MitoRadar software. Representative images are 
shown in Fig. 2 for BEAS-2B cells (see Fig. S3 for the other cell lines), a 
human lung epithelial cell line that has been widely used in toxicity 
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tests, specifically to assess the deleterious effects of heavy metals [35], 
microplastics [36], fine particles [37] and pesticides [38]. 

Based on MITOPIX-DEV, the MitoRadar software was implemented, 
optimized and extensively debugged over a six-month period. Several 
functionalities were implemented: (i) an AI image segmentation module 
(using deep learning) to detect cells, nuclei and mitochondria (Figs. 3A, 
3B panel a and Fig. S1 A); (ii) a quantification module to characterize the 
detected objects with advanced descriptors (n = 104, see Table S1 for 
the exhaustive list); note that for each descriptor, 4 distribution aggre-
gators were computed: mean, variance, skewness and kurtosis, allowing 
for a more refined and realistic description of the objects under study; 
(iii) a database with its dedicated interface dynamically linking the data 
and metadata of the experiments (Fig. 3B panel b); and finally (iv) an 
interface for integrated analysis (including statistics) and easy visuali-
zation of the results (Fig. 3B panels c-d and Fig. 3C). 

MitoRadar provides a comprehensive analysis of the morphological 
characteristics of the mitochondriome of cells by performing morpho-
metric measurements at the supra-mitochondrial, mitochondrial and 
sub-mitochondrial levels. The computer program is multiscalar, allow-
ing to navigate over a diverse range of scales (isolated mitochondria, 
clusters of mitochondria, subcellular locations, cells, cell cultures) 
(Fig. S1B) and multidimensional, multivariate quantitative data being 
readily visualizable through innovative radar charts. Each variable is 
represented along the X-axis. The computed parameters are compared to 
a reference situation (blue circle) and parameters showing statistically 
significant deviation are displayed along a heat map Y-axis (the size of 
the points along the curve reflecting the degree of statistical signifi-
cance). Six different MitoRadar plots can be created by grouping the 
parameters associated with single or networked mitochondria, the total 
mitochondrial complement present in a given cell (mitochondriome), 
cellular features, nuclear features and attributes of the counter shape (i. 
e., inverted selection of the cellular region containing labelled mito-
chondria, to our best knowledge this latter category of descriptors being 
completely new in the field) (see Fig. 3C). Parameters that show little or 
no variation compared to the control are listed in brown, those that 
decrease or increase are respectively colored in blue and red, with fixed 
rank ordering or (according to user preference) with a rank assigned in 

descending or ascending order. 
Results are generated in the form of reports of decreasing 

complexity, integrating statistical analysis and advanced graphical 
representation tools (two functionalities absent from most image anal-
ysis software, which require separate manual processing by a trained 
operator). The colors and their intensities are correlated with the size of 
the measured effects, and statistical significance is represented by circles 
of increasing diameter (Fig. 3C). The user can choose between PCA, 
LDA, correlation map or dendrogram, T-Test with corrections for mul-
tiple comparisons, and SSMD (Fig. 3B panels c-d). All of these advanced 
statistical tests are natively integrated into MitoRadar’s user-friendly 
graphical interface, which makes them accessible without any third- 
party software to biologists who do not have programming skills. It 
also makes it easy to share projects, images, and quantifications. 

3.3. MitoRadar validation on high-throughput microscopy images of cells 
treated with the mitochondrial uncoupler CCCP 

During cellular stress when ROS accumulates the mitochondrial 
network becomes largely fragmented [39]. CCCP, an inhibitor of mito-
chondrial oxidative phosphorylation, evokes the integrated stress 
response and its application to cells results in dramatic fragmentation of 
mitochondria [29,30]. To test the performance of MitoRadar as a big 
data analytics software, we treated BEAS-2B cells with 20 µM CCCP 
during 4 h (Fig. 4A). Five independent experiments were done with 
more than 200,000 cells analyzed, representing about 32,580 micro-
photographs and a total processing time of around 260 min (for the 
whole project). The three upper MitoRadar plots of Fig. 4B show a 
massive and highly significant variation of more than 90% of the de-
scriptors (55/61) related to the mitochondrial phenotype, most of them 
[47] with p < 0.001 * ** (Mann Whitney Test with Benjamini Hochberg 
correction). Among the descriptors that decrease (in blue) and account 
for size reduction of both mitochondria and mitochondrial (sub)net-
works, we find area_mean, aspect_ratio_mean, axis_major_length_mean 
and axis_minor_length_mean, equivalent_diameter_area_mean, fer-
et_diameter_max_mean and perimeter_crofton_mean. 

Mitochondrial fragmentation is evidenced by the augmentation (in 
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Fig. 1. Overview of the MITOMATICS workflow. The main steps of automated analysis of mitochondrial morphology using the MITOMATICS workflow are 
presented. Cellular models are selected (MITOGATE) to assess the mitochondria-disrupting effects of single chemicals (MitoCollapse) or of molecules used in com-
bination (MitoCocktail). Fluorescent images of live cultured cells with labeled mitochondria are captured and loaded into MitoRadar. The images are segmented and a 
total of 104 morphological and texture features are extracted for each frame. The values can be plotted for a particular cell or for all cells present in a given 
microscopic field, at the level of the whole mitochondrial population or for mitochondrial subnetworks. The software handles data analysis, statistics and visual 
exploration for instance in the form of radar plots. Reference condition is standardized by a blue circle for comparison with a different cellular state (lines with other 
colors). The basic steps of this wet-plus-dry pipeline are thus as follows: (i) Pre-acquisition steps: cell treatment including culture in 96-well plates, drug exposure and 
staining. (ii) Acquisition step: live-cell imaging (5 random fields/well) acquired on an Opera Phenix High-Content Screening system (or other imaging platform). (iii) 
Post-acquisition steps: fully automated image analysis by the MitoRadar software including image processing, AI-driven segmentation, parameter quantification, 
statistics, visual representation and scoring. Note that the Graphical Abstract shows a differently annotated version of the pipeline: the step of cellular model selection 
corresponds to ‘Question to protocol’, pre-acquisition and acquisition steps are classed under the denomination ‘Cells to pixels’ and, lastly, post-acquisition steps are 
referred to as ‘Pixels to Data’ and ‘Data to Answer’. 
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red) of circularity and roundness. Smaller degrees of mitochondrial 
interconnection and branching are evidenced by the decrease in skel-
eton length and number of branch points (skel_length_mean, branch_-
points_mean, clusterised_mito and clustering_coef). Consistent with this 
dislocation of the mitochondrial reticulum, the number of mitochondria 
and specifically of isolated mitochondria appears greater. Texture as 
well as density profiles undergo concomitant variations as indicated by 
increase in solidity_mean and in Euler number means, which relate to 
the number of holes in the analyzed cells when mitochondria and 
mitochondrial clusters are considered (Fig. 4B, top right panels) and in 
their inferred negative shapes or countershape (Fig. 4B, bottom middle 
panel). Subcellular distribution of the mitochondria also reflects cellular 
stress as shown by their positioning away from the cell membrane and 
closer to the nucleus. 

Compared to mitochondrial parameters, changes in cellular param-
eters are less drastic (Fig. 4B, bottom right plot) and suggest slight 
spreading of the cells. Because the set of nuclear parameters (n = 18) 
does not display any significant change at all (Fig. 4B, bottom left plot), 
our data demonstrate that MitoRadar objectively measures 
mitochondria-damaging effects before the onset of early apoptotic fea-
tures (such as the appearance of highly condensed pyknotic nuclei, cell 
shrinking and blebbing). These mitochondria-damaging effects are 
described as ‘large’ by an in-house scoring system, MitoScore (Fig. 4C), 
which comprises a color-coded scale and a summary of the most affected 
parameters (see Methods for details). 

MitoRadar software natively offers a range of both basic and fairly 
advanced statistical tools for data analysis, such as PCA, LDA and violin 

plots (i.e., hybrids of box plots and kernel density plots) (Fig. 4D). De-
tails on SSMD values (Fig. S4 A), u-values (Fig. S4 B) and p-values 
(Fig. S4 C) were also plotted separately for better clarity (readability) 
and counting of u-values. Lastly, note that mitochondrial descriptors 
show a high level of correlation on both correlation dendrogram (or 
hierarchical clustering diagram) (Fig. S4 D) and distance map (Fig. S4 
E), revealing a global transformation of the mitochondrial component. 
The PCA plot shows that the control and CCCP conditions clearly 
segregate into two distinct groups (Fig. 4D, panel a). Projection of the 
descriptors onto the axes of the PCA confirms that the observed varia-
tions are mainly due to changes in mitochondrial features (Fig. S4 F). 
LDA with prior knowledge of class labels improves the observed segre-
gation between the control and CCCP-treated groups (Fig. 4D, panel b 
and Fig. S4 G). Violin plots are useful for plotting variations in individual 
descriptors as exemplified here by the Mito roundness_mean variable 
(Fig. 4D, panel c). Altogether, our results suggest that MitoRadar oper-
ates quickly, efficiently, reliably and cost-effectively to distinguish a 
highly fragmented mitochondrial network from a normal, healthy one 
using live-cell fluorescence microscopy images of cultured mammalian 
cells. 

3.4. MitoCollapse: assessing acute mitochondrio-toxicity of single 
pesticides in vitro 

Exposure to anthropogenic pollutants is a critical biomedical and 
ecological issue, pesticides being potentially hazardous to human health 
and one of the main contributors to environmental deterioration. We 

Fig. 2. Implementation of the MITOPIX-DEV image dataset of BEAS-2B cells treated with mitochondrial pro-fission and hyper-fusion drugs. BEAS-2B cells 
were treated with vehicle (0,5% DMSO), pro-fission drugs (20 µM CCCP, 1 µM Rotenone and 1 µM Antimycin A), and hyper-fusion drugs (50 µM MDIVI-1 and 10 µM 
M1) for 2 h and stained with HOE (blue), CMG dye (green) and MTDR (purple) before confocal imaging (on the Opera Phenix HCS system). Images from the different 
fluorescent channels are presented separately or merged (overlay). Zoom-ins are shown. Scale bar = 10 µm. 
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hypothesized that our approach could be useful to assess the in vitro 
mitochondrial toxicity of a selection of pesticides, taking CCCP as an 
internal positive control of cell poisoning. Four different fungicides were 
chosen, including the two ETC complex II inhibitors Mepronil (MEP) and 
Thifluzamide (THI) as well as Azoxystrobin (AZO) and Pyraclostrobin 
(PYRA), which are two ETC complex III inhibitors, plus the two acari-
cides Fenpyroximate (FEN) and Pyridaben (PYRI), which are ETC 
complex I inhibitors. 

Pulmonary BEAS-2B cells were treated with various concentrations 
(10, 50, 100, 250 and 500 µM) of individual pesticides and images were 
taken 2 h after pesticide exposure. The threshold dose (i.e., the dose 
below which MitoRadar plots show no variation compared to control) 
and LD50 (i.e, the dose for which 50% of cells died 24 h after) were then 
evaluated (Fig. 5A). MitoRadar analysis corresponding to features ob-
tained with the 250 µM dose (Fig. 5B) showed a clear disruption of 
mitochondria and their networks in cells following single pesticide 
treatment, compared to control cells, resulting into a MitoScore tran-
sitioning from ‘Substantial overall effect’ to ‘Large overall effect’ (Fig. 5C). 

Like CCCP, all of these pesticides appeared to trigger mitochondrial 
fragmentation when applied at a dose of 250 µM, MitoRadar plots 
showing an increase in the circularity_mean, roundness_mean, and iso-
lated_mito parameters with concomitant decrease in skel_length_mean, 
area_mean, axis_major_length_mean and axis_minor_length_mean. 

Interestingly, analysis with MitoRadar also revealed several unex-
pected differences between the measured effects of the various pesti-
cides. For example, average length of the minor axis of mitochondria 
decreased after treatment with CCCP, THI and PYRA, while a significant 
increase was observed for this parameter with the other pesticides. 
Likewise, the number of mitochondria was increased for CCCP as well 
MET and THI (inhibitors of complex II) and decreased for AZO and PYRA 
(inhibitors of complex III). When LDA was carried out on defined pairs of 
pesticides according to their type of ETC inhibition, untreated controls 
were well separated from the defined groups (as well as from the CCCP- 
treated group) by the first two discriminant axis (Fig. 5D). 

Compared to the negative control (vehicle), the Mito 

euler_number_mean, which reflects the number of holes in the mito-
chondrial network, was smaller for the group of Complex III inhibitors, 
followed by Complex II and I inhibitors, while skeleton length values 
progressively decreased with ETC inhibitors I, III and II. 

Nuclear parameters related to size tended to increase for CCCP while 
they decreased significantly for PYRA. Few variations of the cell and 
countershape features were detected as shown on the MitoRadar plots 
(Fig. S5 A). Details of the statistical analyses are presented in Fig. S5 
(correlation distance MAP Fig. S5 B; SSMD summary Fig. S5 C; U-Value 
Fig. S5 D). 

Therefore, although as a first approximation the mitochondrial 
response to the tested single toxicants was assumed to be similar (with 
pesticide treatment resulting in mitochondrial fragmentation), using 
built-in statistical analysis modules, MitoRadar analysis was able to 
reveal subtle changes in the deep architecture of mitochondrial 
structures. 

3.5. MitoCocktail: assessing acute mitochondrio-toxicity of pesticide 
mixtures in vitro 

We took advantage of MITOMATICS for assessing the mitochondrial 
toxicity of pesticides administered in combination on cultured BEAS-2B 
cells, according to real-world data [40] produced by ATMO-Occitanie, 
the accredited association for air quality monitoring in the Occitanie 
Region (France). Annual campaigns to measure pesticides in the 
ambient air have been carried out over 12 months since 2014 in a rural 
environment dominated by wine, arboriculture or field crops. Based on 
the cumulative concentrations of the fifteen most commonly found 
pesticide residues in the different departments of Occitanie (Tarn-et--
Garonne, Pyrénées-Orientales, Lauragais, Aude and Gard), the top five 
air-borne pesticides were selected for further analysis. The list of pesti-
cides under study comprised two fungicides, Folpel (FOL) and Cypro-
dinil (CYP), one herbicide, Pendimethaline (PEN) and two insecticides, 
Lindane (LIN, banned since 1998) and Chlorpyriphos methyl (CHL) 
(Fig. 6A). 

Fig. 3. Overview of the MitoRadar software. (A) MitoRadar main page. The left panel allows users to manage data and launch image processing tasks while the 
center panel is dedicated to visualization (of both images and segmentation results). The right panel shows the descriptor values and their distribution for a single 
field or on the whole dataset. (B) MitoRadar basic features: a-Segmentation visualization panel (showing cells, nuclei, mitochondria and skeletons); b-Experimental 
data import module to link experimental data from the plates to the captured images; c-Advanced statistical panel to produce advanced statistical representations 
with PCA, LDA, Correlation, T-Test, SSMD and MitoRadar plots; d-Example of a 3D LDA plot produced with MitoRadar in-house statistical module. (C) The resulting 
data are plotted into MitoRadar charts, where the reference condition is standardized by a blue circle for comparison with another experimental condition of interest 
(orange line), such as chemical treatment or diseased status. Parameters can be ranked in ascending order according to their SSMD values and they are colored in blue 
when the effect is diminished, brown when it is low and red when it is increased. Significant differences from basal for each experimental group are depicted by small 
(*: p < 0.05), medium (**: p < 0.01) or large (***: p < 0.001) circles (Mann Whitney Test). 
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First, these five pesticides were tested separately (as above) on BEAS- 
2B cells for 4 h at various concentrations ranging from 10 to 500 µM to 
determine the threshold dose. After 24 h, the number of cells was 
recorded in each condition and the LD50 was calculated. A summary of 
the results from 4 independent experiments (representing about 
100,000 analyzed cells) is presented in Fig. 6A. 

Next, to determine if the pesticides can be more noxious when 
combined (a phenomenon known as the ‘cocktail effect’), we prepared 
mixtures with relative proportions of pesticides based on the ATMO 
report. Note that the identity of the most prominent pesticide (which 
was tested at concentrations ranging from 10 to 500 µM) varied across 
departments, representing between 78% and 97% of the final mixture 
(Fig. 6B). 

Our data indicate that both the threshold dose and the acute LD50 of 
pesticide mixtures were at least five times lower than that of individual 
pesticides in all considered departments (Fig. 6A and B). The case of 
Aude is taken here as an illustration. In this department, FOL is the main 
air-borne pesticide (97%), whereas the three other pesticides (PEN, CHL 
and LIN) are present as traces (in the following proportions: 1.1%, 0.8% 
and 1.5%, respectively). 

Mitochondrial disorganization was observable microscopically 
(Fig. 6C) and measurable through MitoRadar analysis (Fig. 6D) when 
10 µM FOL was mixed with low concentrations of the other pesticides 
(0.11 µM PEN; 0.15 µM CHL and 0.08 µM LIN), i.e., when each indi-
vidual pesticide was present at levels below its “no-observed-effect- 
concentration” (threshold doses were 50 µM for FOL; >500 µM for PEN; 
100 µM for CHL and 500 µM for LIN). 

The computed MitoScore (based on the top 15 most affected pa-
rameters) indicated weak to moderate effects when cells were exposed 
to single pesticides at a 10 µM concentration and maximal noxious effect 
with the pesticide mixture (Fig. 6E). In conclusion, traces of PEN, CHL 
and LIN potentiate both the mitochondrial and cellular toxicity of FOL. 
Note that similar conclusions can be drawn for the pesticide combina-
tions characteristic of the other four departments. 

4. Discussion 

Mitochondria are membrane-enclosed organelles ubiquitously found 
in eukaryotes. Originally derived from endosymbiotic bacteria, they 
play a vital role in energy production and in many other cellular func-
tions [2,41]. It is considered that all physicochemical, parasitic and 
microbial influences that surround eukaryotic life are translated into 
changes in mitochondrial structure and function [42–47]. In particular, 
a growing body of literature points to mitochondria as a key organelle 
targeted by environmental pollutants [3–5,48–53]. Not only do these 
environmental pollutants (present in air, water and soil) disturb the 
mitochondrial machinery but their mitotoxicity may cause significant 
damage to the epigenome and transgenerational inheritance of 
dysfunctional mitochondria [4]. Mitochondria are thus considered to 
provide the missing link between cellular, organismal and environ-
mental health [10]. 

As ‘mitochondrial form follows function’ [54], previous studies 
highlighted the utility of using mitochondrial morphology as a proxy for 
monitoring cell health and cytotoxicity [17,46,55–59]. In this paper, we 

Fig. 4. Quantitative analysis of mitochondrial morphology in BEAS-2B cells treated with the mitochondrial uncoupler CCCP. (A) Representative confocal 
microscopy images of BEAS-2B cells treated with 0,5% DMSO (vehicle, left panel) or 20 µM CCCP (right panel) during 4 h before mitochondrial staining (with 
MTDR). Scale bar = 10 µm. (B) More than 4000 CCCP-treated cells were analyzed using the MitoRadar software; the six different MitoRadar plots figure distribution 
of the normalized 104 morphometric features. The upper three MitoRadar plots correspond to computation for total mitochondria (Mito), clustered mitochondria 
(Mitocluster) or Mitochondriome (the full mitochondrial pool of a cell, considered as a single object), whereas the bottom three MitoRadar plots result from calculations 
of Nuclear, Countershape and cellular characteristics (Cell). Descriptors are colored in blue when the measured effect is diminished and in red when it is increased. 
Significant differences from basal (blue circle) for the CCCP-treated condition (orange line) are depicted by small (*: p < 0.05), medium (**: p < 0.01) or large (***: 
p < 0.001) circles (Mann Whitney Test). Shown are representative data of n = 5 independent experiments. (C) MitoRadar can calculate a MitoScore based on the 
deviation and number of affected parameters. Top 15 descriptors are listed. (D) Statistical analysis performed by MitoRadar. a- PCA plot on the first two components, 
with arrows indicating descriptor correlation with each axis; b- Box plot along the unique LDA axis; c- Violin plot showing a particular descriptor: Mito- 
roundness_mean, as an example. 
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described a comprehensive and user-friendly big data analytics software 
(MitoRadar) combined with a HCS wet pipeline (MITOMATICS) to 
analyze mitochondrial shape changes occurring in live cultured cells. 
We applied our image-based phenotypic profiling system to assess 
mitochondrial architecture in response to environmental pollutants. 
This system was designed to replace traditional, costly and 
low-throughput techniques, which will be reserved for downstream 
validation on prioritized combinations. 

Because mitochondrial changes appear to happen before other 
cellular events, shorter incubation durations are needed, this approach 
thus saves time and money while enhancing efficiency. While most 
available tools require programming experience or computer science 
skills, the core component of our workflow involves an easy-to-work- 
with and intuitive in-house, proprietary software (MitoRadar). Live- 
cell, high-resolution confocal images are collected on any multiplexed 
imaging platforms available and from any type of cells cultured on 96- 
well plates and stained with different vital dyes (with one of them 
labelling mitochondria), before processing of a large number of images 
at various possible scales, AI-driven segmentation and automatic 
calculation by MitoRadar of 2D descriptors associated with the identi-
fied mitochondria in their cellular context. 

By quickly computing more than one hundred descriptors related to 
mitochondria (some of which being novel like the ‘Countershape’) and 
additional nuclear and cellular shape parameters, MitoRadar represents 
one of the most comprehensive software packages available for image 
analysis. Our automated and miniaturized approach integrates a 

convenient way for interpreting the gathered massive and multidimen-
sional data by creating unique radar plots in which sample datasets (e.g. 
from cells treated with chemicals) are compared to a reference dataset (i. 
e., untreated or mock-treated cells). These information-rich represen-
tations natively come up with a variety of statistical charts and plots (t- 
tests, PCA, LDA, violin distributions) and with a simple score (Mito-
Score), making it quick and easy to compare the impact of various 
substances or culture conditions and to detect subtle morpho- 
phenotypic variations. It is remarkable that our method was able to 
discriminate the effect of molecules acting at different stages of mito-
chondrial function, namely CCCP (a widely used mitochondrial uncou-
pler), Rotenone (Complex I inhibitor) and Antimycin (Complex III 
inhibitor). Besides CCCP and other traditional uncouplers (like FCCP or 
2,4-dinitrophenol), novel mitochondria-specific uncoupling agents such 
as BAM15 and FR58P1 [60] or the organic pollutant pentachlorophenol 
[61] were identified that could be tested using our technology to 
improve our knowledge of the consequences of mitochondrial uncou-
pling on mitochondrial network architecture. In addition to Antimycin 
A, which is specific to the N-side quinone binding site of Complex III, it 
would be interesting to assess the effects of Myxothiazol, which acts at 
the P-side. Inhibitors of Complex IV (potassium cyanide, sodium azide or 
lipophilic small molecules like steroids) and ATP synthase inhibitors like 
oligomycin and dicyclohexylcarbodiimide (DCCD), which respectively 
bind to the FO and FOF1 subunits of the proton pump, are also worth 
testing. 

Here, we applied our technology to test the noxious potential of 

Fig. 5. Quantitative analysis of mitochondrial morphology after acute exposure of human pulmonary cells to single pesticides (MitoCollapse). (A) List of 
pesticides tested alone on BEAS-2B cells for 2 h at different doses ranging from 10 to 500 µM, chemical category, threshold dose inferred by MitoRadar analysis and 
LD50 determined 24 h post-treatment. (B) BEAS-2B cells were treated for 2 h with vehicle (0,5% DMSO), 20 µM of CCCP or 250 µM of individual pesticides (FEN, 
PYRI, MEP, THI, AZO or PYRA). MitoRadar plots (morpho-phenotypic signatures) obtained after analysis by MitoRadar. For statistical analysis, a Mann-Whitney U 
test was used. Each MitoRadar plot results from analysis of around 20,000 cells and shown data are representative of 4 independent experiments. Note that when 
Mitoradar plots are computed with data obtained 2 h post-treatment with 100 µM of THI (Fig. S6, grey color), which is the calculated LD50/24 h value for this 
pesticide, changes in parameters indicative of mitochondrial toxicity are already visible (with an increase in roundness_mean, circularity_mean, solidity_mean, 
compaction_mean and concomitant decrease in area_mean, axis_major_length_mean, axis_minor_length_mean, skel_length_mean). Complete single-compound dos-
e–responses are shown in Fig. S7. (C) MitoScore for estimating treatment effect. Shown are the most affected parameters along a color-coded scale with explicit 
reference to one of the following five categories: No effect, Limited / Substantial / Measurable or Large overall effect. (D) Bidimensional representation of the established 
group into the new subspace generated by the first two LDA discriminant axis. Both LDA axis separate samples exposed to ETC complex I, II and III inhibitors and 
CCCP from the untreated ones. 
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single pollutants (MitoCollapse) as well as combination effects between 
molecules (MitoCocktail). 

Regarding MitoCollapse, we recently collected results on single 
exposure of skin cells to three pesticides (two insecticides, fipronil and 
imidacloprid as well as glyphosate, present in the widely used herbicide 
Roundup®) (Charrasse et al. submitted) and, in the present study, of 
non-tumorigenic lung cells to eleven additional pesticides including five 
currently detected in Occitanie (Southern France). This research is in 
line with classic toxicology studies carried out by various organizations 
such as the National Institute of Environmental Health Sciences through 
its National Toxicology Program (NTP). Interestingly, the mitochondrial 
‘morpho-signatures’ of the six chemicals that we tested so far as indi-
vidual substances appear not only to be distinct but also to segregate into 
discrete families, suggesting that the effects of pesticides (and virtually 
of any environmental pollutant(s)) might be classified within a ‘mor-
phospace’ of mitochondriome morphologies. It would be interesting to 
determine whether specific signatures are linked to particular physico-
chemical properties of pesticides or to their toxicological profile. 

The combined effects of chemical mixtures, a rapidly emerging topic 
in environmental toxicology [62], prompted us to design another 
module, MitoCocktail, for estimating the mitochondrial response of a 
larger number of substances, across a battery of concentrations and in 
combination. This functionality currently handles projects using a single 
dose response of combined drugs, rather than a full two-way matrix of 
varying doses, similar to other HCS studies. Mixture effects are usually 
classified as being antagonistic, additive or synergistic, depending on 

whether the observed toxicity of the combination is lower than, equal to, 
or higher than the expected toxicity based on an additivity model. 
Thanks to pollutant data made available by ATMO-Occitanie, we 
showed that the deleterious effects on mitochondrial architecture and 
cellular viability of the main pesticide found in each department of 
Occitanie were enhanced when trace quantities of other pesticides were 
added, indicative of synergistic relationships. 

MitoRadar analysis can help decipher human health impacts of 
anthropogenic chemicals found in the air, but also in water, food and 
soil. In addition to pesticides, various sources of pollution can be stud-
ied, such as fine particles, polycyclic aromatic hydrocarbons, plastics, 
pharmaceutical waste, cosmetics and even antibiotics [63] or noise 
pollution [64]. Samples taken from natural environments and contain-
ing unidentified pollutants or metabolites may also be blind tested. 
Beyond exposure to pollutants, other variables may be considered such 
as genetic or epigenetic contexts, age, disease, diet and physical exercise 
that are likely to influence mitochondrial health. Our method is also 
suitable for analyzing primary cells from different organs or tissues of 
patients with particular life histories, such as for instance type 2 diabetes 
[65] or autism spectrum disorder [66], in order to gain better under-
standing of the mitochondrial correlates of pathophysiology. In that 
respect, it would be of interest to assay the morphometric parameters of 
mitochondria in cell lines derived from children with autistic disorder 
(in comparison to paired cells lines from typically developing siblings or 
control cell lines) with or without exposure to environmental factors 
such as air pollution or pesticides [67–70]. This is indeed very relevant 

Fig. 6. Quantitative analysis of mitochondrial morphology after acute exposure of human pulmonary cells to pesticide mixtures (MitoCocktail). (A) List of 
pesticides tested alone on BEAS-2B cells for 4 h at different doses ranging from 10 to 500 µM, chemical category, threshold dose inferred by MitoRadar analysis and 
LD50 determined 24 h post-treatment. Data shown are representative of at least 4 independent experiments with 4 replicates per experiment. (B) Table listing the 
main air-borne pesticides found in the five departments of region Occitanie (Southern France) and their relative percentage (according to real-world data produced 
by ATMO-Occitanie). The prominent pesticide (in red) detected in each of these five locations was tested at 5 doses ranging from 10 to 500 µM, the other pesticides in 
the mixture at the dose corresponding to their percentage in each region. The threshold dose inferred by MitoRadar and the LD50 are reported in the third and fourth 
column of the Table. (C) Representative confocal microscopy images of mitochondria (stained with MTDR) present in BEAS-2B cells after treatment with 0,5% DMSO 
(panel a), 10 µM FOL (panel b), 50 µM FOL (panel c) or with a mixture of pesticides found in the Aude department (one of the five departments of region Occitanie) 
with main pesticide (FOL) concentration set at 10 µM (panel d). (D) MitoRadar plots showing variations in mitochondrial parameters after treatment with vehicle 
(0,5% DMSO, blue circle), 10 µM (orange), 50 µM (green) or 100 µM (red) of FOL alone (left MitoRadar) or by the mixture of pesticides found in Aude with the main 
pesticide (FOL) concentration set at 10, 50 or 100 µM (respectively in orange, green and red in the right panel). (E) MitoScore for estimating treatment effect. Shown 
are the most affected parameters along a color-coded scale with explicit reference to one of the following five categories: No effect, Limited / Substantial / Measurable 
or Large overall effect. 

S. Charrasse et al.                                                                                                                                                                                                                              



Computational and Structural Biotechnology Journal 21 (2023) 5609–5619

5618

to this population as studies have shown changes in mitochondrial 
respiration with exposure to toxicants such as air pollution [69] and 
other common toxicants [71] in children with autism. This technique 
could be applied to disease populations to understand how environ-
mental agents may produce disease through effects on bioenergetics. 
Taking up the One Health perspective [72,73], non-mammalian cell 
lines may also be tested including honeybee or zebrafish cell lines. 
Indeed, several pesticides (e.g. succinate dehydrogenase inhibitors, 
SDHIs) that are toxic to mitochondria act by blocking cellular respira-
tion. This property, used to eliminate certain fungi, mites or worms, 
makes them potentially toxic for all living beings. 

The MITOMATICS technology can be combined with phenotypic/ 
functional analysis (e.g. measurement of mitochondrial activities 
through ELISA plate readers and spectrophotometric methods, deter-
mination of apoptosis/necrosis rates by flow cytometry) and followed by 
more specialized readouts including measuring oxygen consumption 
and extracellular acidification rates (using Seahorse®), mitochondrial 
iron content through biochemical techniques or the uptake of specific 
fluorescent probes (like DCFH-DA for detecting ROS) by flow cytometry 
or fluorescent imaging. For example, in a recent study [66], mitochon-
drial morphology paralleled variations in respiratory rates in fibroblasts 
derived from patients and healthy controls, thereby allowing the vali-
dation of the respiratory changes and a better understanding of the 
consequence of these changes in mitochondrial respiration. 

Our approach may be improved in a number of ways. In particular, 
the mitochondriome should be viewed as a four-dimensional architec-
ture (X,Y,Z + time) whose configuration may evolve due to mitochon-
drial fission, fusion and motility as well as cell movements (including 
various extension of the cell surface, migration and division). Albeit 
non-amenable to HCS screening, future MITOMATICS developments 
will use bioimaging techniques that could capture mitochondria in 4D, 
such as lattice light-sheet microscopy (LLSM) and three-dimensional 
structured illumination microscopy (3D SIM). For now, our method 
for 2D automated quantification of mitochondrial morphology appears 
to be well-suited for relatively ‘flat’ cells, i.e., cells where mitochondria 
are confined to a limited number of planes. Utilization of cells cultured 
in 3D (through different systems including spheroids, hydrogels or 
scaffolds) could improve physiological relevance for certain cell types 
(like endothelial cells or mixed cell populations such as in 3D recon-
stituted skin) or conditions (e.g. growth of cancer cells). 

5. Conclusions 

In vitro assessment of mitochondrial toxicity through our novel 
quantitative imaging system can be useful to draft prioritized lists of 
deleterious chemicals, ranked according to their impact on mitochon-
dria, before functional tests and in vivo assays are conducted. Our HCS 
system may also serve as a valuable tool to transition from the current 
single-chemical-based risk paradigm towards one which addresses co- 
exposures to multiple chemicals, and more generally to multiple 
stressors due to external exposome and/or pathological conditions. 

Funding statement 

This work was supported by grants from the i-site MUSE (KIM 
“Biomarkers and Therapy”), Ligue contre le Cancer - Comité du Gard (n◦
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