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Abstract

Meiotic recombination is a highly conserved process that has profound effects on genome evolution. At a fine-scale, recombination

ratescanvarydrasticallyacrossgenomes,often localized intosmall recombination“hotspots” withhighlyelevated rates, surrounded

by regions with little recombination. In most species studied, the location of hotspots within genomes is highly conserved across

broad evolutionary timescales. The main exception to this pattern is in mammals, where hotspot location can evolve rapidly among

closely related species and even among populations within a species. Hotspot position in mammals is controlled by the gene, Prdm9,

whereas in species with conserved hotspots, a functional Prdm9 is typically absent. Due to a limited number of species where

recombination rates have been estimated at a fine-scale, it remains unclear whether hotspot conservation is always associated with

the absence of a functional Prdm9. Threespine stickleback fish (Gasterosteus aculeatus) are an excellent model to examine the

evolution of recombination over short evolutionary timescales. Using a linkage disequilibrium-based approach, we found recom-

bination rates indeed varied at a fine-scale across the genome, with many regions organized into narrow hotspots. Hotspots had

highlydivergent landscapesbetween sticklebackpopulations, whereonly�15% of these hotspotswere shared.Our results indicate

thatfine-scale recombination ratesmaybedivergingbetweenclosely relatedpopulationsof threespinesticklebackfish. Interestingly,

we found only a weak association of a PRDM9 binding motif within hotspots, which suggests that threespine stickleback fish may

possess a novel mechanism for targeting recombination hotspots at a fine-scale.
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Introduction

Meiotic recombination is a highly conserved process across a

broad range of taxa (Petes 2001; de Massy 2013).

Recombination creates new allelic combinations by breaking

apart haplotypes (Otto and Lenormand 2002; Coop and

Przeworski 2007), promotes the proper segregation of chro-

mosomes during meiosis in many species (Mather 1936;

Kaback et al. 1992; Fledel-Alon et al. 2009), and has a pro-

nounced impact on the evolution of genomes (Maynard-

Smith and Haigh 1974; Begun and Aquadro 1992;

Charlesworth et al. 1993; Comeron et al. 1999; Duret and

Arndt 2008; Webster and Hurst 2012; Mugal et al. 2015;

Dapper and Payseur 2017; Kent et al. 2017). In many species,

recombination rates can vary dramatically at a fine-scale

across a single genome, organized into narrow 1–2-kb

“hotspots,” surrounded by large genomic regions with little

to no recombination (Jeffreys et al. 1998; Steiner et al. 2002;

McVean et al. 2004; Myers et al. 2005; Barton et al. 2008;

Baudat et al. 2010; Hellsten et al. 2013). Understanding how

recombination rates vary at a fine-scale across species, pop-

ulations, and even individuals is essential for understanding

how this process shapes the molecular evolution of genomes.

In many species, the localization of hotspots is highly con-

served across long evolutionary timescales (Tsai et al. 2010;
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Lam and Keeney 2015; Singhal et al. 2015; Kawakami et al.

2017). For example, finches share upward of 73% of hotspots

across 3 Myr of evolution (Singhal et al. 2015), whereas spe-

cies of Saccharomyces share 80% of hotspots over 15 Myr of

evolution (Lam and Keeney 2015). Evolutionarily conserved

hotspots are generally located around regions of open chro-

matin such as transcription start sites (TSSs) (Pan et al. 2011;

Tischfield and Keeney 2012; Auton et al. 2013; Lam and

Keeney 2015; Singhal et al. 2015) and CG-rich regions (i.e.,

CpG islands) in vertebrates (Campbell et al. 2016; Kawakami

et al. 2017). Hotspot localization is thought to be due to the

opportunistic nature of SPO11, a meiosis-specific protein

which initiates recombination by creating double strand

breaks (DSBs) (Romanienko and Camerini-Otero 1999;

Celerin et al. 2000) in any region of open chromatin (Pan

et al. 2011).

The only documented exception to the strong conservation

of recombination hotspots is in mammals, where hotspot lo-

cation evolves rapidly between closely related species or even

between populations (Brick et al. 2012; Pratto et al. 2014;

Baker et al. 2015; Smagulova et al. 2016; Stevison et al.

2016). Few hotspots are shared between chimpanzees, bo-

nobos, gorillas, and humans or even subspecies of mice, de-

spite minimum divergence times of hundreds of thousands of

years (Brick et al. 2012; Pratto et al. 2014; Stevison et al.

2016). Contrary to the pattern observed in conserved sys-

tems, rapidly evolving hotspots typically form away from func-

tional genomic elements and are localized by the zinc finger

histone methyltransferase protein, PRDM9 (Baudat et al.

2010; Myers et al. 2010; Parvanov et al. 2010; Brick et al.

2012; Billings et al. 2013; Pratto et al. 2014; Baker et al. 2015;

Powers et al. 2016). PRDM9 contains multiple DNA-binding

zinc fingers that are under strong positive selection, leading to

divergent hotspot localization between closely related species

(Oliver et al. 2009; Myers et al. 2010; Billings et al. 2013;

Baker et al. 2015). In many species outside of mammals,

PRMD9 is missing the complete set of functional domains

that are required for localizing recombination hotspots

(Baker et al. 2017). Although tremendous progress has

been made in characterizing fine-scale recombination rates

across the genomes of many species, there is still a relatively

limited number of taxa surveyed outside of mammals, making

it unclear whether all nonmammalian species will exhibit hot-

spot conservation at a fine-scale and whether this is always

associated with the lack of a functional PRDM9 (Baker et al.

2017). More taxa are needed to elucidate how fine-scale re-

combination landscapes change over time.

Threespine stickleback fish (Gasterosteus aculeatus) are an

excellent system to study the evolution of fine-scale recombi-

nation rates. Multiple populations of threespine stickleback

fish have independently adapted to freshwater environments

from marine ancestors in the last 10–15 thousand years, pro-

viding the opportunity to study the parallel evolution of hot-

spots in well-characterized populations across the Northern

Hemisphere (Bell and Foster 1994). Broad-scale recombina-

tion rates have been examined in threespine stickleback using

genetic crosses (Peichel et al. 2001; Roesti et al. 2013; Glazer

et al. 2015; Sardell et al. 2018), but fine-scale recombination

rates could not be thoroughly estimated due to low marker

density or because of small genetic crosses. Threespine stick-

leback fish are also a useful species to explore whether a

nonfunctional PRDM9 is associated with conserved hotspot

evolution. Similar to many species outside of mammals (Baker

et al. 2017), the threespine stickleback Prdm9 does not con-

tain a full set of protein domains shown to be important for

localizing recombination hotspots (Grey et al. 2017; Imai et al.

2017).

Fine-scale recombination rates can be estimated through a

variety of approaches. Recombination rates can be directly

measured through genetic linkage maps (Broman et al.

1998; Drouaud et al. 2006; Campbell et al. 2016; Marand

et al. 2017) or though sperm genotyping (Jeffreys et al. 2001;

Cullen et al. 2002). Both methods require a large number of

progeny or sperm and a high density of genetic markers to

capture a sufficient number of crossovers. Recombination

rates can also be indirectly measured by identifying the bind-

ing sites of proteins that initiate DSBs (Smagulova et al. 2011;

Pratto et al. 2014) as well as those that repair DSBs through

homologous recombination (Froenicke et al. 2002; Dumont

and Payseur 2011). Another broadly used approach estimates

recombination rates from patterns of linkage disequilibrium

(LD) in populations, providing a historical measure of meiotic

crossovers over multiple generations (McVean et al. 2004;

Myers et al. 2005; Chan et al. 2012; Singhal et al. 2015;

Stevison et al. 2016). Although LD-based methods can poten-

tially be biased by demographic history (e.g., bottlenecks,

population expansions, and population substructure)

(Johnston and Cutler 2012; Dapper and Payseur 2018), these

methods offer a powerful approach to estimate recombina-

tion rates from multiple populations without the need to con-

struct crosses. In many species, hotspots identified through

LD-based methods have been validated using other

approaches (Jeffreys et al. 2005; Myers et al. 2006; Morgan

et al. 2017).

Here, we used an LD-based approach to estimate genome-

wide recombination rates in a marine (Puget Sound) and

freshwater (Lake Washington) population of threespine stick-

leback fish. We found recombination landscapes varied at a

fine-scale between the two populations with many regions of

elevated rates organized into local recombination hotspots.

We found most recombination hotspots were not shared be-

tween populations. Although threespine stickleback fish pop-

ulations have complex demographic histories due to the

recent colonization of freshwater environments (Bell and

Foster 1994; Hohenlohe et al. 2010; Ferchaud and Hansen

2016; Liu et al. 2016), we found the divergence of recombi-

nation hotspots is not completely driven by demography.

Among hotspots, there was little evidence of an association
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with the threespine stickleback annotated PRDM9, indicating

hotspots are likely localized by a different mechanism. Our

results suggest fine-scale recombination landscapes can di-

verge over short evolutionary timescales and argue for addi-

tional work to understand the diversity in mechanisms that

regulate hotspots.

Materials and Methods

Population Sampling

Lake Washington threespine stickleback fish were collected

near the shore with minnow traps from the north end of the

lake (near Kenmore, WA) and the southeast end of the lake

(near Mercer Slough, WA). Fish were also collected from open

waters at various depths in the middle and northern half of

the lake using seine fishing. Puget Sound fish were collected

via trawling from open water during a multiday sampling trip

in the Whidbey Basin and Bellingham Bay areas of Puget

Sound, WA. Fish were sampled from the top 22 m of water.

Whole-Genome Sequencing and Assembly

Genomic DNA was extracted from caudal fin clips of 13 fe-

male and 12 male fish collected from Lake Washington and

18 female and 6 male fish collected from Northern Puget

Sound using a standard phenol–chloroform extraction.

Libraries were prepared using the Illumina TruSeq kit and

were size-selected to target 400-bp fragments. Libraries

were multiplexed and paired-end sequencing was performed

on an Illumina NextSeq for 300 cycles (Georgia Genomics and

Bioinformatics Core, University of Georgia). Residual adapter

sequences and low-quality regions were trimmed from the

sequencing reads using Trimmomatic (v0.33) with the follow-

ing parameters: PE –phred 33 slidingwindow:4:20. Trimmed

reads were aligned to the revised threespine stickleback ref-

erence genome assembly from Bear Paw Lake, AK (supple-

mentary file S5, Supplementary Material online, https://

datadryad.org/resource/doi:10.5061/dryad.q018v/1; last

accessed March 2017. Glazer et al. 2015) using Bowtie2

(v2.2.4, default parameters) (Langmead and Salzberg 2012).

With these parameters, the average alignment rate for Lake

Washington was 94.2% and 87.3% for Puget Sound. Reads

with a mapping PHRED quality score of 20 or less were re-

moved from the analysis (Samtools, v1.2.0, default parame-

ters; Li et al 2009). For Puget Sound, four female individuals

had 5� or lower sequencing coverage and were removed

from the analysis, resulting in a final sample size of 20 fish.

After removing poorly aligned reads and low-coverage indi-

viduals, the average read coverage across all individuals in

each population was 17� and 22� for Lake Washington

and Puget Sound, respectively.

Two outgroup species were used to infer ancestral allele

states and to estimate mutation matrices for each population

(see Estimation of Recombination Rates). Whole-genome

Illumina sequences for one female ninespine stickleback fish

(Pungitius pungitius, DRX012173) (White et al. 2015) and one

female blackspotted stickleback fish (Gasterosteus wheat-

landi, DRX012174) (Yoshida et al. 2014) were aligned to

the revised threespine stickleback genome assembly (Glazer

et al. 2015) using Bowtie2 (v2.2.4). Less stringent alignment

parameters were used to allow for greater sequence diver-

gence between threespine stickleback and each outgroup (-D

20 –R 3 –N 1 –L 20 –I S, 1, 0.50 -rdg 3, 2 -rfg 3, 2 -mp 3). The

overall alignment rate of P. pungitius was 46.0%, whereas

the overall alignment rate of G. wheatlandi was 74.2%. The

higher alignment rate of G. wheatlandi is consistent with G.

wheatlandi sharing a more recent common ancestor with G.

aculeatus (Kawahara et al. 2009).

Single Nucleotide Polymorphism Genotyping

Single nucleotide polymorphisms (SNPs) were genotyped in

each threespine stickleback population and outgroup species

independently following the GATK best practices for SNP dis-

covery for whole-genome sequences (v3.6) (Van der Auwera

et al. 2013). Polymerase chain reaction duplicates were re-

moved using MarkDuplicates (REMOVE_DUPLICATES¼true).

Regions around insertions or deletions (indels) were realigned

with RealignerTargetCreator (default parameters) and

IndelRealigner (default parameters). Variants were called for

each individual using HaplotypeCaller (genotyping mode

DISCOVERY). Joint genotyping (GenotypeGVCFs, default

parameters) was completed by pooling all individuals for

each population. Low-quality SNPs were filtered from the

data set using vcftools (v0.1.12b) (Danecek et al. 2011).

Sites were removed if they had more than two alleles, if

genotypes were missing in any of the individuals, or if geno-

type quality scores were<30. To prevent bias from high copy

number variants or poorly sequenced regions, sites were also

removed if the population mean depth coverage was less

than half or greater than twice the average coverage for

each population (Lake Washington: 8�–34� read-depth cov-

erage; Puget Sound: 11�–44� read-depth coverage).

Singletons and sites fixed for the alternate allele across all

individuals in a population were also removed. After filtering,

the Lake Washington population had 5,054,729 SNPs

genome-wide (11 SNPs/kb) and the Puget Sound population

had 4,142,876 SNPs (9 SNPs/kb) genome-wide (prior to filter-

ing Lake Washington had 11,937,220 SNPs and Puget Sound

had 11,070,421 SNPs). For the outgroup species, P. pungitius

and G. wheatlandi, low-quality SNPs were excluded by remov-

ing variants with a genotyping quality score <30 or a read

depth �2, resulting in 13,691,521 SNPs genome-wide in G.

wheatlandi (16,783,618 SNPs prior to filtering) and 7,791,420

in P. pungitius (26,173,287 SNPs prior to filtering). To test

whether analyses were robust to the SNP read-depth filters,

over- and under-filtered SNP sets were also tested across a

single representative autosome, chromosome one. The
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overfiltered SNP set used a read-depth range of 13�–23� in

Lake Washington and 17�–29� in Puget Sound. The under-

filtered SNP set used a read-depth range of 6�–51� in Lake

Washington and 7�–66� in Puget Sound.

Population Structure

Population substructure within Puget Sound and Lake

Washington was investigated using FastStructure (v1.0) (Raj

et al. 2014). Only biallelic sites with no missing data were

retained for each population and the sex chromosomes

were excluded. The final data sets consisted of 4,824,791

SNPs for Lake Washington and 3,876,608 SNPs for Puget

Sound. For both populations, five trials of K were completed

at K values of 1–5 where a K of 1 would indicate no popula-

tion substructure and a K of 5 would indicate that individuals

were likely from several different populations. The model that

best explained the population structure for Lake Washington

and Puget Sound was determined using chooseK.py (Raj et al.

2014) and the structure plot was visualized using distructK.py

(Raj et al. 2014).

Genetic admixture between the two populations was in-

vestigated using a similar approach with FastStructure.

Biallelic SNPs without missing data from both populations

were merged using vcftools (Danecek et al. 2011). The final

SNP data set was composed of 4,113,937 SNPs. Three trials

were completed at K values of 1–3. These K values were

chosen to differentiate scenarios where Lake Washington

and Puget Sound were one panmictic population (K¼ 1) or

Lake Washington and Puget Sound were two distinct popu-

lations (K¼ 2). A K of 3 was chosen to identify any hidden

population structure within either population. The model that

best explained the population structure was determined using

chooseK.py (Raj et al. 2014).

Population structure between and within Lake Washington

and Puget Sound was also explored using a principal compo-

nent analysis on male and female fish separately. SNPs from

the male and female data sets were pruned using Plink (–maf

0.01 –indep-pairwise 50 5 0.2) (Purcell et al. 2007). The final

SNP data set included 3,983,008 SNPs for males and

4,039,016 SNPs for females. Principal components were cal-

culated using Plink.

Haplotype Phasing

Each chromosome was phased independently with SHAPEIT

(v2.r837), a read-aware phasing tool (Delaneau et al. 2013).

Illumina reads that contained at least two heterozygous SNPs

were identified as phase-informative reads and used to more

accurately phase haplotypes. Only reads with a mapping qual-

ity score >20 were used as phase-informative reads.

Convergence of the Markov chain Monte Carlo (MCMC) al-

gorithm was estimated by examining switch error rates be-

tween individual runs. A low switch error rate would indicate

that the MCMC phasing runs have converged on a similar

haplotype configuration. Switch error was measured using

vcftools (v0.1.12b) using –diff-switch-error (Danecek et al.

2011). A low switch error was achieved within a reasonable

run time with the following SHAPEIT parameters: –main 2000

–burn 200 –prune 210 –states 1000 (average switch error

between phasing runs: 0.824% for Lake Washington and

1.26% for Puget Sound). All other parameters were left at

the default values.

Estimation of Recombination Rates

Recombination rates were estimated with LDHelmet (v1.7;

Chan et al. 2012). LDHelmet estimates historical recombina-

tion rates from population data by analyzing patterns of LD

across phased haplotypes. LDHelmet was chosen for rate es-

timation because LDHelmet can handle higher SNP densities,

does not assume neutral evolution across the genome, and

allows the incorporation of quadra-allelic mutation models

and ancestral allele state priors to improve rate estimation

(Chan et al. 2012). Threespine stickleback fish have a high

SNP density (�1 SNP per 100 bp), have ancestral allele infor-

mation from outgroup species, and the genome has poten-

tially been impacted by selection as marine and freshwater

populations have adapted to new environments. Although

LDHelmet was originally designed for Drosophila, it has re-

cently been applied to a diverse group of species, including

other populations of threespine stickleback fish (Singhal et al.

2015; Booker et al. 2017; Kawakami et al. 2017; Sardell et al.

2018).

The ancestral allele state was defined for every SNP in each

threespine stickleback population by comparing to the allele

present in the two outgroup species. An ancestral allele state

could not be assigned if a polymorphism was segregating

among the outgroup species. Therefore, SNPs were only

assigned an ancestral state if P. pungitius and G. wheatlandi

were homozygous for the same allele. The ancestral allele was

assumed to be the nucleotide carried by P. pungitius and G.

wheatlandi and was assigned a prior probability of 0.91. To

allow for uncertainty in the ancestral allele state, the other

three possible nucleotides were assigned prior probabilities of

0.03. If the ancestral allele state could not be inferred, the

prior probability of each nucleotide being the ancestral allele

was set as the overall frequency of that particular nucleotide

on the chromosome. Nucleotide frequencies were empirically

determined from all sites on a threespine stickleback chromo-

some where P. pungitius and G. wheatlandi had read cover-

age that passed the filtering scheme. Mutation matrices were

estimated for each population separately. For every position

where an ancestral allele state could be inferred, the total

number of each type of mutation away from the ancestral

allele was quantified. A normalized 4 � 4 mutation matrix

was generated for each chromosome as previously described

(Chan et al. 2012). The ancestral allele state and mutation

matrices were generated using a custom Perl script.
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Custom Python scripts were used to create the SNP se-

quence and SNP position input files for LDHelmet. Full

FASTA sequences were created using vcf2fasta from vcflib

(available at https://github.com/vcflib/vcflib/; last accessed

August 2016). Each LDHelmet module was run using the fol-

lowing parameters. Haplotype configuration files were cre-

ated for each chromosome with the find_confs module

using a window size of 50 SNPs (-w 50). Likelihood lookup

tables were created using table_gen with the recommended

grid of population-scaled recombination rates per base pair

(q/bp) (-r 0.0 0.1 10.0 1.0 100.0). Watterson’s h was esti-

mated using a custom Python script with the R package,

PopGenome (Pfeifer et al. 2014), where Watterson’s h was

calculated in 2-kb regions with a sliding window of 1 kb and

all windows were averaged together. To maintain a reason-

able computational time, a single representative likelihood

lookup table was generated for the autosomes of each pop-

ulation from chromosome one, using the average

Watterson’s h between Lake Washington and Puget Sound

(-t 0.002). Although Watterson’s h was different between the

Lake Washington and Puget Sound populations, previous

studies have determined that small changes to parameters

such as Watterson’s h do not affect the final likelihoods

(McVean et al. 2004; Auton and McVean 2007;

Stukenbrock and Dutheil 2018). Separate likelihood lookup

tables were created for the pseudoautosomal region (PAR) of

the sex chromosomes (chromosome 19). Pad�e coefficient files

were created using the module pade with a Watterson’s h of

0.002 and the recommended 11 pad�e coefficients (-t 0.002 –

x 11). The module rjmcmc was run for 1 million iterations with

100,000 burn in iterations, a block penalty of 10, and a win-

dow size of 50 SNPs (-w 50 –b 10 –burn_in 100000 –n

1000000). Population-scaled recombination rates were

extracted from the rjMCMC run with the post_to_text mod-

ule. Recombination rates were reported in q/bp where q is a

population-scaled recombination rate (4Ner).

Correlation with Genetic Maps

Population-scaled recombination rates were compared with

recombination rates estimated from a high-density genetic

linkage map (wild caught marine male from Little Campbell

River (British Columbia, Canada) � wild caught freshwater

female from Fishtrap Creek (Washington, USA) (Glazer et al.

2015). Recombination rates from LDHelmet were converted

from q/bp to cM/Mb as previously described (Smukowski Heil

et al. 2015). Briefly, the recombination rate (cM/Mb) was cal-

culated between every pair of adjacent markers in the genetic

map and a chromosome-wide recombination rate was calcu-

lated as the average among the regions. The average LD-

based recombination rate (q/Mb) was computed in the

same individual regions of a chromosome in Lake

Washington and Puget Sound by averaging the per bp rho

estimate across the total length of the region (q/Mb). A single

conversion factor was calculated for each chromosome. Each

conversion factor was calculated by dividing the average link-

age map recombination rate for a chromosome (in cM/Mb) by

the average LD-based recombination rate (q/Mb) for that

chromosome.

Identification of Recombination Hotspots

Recombination hotspots were defined using a sliding-window

approach. In each window, the average recombination rate

within a 2-kb window was compared with the average re-

combination rate from the 40-kb regions flanking either side

of the 2-kb window. Hotspots were defined as the 2-kb

regions that had a 5-fold or higher recombination rate relative

to the mean recombination rate in the flanking background

regions. The 2-kb windows iterated forward in 1-kb incre-

ments. If multiple hotspots were found within a 5-kb region,

only the hotspot with the highest rate was retained. Errors in

the reference genome assembly could generate false hot-

spots. To limit this, all hotspots that spanned a contig bound-

ary in the reference genome were removed (394 hotspots out

of 4,659 total hotspots). Hotspots were considered shared

between populations if the midpoints of the two hotspots

were within 3 kb of each other. Random permutations were

used to calculate the expected amount of hotspot overlap

between Lake Washington and Puget Sound. Ten thousands

random permutations were drawn from the genome totaling

the number of 2-kb hotspots for each population.

Recombination hotspots were identified and filtered using

custom Perl and Python scripts. Each hotspot was matched

to a randomly selected 2-kb coldspot, which was located at

least 25 kb from any identified hotspot, contained a GC nu-

cleotide content that was within 2% of the hotspot after

removing ancestral CpG sites (GC-matched), and had a

mean recombination rate that was less than half the back-

ground recombination rate of the population (Lake

Washington: <0.017 q/bp; Puget Sound: <0.035 q/bp).

The total number of phase-informative reads from SHAPEIT

was counted in hotspots and coldspots. The proportion of

phase-informative reads compared with the total number of

reads at each hotspot or coldspot was calculated using cus-

tom Python scripts.

Estimating Recombination Rates across the X
Chromosome

Population-scaled recombination rate was estimated across

the X chromosome using only females (Lake Washington:

13 individuals; Puget Sound: 14 individuals). Females were

only used for this analysis because of residual sequence ho-

mology between the X and Y chromosome in threespine

stickleback fish makes differentiating X-linked and Y-linked

SNPs difficult in males (White et al. 2015). LDHelmet was

run with X chromosome-specific mutation matrices, ancestral

allelic states, and likelihood lookup tables derived females
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only. The average recombination rate across the

X chromosome, including and excluding the PAR, was calcu-

lated for both populations. Any observed differences in re-

combination rate between the X chromosome and

autosomes could partially be driven by the smaller total sam-

ple size. To test whether overall sample size had an effect on

recombination rates estimated by LDHelmet, chromosome

one was randomly downsampled to equal the total number

of females in each population. Recombination rates were es-

timated with LDHelmet as previously described for five ran-

domly downsampled trials. Average recombination rate was

estimated in 500-kb windows across chromosome one. Rates

in each window were compared with those estimated from

the full sample set. Custom Python scripts and R were used to

calculate the average rates.

Genetic Variation within and between Populations

Within population nucleotide diversity (p) and Tajima’s D were

calculated separately for each chromosome. To capture rare

variants, previously excluded singletons were included in the

analysis. Nucleotide diversity and Tajima’s D were calculated

in 2-kb windows across each chromosome using the R pack-

age, PopGenome (Pfeifer et al. 2014) and a custom Python

script. Total p among both populations was calculated in 2-kb

windows from the combined set of SNP variants of each pop-

ulation. To estimate genetic differentiation between Lake

Washington and Puget Sound, FST was calculated using

vcftools (–weir-fst-size 1000; Danecek et al 2011). Hotspots

and coldspots (each 2 kb in length) were compared against

the rest of the genome (split into 2-kb regions, excluding

hotspots and coldspots). Statistical significance was assessed

by randomly drawing a subset of 2-kb regions from the

genome-wide sample, equal in size to the number of cold-

spots or hotspots. For each random sample, the median FST or

p was calculated. Ten thousand samples were drawn and

statistical significance was estimated under the null hypothesis

that the observed FST or p of coldspots or hotspots was from

the same distribution as the genome-wide random samples.

Estimation of Demographic History

Demographic history can affect LD-based estimates of recom-

bination rates (Johnston and Cutler 2012; Dapper and

Payseur 2018). To determine whether the demographic his-

tory of threespine stickleback fish could influence the ability to

detect recombination hotspots, hotspots were assayed in sim-

ulated haplotypes with known recombination profiles and

demographic histories. Demographic histories used in the sim-

ulations were based on the estimated histories of Lake

Washington and Puget Sound, modeled using a Pairwise

Sequentially Markovian Coalescent (PSMC) process with de-

fault parameters (Li and Durbin 2011; Liu and Hansen 2017).

PSMC was run on all individuals from both populations and

confidence intervals were estimated on 100 bootstrap

replicates. One female from each population was used for

predicting demographic histories for simulations.

Demographic histories were visualized using psmc_plot.pl (Li

and Durbin 2011).

Simulations Using Estimated Demographic Histories

Two hundred fifty kilobase haplotypes with four 2-kb recom-

bination hotspots were simulated using the program fin, part

of the LDHat software package (McVean et al. 2004; Auton

and McVean 2007). The hotspots were placed 50 kb apart at

75, 125, 175, and 225 kb. The background recombination

rate was set at 0.03 q/kb. Hotspots had varied intensities

from 2 to 20 times the background rate, set at 0.06, 0.15,

0.3, and 0.6 q/kb. One scenario simulated a constant effective

population size, with 500 sequences, 40 haplotypes each,

with an average Watterson’s h of 0.00355, the average be-

tween Lake Washington and Puget Sound (–nsamp 40 –len

250000 –theta 0.00355). For both populations, a bottleneck

was simulated 8,000 generations ago (Puget Sound:

t¼ 0.029, theta¼ 0.0036; Lake Washington: t¼ 0.022, theta

¼ 0.0035). Two bottleneck strengths were simulated by set-

ting the probability that a lineage coalesces to 10% or 90%

(s¼ 0.1, 0.9). These strengths represent two extreme bottle-

neck scenarios that fell outside of the observed bottlenecks

estimated by PSMC (Lake Washington had a 28.94% reduc-

tion in population size; Puget Sound had a 44.05% reduction

in population size). Overall, hotspot sharing between simu-

lated Lake Washington and simulated Puget Sound popula-

tions was quantified by examining all pairwise comparisons

between populations and bottleneck strengths. The number

of false positive and false negative hotspots was calculated

using custom Python scripts.

Location of Hotspots around TSSs

Transcript annotations from Ensembl (build 90) were

lifted to the revised threespine stickleback genome as-

sembly (Glazer et al. 2015) by aligning each transcript

using BLAT (v36, default parameters; Kent 2002).

Aligned transcripts were only retained if the entire tran-

script aligned to the revised genome assembly.

Transcript start sites (TSSs) consisted of a 6-kb region,

centered at the start position of the transcript. A hotspot

was considered overlapping with a TSS if the midpoint of

the hotspot overlapped with any part of a 6-kb TSS re-

gion. Enrichment of hotspots in TSSs were compared

against 10,000 random permutations. Six-kilobase

regions were randomly drawn across the genome, total-

ing the number of hotspots identified in each popula-

tion. TSS annotation filtering, overlap of hotspots with

TSSs, and random permutations were completed using

custom Python scripts.
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Gene Ontology Analysis

Gene ontology (GO) terms associated with genes within 3 kb

of hotspots were analyzed using custom python scripts. Gene

IDs and GO terms were downloaded from Ensembl using

Biomart (Smedley et al. 2015). The total number of occur-

rences for each GO term was calculated within shared hot-

spots, Lake Washington population-specific hotspots, and

Puget Sound population-specific hotspots. GO term enrich-

ment in each hotspot set was compared against 10,000 ran-

dom permutations of the same sized set drawn randomly

from across the genome (excluding original hotspots). P val-

ues were adjusted for multiple testing using a Bonferroni cor-

rection based on the total number of GO terms in each

hotspot set (shared hotspots: 118 GO terms; Lake

Washington population-specific hotspots: 605 GO terms;

Puget Sound population-specific hotspots: 869 GO terms).

GC-Biased Substitutions

GC to AT and AT to GC substitutions were quantified within

all 2-kb recombination hotspots combined and coldspots

combined. The equilibrium GC content was calculated as

the proportion of AT to GC substitutions out of the total

pool of substitutions (AT to GC and GC to AT) (Sueoka

1962; Meunier and Duret 2004; Singhal et al. 2015). To in-

crease the total number of sites available for the analysis, the

ancestral allele state was inferred using only G. wheatlandi,

rather than requiring a matching ancestral allele in both G.

wheatlandi and P. pungitius. Because CpG sites can have

higher mutation rates (Fryxell and Moon 2005; Weber et al.

2014), all consecutive CG sites in the ancestral sequence were

removed from the analysis. Equilibrium GC content of hot-

spots and coldspots was compared with the remaining 2-kb

regions across the genome after hotspots and coldspots were

removed.

DNA Motif Identification

MEME (v4.11.0) was used to identify novel DNA motifs

enriched in hotspots and matched coldspots (Bailey and

Eklan 1994). MEME ignored motif occurrences if they were

present in a hotspot multiple times (-mod zoops). This was to

prevent the reporting of repetitive motifs. MEME was run

separately for each chromosome and population and termi-

nated when 50 motifs were identified (-nmotifs 50). Motif

identification was conducted separately for shared hotspots

and population-specific hotspots.

The DNA-binding protein, PRDM9, is important for localiz-

ing recombination hotspots in mammals (Baudat et al. 2010;

Myers et al. 2010; Parvanov et al. 2010; Brick et al. 2012;

Billings et al. 2013; Pratto et al. 2014; Baker et al. 2015;

Powers et al. 2016). To determine if any PRDM genes had a

role in localizing hotspots in threespine stickleback fish, FIMO

(v4.11.0, default parameters; Grant et al. 2011) was used to

scan hotspot sequences for the predicted DNA-binding motifs

for each of the 11 annotated Prdm genes in the threespine

stickleback genome (Ensembl, build 90). DNA-binding motifs

for each PRDM protein were predicted using the Cys2His2 zinc

finger prediction tool, Predicting DNA-binding specificities for

the Cys2His2 zinc finger proteins (Persikov et al. 2009; Persikov

and Singh 2014). Predicted zinc finger domains were included

if the HMMER bit score for the zinc fingers was 17.7 or higher

(Persikov et al. 2009; Persikov and Singh 2014). To determine

the expected number of occurrences of a motif of the same

length and GC composition in hotspots, the PRDM motifs

were shuffled 100 separate times. FIMO was run on the shuf-

fled motifs to create a null distribution. Motifs were shuffled

using a custom python script.

Results

Lake Washington and Puget Sound Are Genetically
Distinct Populations

Freshwater populations of threespine stickleback fish fre-

quently exhibit signs of past bottlenecks, consistent with their

colonization from marine ancestors �10–15 thousand years

ago (Bell and Foster 1994). Given the recent divergence and

the close geographic proximity between Lake Washington

(freshwater) and Puget Sound (marine), we first examined

whether these two populations were genetically distinct.

Using FastStructure, a two population model was the most

highly supported (marginal likelihood: �0.834, supplemen-

tary fig. 1, Supplementary Material online). Because samples

were collected from multiple locations within Puget Sound

and Lake Washington, we also investigated whether either

population had evidence of substructure. Previous sampling

from Puget Sound did not reveal population substructure, but

some localities within Lake Washington have shown some

structure (Kitano et al. 2008). From our sampling,

FastStructure only supported a single population for Lake

Washington (K¼ 1; marginal likelihood: �0.910) and Puget

Sound (K¼ 1; marginal likelihood: �0.937). Principal compo-

nent analysis of both populations confirmed the results that

Puget Sound and Lake Washington are genetically distinct

clusters (supplementary fig. 2, Supplementary Material online)

with no observable population substructure in either

population.

Within each population, we explored whether there were

signatures of past bottleneck events. The average nucleotide

diversity within both populations was similar (Lake

Washington: 0.0032; Puget Sound: 0.0028), whereas the

genome-wide average nucleotide diversity between popula-

tions was 0.0037. The nucleotide diversity values we calcu-

lated are similar to previously reported values for other marine

and freshwater stickleback populations (Kitano et al. 2007;

Hohenlohe et al. 2010; Guo et al. 2015). Both populations

had negative Tajima’s D values (Tajima 1989), consistent with

Shanfelter et al. GBE

1558 Genome Biol. Evol. 11(6):1552–1572 doi:10.1093/gbe/evz090 Advance Access publication April 27, 2019

https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz090#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz090#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz090#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz090#supplementary-data
https://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evz090#supplementary-data


an excess of rare variants from a recent population expansion

(Lake Washington: �0.422; Puget Sound: �0.723).

The demographic histories of Lake Washington

and Puget Sound were estimated using PSMC models

(fig. 1 and supplementary fig. 3, Supplementary Material

online). Puget Sound experienced a bottleneck from

around 18,000 years ago until about 8,000 years ago

where the effective population size decreased to 74,250

6 1,259 individuals (starting Ne: 132,700 6 796),

whereas Lake Washington experienced a small bottleneck

around the same time where the effective population size

decreased to 91,760 6 1,960 individuals (starting Ne:

129,138 6 897) (fig. 1). Both populations have had a

constant effective population size for the last

�5,000 years. Puget Sound has a larger effective popula-

tion size than Lake Washington, matching the expected

pattern of marine populations having larger effective pop-

ulation sizes than freshwater populations (Gow et al.

2006; Makinen et al. 2006; DeFaveri and Merila 2015).

Broad-Scale Recombination Rates Are Highly Correlated
between Populations

Using a dense set of SNP markers from whole-genome se-

quencing, we estimated recombination rates across the

genomes of Lake Washington and Puget Sound threespine
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FIG. 1.—Lake Washington and Puget Sound have experienced past population bottlenecks. Demographic history for Lake Washington (A) and Puget

Sound (B) was estimated using PSMC from a single female fish from each population. One hundred bootstrap replicates around the estimated history are

shown.
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stickleback fish. The average genome-wide population re-

combination rate in Lake Washington was half of the rate

observed in Puget Sound (Lake Washington: 0.035 q/bp;

Puget Sound: 0.072 q/bp; Wilcoxon rank test; P< 0.001, sup-

plementary table 1, Supplementary Material online). Overall

read alignment of Puget Sound was lower than the Lake

Washington population (see Materials and Methods), which

may have affected our overall ability to detect SNPs in Puget

Sound. To test whether SNP density may have caused the

observed difference in genome-wide recombination rate be-

tween the two populations, we altered the read-depth filters

to over- or under-filter the SNP set in each population. Puget

Sound retained a roughly 2-fold higher recombination rate

compared with Lake Washington with the over- or under-

filtered SNP sets (Wilcoxon rank test; P< 0.001 for all

over- or under-filtered SNP set comparisons; supplemen-

tary table 2, Supplementary Material online). Because

Lake Washington had a greater number of fish than the

Puget Sound population, we also explored whether over-

all sample size had an effect on our estimates of recom-

bination rate. We randomly down sampled Lake

Washington for chromosome one to a sample size equal

in number to Puget Sound and found Puget Sound still

retained a roughly 2-fold higher recombination rate (Lake

Washington complete set of 25 individuals: 0.025 q/bp;

Lake Washington downsampled set of 20 individuals:

0.027 q/bp; Puget sound complete set of 20 individuals:

0.061 q/bp; Wilcoxon rank test; P< 0.001).

Despite having an overall lower genome-wide recombina-

tion rate in Lake Washington, recombination rates were

largely correlated at broad scales between the two popula-

tions. We observed a highly significant positive correlation of

recombination rates between the populations at the scale of

500-kb windows (Spearman’s rank correlation; rho ¼ 0.931,

P< 0.001; fig. 2; supplementary fig. 4, Supplementary

Material online). To test whether these correlations were ro-

bust to sample size differences between Puget Sound and

Lake Washington, SNP filtering, and the use of a prior distri-

bution over ancestral alleles, we estimated recombination

rates across chromosome one under multiple filtering scenar-

ios. These correlations held regardless of filtering scheme

(Spearman’s rank correlation; P< 0.001; supplementary fig.

5, Supplementary Material online) and sample size of Lake

Washington (Lake Washington downsampled set of 20 indi-

viduals vs. Puget Sound Complete set of 20 individuals;

Spearman’s rank correlation; rho ¼ 0.907; P< 0.001).

Additionally, recombination rates were lower at the center

of chromosomes (center 25% of all chromosomes) and sig-

nificantly higher at the terminal ends of chromosomes (termi-

nal 25% of all chromosomes) for both populations (Wilcoxon

rank test; Lake Washington terminal ends: 0.069 q/bp; Lake

Washington center of chromosomes: 0.009 q/bp; P< 0.001;

Puget Sound terminal ends: 0.108 q/bp; and Puget Sound

center of chromosomes: 0.016 q/bp; P< 0.001; fig. 2). Rate

differences at terminal chromosome ends have been docu-

mented in other populations of threespine stickleback (Roesti

et al. 2013; Glazer et al. 2015; Sardell et al. 2018) as well as

across a wide-range of other animals, plants, and fungi

(Broman et al. 1998; See et al. 2006; Barton et al. 2008;

Berner and Roesti 2017).

To determine whether the broad-scale recombination rates

we estimated from LD-based methods are concordant with

recombination rates measured from linkage mapping, we

compared the rates from Lake Washington and Puget

Sound with the rates estimated from a previously constructed

genetic linkage map (Glazer et al. 2015). We found a signif-

icant positive correlation between recombination rates in both

populations and the linkage map (Spearman’s rank correla-

tion; Lake Washington: rho¼ 0.830, P< 0.001; Puget Sound:

rho ¼ 0.810, P< 0.001; fig. 3). These data indicate that

broad-scale changes are conserved across multiple popula-

tions of threespine stickleback fish and confirm that the re-

combination rates estimated from LD-based methods largely

parallel the rates observed from genetic linkage maps.

FIG. 2.—Recombination rates are similar at a broad scale in each population. Mean recombination rates were estimated using LDHelmet in non-

overlapping 500-kb windows for each autosome in (A) Lake Washington and (B) Puget Sound. Centromere positions are shown in supplementary figures 6

and 7, Supplementary Material online. Transitions between gray and purple indicate different chromosomes.
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Hotspot Locations Are Divergent between Threespine
Stickleback Populations

Although broad-scale (Mb) recombination rates tend to be

conserved over longer evolutionary timescales (Kong et al.

2002; Serre et al. 2005; Fledel-Alon et al. 2009; Stevison

et al. 2016), fine-scale (kb) rates within chromosomes can

rapidly evolve (McVean et al. 2004; Myers et al. 2005;

Barton et al. 2008; Hellsten et al. 2013). Consistent with

this, we found highly variable fine-scale recombination rates

across individual chromosomes in both Lake Washington and

Puget Sound (fig. 4; supplementary figs. 6 and 7,

Supplementary Material online). Using a sliding-window ap-

proach, we identified 2,368 hotspots in Puget Sound and

1,627 hotspots in Lake Washington. Strikingly, only 311 of

these hotspots were shared between populations (13.1% of

hotspots in Puget Sound and 19.1% of hotspots in Lake

FIG. 3.—LD-based estimates of recombination rates are highly correlated with estimates from genetic linkage maps. Population-scaled recombination

rates were converted to cM/Mb. There is a significant positive correlation between LD-based recombination rates and genetic map-based recombination

rates in (A) Lake Washington (Spearman’s rank correlation; rho ¼ 0.830; P<0.001) and (B) Puget Sound (Spearman’s rank correlation; rho ¼ 0.810;

P<0.001).

FIG. 4.—Recombination rates vary at a fine-scale across chromosome one. (A) Population-scaled recombination rates across chromosome one are

shown for Puget Sound (red) and Lake Washington (blue). (B) A subset of chromosome one is shown to highlight population-specific peaks of recombination

across a narrow 2.5-Mb region. Only recombination rates below 4.5 q/bp are shown. Tick marks below each chromosome indicate the location where

hotspots were identified. The remaining chromosome plots are in supplementary figures 6 and 7, Supplementary Material online.
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Washington). This lack of hotspot overlap between Lake

Washington and Puget Sound may, in part, be due to hot-

spots falling just below the hotspot threshold. To investigate

this, we looked for any increase in recombination rate at loci

where hotspots were present in one population, but absent in

the other. We found little evidence of a localized increase in

recombination rate in these regions. Recombination rates

were close to the background rate at the same loci in the

population where hotspots were deemed absent (fig. 5A

and B). This pattern was even more apparent when shared

hotspots were removed from the analysis (fig. 5C and D).

The small degree of overlap we observed in hotspots be-

tween the populations was much greater than what would

be expected from chance alone (10,000 random permuta-

tions; P< 0.001; supplementary fig. 8, Supplementary

Material online), indicating much of the hotspot overlap

likely represents shared ancestry. We also explored

whether shared hotspots exhibited recombination rates

different from population-specific hotspots. On average,

shared hotspots had lower recombination rates than

population-specific hotspots (Lake Washington: shared

hotspots: 0.086 q/bp; population-specific hotspots: 0.134

q/bp; Puget Sound: shared hotspots: 0.163 q/bp;

population-specific hotspots: 0.283 q/bp).

Hotspot divergence between populations could partially be

driven by errors in haplotype phasing. Incorrectly phased het-

erozygous sites can artificially increase local rates of recombi-

nation, leading to false positives. To increase accuracy, we

used a phasing program that incorporates phase-

informative reads (SHAPEIT; Delaneau et al. 2013).

Therefore, phasing should be most accurate in regions of

the genome where pairs of heterozygous SNPs are linked

within single paired-end reads. If hotspots are largely caused

by errors in phasing, we may expect these regions to have a

deficiency of phase-informative reads within each population.

Instead, we found over half of SNP pairs among coldspots and

FIG. 5.—LD-based recombination rates around hotspots are population-specific. Mean recombination rates are shown across a 40 kb interval, flanking

the center of hotspots. (A) The mean recombination rate in shared and population-specific Lake Washington hotspots is higher in the Lake Washington

population (blue) compared with the same loci in the Puget Sound population (red). (B) The mean recombination rate in shared and population-specific Puget

Sound hotspots is higher in the Puget Sound population compared with the same loci in the Lake Washington population. (C and D) The pattern is more

pronounced when shared hotspots are removed from the comparison, leaving only the population-specific hotspots.
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hotspots in Lake Washington (hotspots: 66.6%; coldspots:

63.6%) and Puget Sound (hotspots: 61.6%; coldspots:

50.6%) were supported by at least one phase-informative

read, suggesting the differences in recombination rates be-

tween coldspots and hotspots is not due to a deficiency of

known phasing information between SNPs.

We also tested whether fine-scale recombination rates

were influenced by population sample size, by our SNP filter-

ing scheme, or were sensitive to the use of a prior distribution

over ancestral alleles. In each case, we found the recombina-

tion rate among hotspots in the observed set across chromo-

some one to be highly correlated to the fine-scale

recombination rates at the same loci in the over- or under-

filtered SNP trials (Spearman’s rank correlation; P< 0.001 for

the over- and under-filtered SNP sets; supplementary figs. 10

and 11, Supplementary Material online), in the trial where

sample size was reduced in Lake Washington (Spearman’s

rank correlation; rho ¼ 0.974; P< 0.001), and when an an-

cestral prior distribution was not used (P< 0.001; supplemen-

tary fig. 12, Supplementary Material online). Furthermore, we

also tested whether inclusion of a small number of SNPs that

deviated from Hardy–Weinberg equilibrium influenced fine-

scale recombination rates (Lake Washington: 3.74% SNPs de-

viated from equilibrium; Puget Sound: 2.80% SNPs deviated

from equilibrium). Nonequilibrium SNPs did not appear to

have a major impact on our recombination rate estimates.

Recombination rates at hotspots in the observed set of chro-

mosome one were highly correlated with rates at the same

loci in the trial where nonequilibrium SNPs were removed

(P< 0.001; supplementary fig. 13, Supplementary Material

online). Combined, these results indicate our detection of

hotspots is largely robust to many of the filters we applied

in our analysis.

Demographic History Does Not Completely Account for
Hotspot Divergence

To explore how changes in past effective population size (Ne)

may have affected our ability to detect hotspots, we simulated

haplotypes with known demographic histories that were sim-

ilar to those estimated from Lake Washington and Puget

Sound, along with a known distribution of recombination

hotspots. If the minimal hotspot overlap we observed be-

tween populations of threespine stickleback fish was because

of high false positive and false negative rates induced by de-

mographic history, we would expect hotspots to be incor-

rectly called to a similar degree in the bottleneck

simulations. Both bottleneck strengths exhibited elevated

false positive and false negative rates compared with the con-

trol simulation, with the highest false positive and false neg-

ative rates under the strong bottleneck scenario

(supplementary table 3, Supplementary Material online). To

determine the overall effect of elevated error rates on deter-

mining the number of shared hotspots between populations,

we compared the simulated Lake Washington haplotypes to

the simulated Puget Sound haplotypes from both bottleneck

scenarios. Despite the elevated error rates, hotspot sharing

was higher between the simulated populations than the ob-

served number of hotspots shared between actual Lake

Washington and Puget Sound populations for the weak bot-

tleneck (weak bottleneck: Lake Washington: 59.7%; Puget

Sound: 55.2%; actual Puget Sound shared hotspots: 13.1%;

actual Lake Washington shared hotspots: 19.1%). This indi-

cates that a weak bottleneck in both populations is not suf-

ficient to drive the high degree of hotspot divergence we

observed. However, if the bottleneck strength was very high

(s¼ 0.9) in both populations, elevated error rates in hotspot

calling could result in a lack of hotspot overlap that mirrors the

divergence we observed between populations. In this simula-

tion, there was a similar percent of shared hotspots as ob-

served in the actual populations (strong bottleneck: Lake

Washington: 20.7%; Puget Sound: 19.8%; actual Puget

Sound shared hotspots: 13.1%; actual Lake Washington

shared hotspots: 19.1%). However, the strong bottleneck

simulated was not realistic in comparison to the observed

bottlenecks estimated by PSMC. Both Lake Washington and

Puget Sound exhibited population size reductions that were

moderate in comparison (Lake Washington had a 28.94%

reduction in population size; Puget Sound had a 44.05% re-

duction in population size).

Based on the demographic histories we estimated, Lake

Washington experienced a less intense bottleneck than

Puget Sound. We therefore also used simulations to explore

the expected hotspot overlap if only one of the populations

experienced a strong bottleneck. If Puget Sound experienced

a strong bottleneck and Lake Washington experienced a

weak bottleneck, 36.7% of hotspots were shared in the sim-

ulated Lake Washington population and 20.5% of hotspots

were shared in the simulated Puget Sound population (actual

Lake Washington shared hotspots: 19.1%, actual Puget

Sound shared hotspots: 13.1%). Except for a scenario where

both populations underwent a severe bottleneck in the past,

our simulations suggest that demographic history alone is not

sufficient to completely explain the divergence we observed in

hotspot location between populations.

Nucleotide Diversity and Genetic Differentiation Differ
between Hotspots and Coldspots

Selection and local recombination rate can affect nucleotide

diversity within populations and genetic differentiation be-

tween populations (reviewed in Cutter and Payseur 2013).

Nucleotide diversity tends to be reduced in regions of low

recombination due to selection on linked sites, either through

hitchhiking from selective sweeps (Maynard-Smith and Haigh

1974; Kaplan et al. 1989; Przeworski et al. 2005;

Charlesworth et al. 2009) or from background selection

(Charlesworth et al. 1993, 1997; Hudson and Kaplan 1995;
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Charlesworth 2012). Both forms of selection increase genetic

differentiation between populations at linked sites

(Charlesworth et al. 1997, 2009; Przeworski et al. 2005;

Reed and Tishkoff 2006; Charlesworth 2012; Burri 2017;

Comeron 2017). To determine if the low recombination

regions (i.e., coldspots) we identified through our LD-based

approach matched predicted patterns of nucleotide diversity

and differentiation, we measured p and FST across the com-

plete set of 2-kb coldspots. Coldspots in Puget Sound had

significantly lower estimates of p, compared with the remain-

der of the genome (Puget Sound coldspots: 0.0015; genome-

wide: 0.0024; P< 0.001; supplementary fig. 9,

Supplementary Material online). Nucleotide diversity in Lake

Washington coldspots was also significantly lower when com-

pared with genome-wide estimates (Lake Washington cold-

spots: 0.0030; genome-wide: 0.0031; P¼ 0.011;

supplementary fig. 9, Supplementary Material online). Both

populations had significantly elevated levels of FST at coldspots

compared with the remainder of the genome (Lake

Washington coldspots FST: 0.078; Lake Washington

genome-wide FST: 0.030; Puget Sound coldspots FST: 0.058;

Puget Sound genome-wide FST: 0.030; P< 0.001; supple-

mentary fig. 9, Supplementary Material online), matching the-

oretical predictions.

The effects of selection extend over a smaller distance in

regions of the genome with high recombination rates.

Consequently, nucleotide diversity is higher and genetic dif-

ferentiation between populations is generally lower com-

pared with regions with reduced recombination rates

(Huang et al. 2005; Keinan and Reich 2010). True hotspots

of recombination should therefore have low FST relative to

coldspots. False hotspots signatures can occur at sites under

strong positive selection (Reed and Tishkoff 2006). However,

in these cases, sites closely linked to the locus under selection

should have reduced nucleotide diversity and elevated ge-

netic differentiation, similar to coldspots (Ptak et al. 2004;

Reed and Tishkoff 2006; Charlesworth et al. 2009). We ex-

amined whether the population-specific and shared hotspots

we detected in Lake Washington and Puget Sound exhibited

signatures of true hotspots or whether many appeared to be

false positives, driven by selective sweeps. In Lake

Washington, estimates of FST were slightly elevated com-

pared with the remainder of the genome (Lake

Washington population-specific: 0.033, P< 0.001; Lake

Washington shared: 0.032, P¼ 0.229; Lake Washington

genome-wide 0.030; supplementary fig. 9, Supplementary

Material online). However, inconsistent with a signature of

positive selection, p was slightly elevated in population-

specific and shared hotspot, compared with the rest of the

genome (Lake Washington population-specific: 0.0032,

P¼ 0.238; Lake Washington shared: 0.0035, P¼ 0.011; sup-

plementary fig. 9, Supplementary Material online). The same

pattern was present in Puget Sound. Shared and unique

hotspots had slightly elevated FST compared with the

remainder of the genome (Puget Sound population-

specific: 0.041, P< 0.001; Puget Sound shared: 0.033,

P¼ 0.183; Puget Sound genome-wide: 0.030; supplemen-

tary fig. 9, Supplementary Material online). But, p was also

elevated, rather than reduced, at hotspots (Puget Sound

population-specific: 0.0027, P< 0.001; Puget Sound shared:

0.0026, P¼ 0.104; genome-wide: 0.0024; supplementary

fig. 9, Supplementary Material online).

Hotspots Are Not Clustered in Specific Regions across
Chromosomes

Given broad-scale recombination rates were higher toward

the terminal chromosome ends in males, we examined

whether hotspots were enriched in particular regions of chro-

mosomes. We first examined if hotspots tended to occur in

clusters throughout the genome. We found both shared and

population-specific hotspots were mostly spaced at intervals

>200 kb away from the nearest hotspot (Lake Washington

population-specific: 315 kb; Puget Sound population-specific:

193 kb; supplementary fig. 14, Supplementary Material on-

line). Shared hotspots were spaced at even greater intervals

(average distance between shared hotspots: 1.35 Mb; supple-

mentary fig. 14, Supplementary Material online), indicating

both types of hotspots did not occur in clusters. At a broader

scale, we also did not observe an enrichment of hotspots

toward the terminal ends of chromosomes. Population-

specific hotspots were more often located in the internal re-

gion (internal 50% of the chromosome) rather than the ter-

minal ends of chromosomes (terminal 25% of the

chromosome) (Lake Washington terminal hotspots: 38.4%;

Lake Washington internal hotspots: 61.6%; Puget Sound ter-

minal hotspots: 37.9%; Puget Sound internal hotspots:

62.1%; two proportion Z-test; P< 0.001). The same pattern

was observed with hotspots shared between the two popu-

lations (terminal hotspots: 41.2%; internal hotspots: 58.5%;

two proportion Z-test; P¼ 0.002). Lake Washington

population-specific hotspots had 37.8% hotspots in the ter-

minal ends of chromosomes and 62.2% hotspots were in the

internal regions (two proportion Z-test; P< 0.001). Puget

Sound had 33.9% hotspots near the terminal ends of chro-

mosomes and 66.1% hotspots near the internal regions (two

proportion Z-test; P< 0.001). Although there were fewer hot-

spots in the terminal regions of chromosomes, the hotspots

that did occur in these regions were more intense, with higher

rates of recombination than hotspots in internal regions of

chromosomes (Lake Washington terminal regions: 0.206

q/bp; Lake Washington center: 0.074 q/bp; Puget Sound ter-

minal regions: 0.399 q/bp; Puget Sound center: 0.252;

Wilcoxon rank test; P< 0.001). Therefore, the high broad-

scale recombination rates observed in the terminal ends of

chromosomes may be driven by fewer hotspots that have

greater intensities.
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Hotspots Are Enriched around TSSs

Hotspot localization in genomes varies among taxa. In yeast,

birds, and some plants, where hotspots are evolutionarily con-

served, hotspots tend to be enriched within TSSs (Pan et al.

2011; Tischfield and Keeney 2012; Auton et al. 2013; Singhal

et al. 2015; Kawakami et al. 2017). In mammals with rapidly

evolving hotspots, hotspots are typically located away from

genic regions (Brick et al. 2012; Brunschwig et al. 2012). We

investigated whether threespine stickleback fish hotspots

mimic either of the patterns seen in other systems. We found

an enrichment of hotspots around TSSs, compared with ran-

dom permutations of hotspots (Lake Washington: 26% of

hotspots fell within 3 kb of a TSS, P¼ 0.034; Puget Sound:

29% of hotspots fell within 3 kb of a TSS, P< 0.001; supple-

mentary fig. 15, Supplementary Material online). This pattern

also held when examining only population-specific hotspots

(Lake Washington: P¼ 0.007; Puget Sound: P< 0.001; sup-

plementary fig. 15, Supplementary Material online); however,

shared hotspots were not enriched in TSSs compared with

random permutations (Lake Washington: P¼ 0.370; Puget

Sound: P¼ 0.827; supplementary fig. 15, Supplementary

Material online). The lack of significant enrichment of shared

hotspots around TSSs is likely due to the small sample size.

When we randomly drew samples from the population-

specific hotspots that were equal in size to the shared hotspot

pools, there was no longer enrichment around TSSs (Lake

Washington: P¼ 0.947; Puget Sound: P¼ 0.808).

We further investigated what types of genes were enriched

around hotspots. We looked for enrichment of GO terms in

the genes whose TSSs were within 3kb of hotspots (86 TSSs

were within 3 kb of shared hotspots, 465 TSSs were within

3kb of Lake Washington population-specific hotspots, and

831 TSSs were within 3-kb Puget Sound population-specific

hotspots) (supplementary table 4, Supplementary Material on-

line). We found a significant enrichment of GO terms associ-

ated with these genes in each of the hotspot sets compared

with random permutations of genes from the remainder of

the genome (shared hotspots: 36 GO terms; supplementary

table 5, Supplementary Material online; Puget Sound

population-specific hotspots: 67 GO terms; supplementary ta-

ble 6, Supplementary Material online; Lake Washington

population-specific hotspots: 32 GO terms; supplementary ta-

ble 7, Supplementary Material online; P< 0.001). Most of the

GO terms were not shared among the three hotspot sets

(supplementary table 8, Supplementary Material online), indi-

cating hotspots are not localizing around a specific type of

gene in each population. The unique GO terms for each hot-

spot set represent broad cellular functions, like enzymatic ac-

tivity, regulation of transcription or signaling pathways.

Hotspots Do Not Have GC-Biased Nucleotide Substitutions

Recombination leaves distinct signatures of nucleotide substi-

tution across the genome (Duret and Arndt 2008; Webster

and Hurst 2012; Mugal et al. 2015). Over time, the repair of

heteroduplex DNA during meiosis favors the substitution of

GC nucleotides over AT nucleotides, which increases the fre-

quency of GC nucleotides, leading to GC-biased base com-

position (Marais 2003; Meunier and Duret 2004; Lesecque

et al. 2013). Regions of the genome with higher recombina-

tion rates tend to have higher GC-biased base composition

(Kong et al. 2002; Jensen-Seaman et al. 2004; Meunier and

Duret 2004; Stevison and Noor 2010; Singhal et al. 2015;

Kawakami et al. 2017). However, it is unclear whether this

correlation is because more recombination leads to more GC-

bias (Lesecque et al. 2013) or if regions with higher GC con-

tent are more likely to be targets of recombination (Meunier

and Duret 2004; Fryxell and Moon 2005). To determine

whether regions of higher recombination rate showed signa-

tures of GC-biased gene conversion, we first calculated equi-

librium GC content (1962; Meunier and Duret 2004; Singhal

et al. 2015) in 2-kb nonoverlapping windows across the ge-

nome. Consistent with patterns of GC bias observed in other

species, we observed a significant positive correlation be-

tween recombination rates in 2-kb windows and equilibrium

GC content in both Lake Washington (Spearman’s rank cor-

relation; rho ¼ 0.076; P< 0.001) and Puget Sound

(Spearman’s rank correlation; rho ¼ 0.126; P< 0.001).

However, when we looked at equilibrium GC content specif-

ically within hotspots and coldspots across the genome, we

did not find a significant difference in mean equilibrium GC

compared with genome-wide means (table 1). If hotspots are

more recently derived, they may not have had a strong impact

on GC-biased nucleotide substitutions locally in the genome.

The moderate positive correlation we observed in the

genome-wide data likely reflects regions of the genome

with historically high recombination rates that occur over

broader scales. Hotspots would not be detected in these

regions if the background rate is also elevated. These results

are consistent with a model of recombination hotspots not

being directly targeted to regions of the genome with ances-

trally high GC content.

Recombination Rates Are Elevated in the PAR and Reduced
across the Remainder of the X Chromosome

In threespine stickleback, crossing over between the X and Y

chromosomes is restricted to a �2.5-Mb pseudoautosomal

Table 1

Mean Equilibrium GC Content (6SE)

Lake Washington Puget Sound

Population-specific hotspots 0.418 (60.0016)a 0.415 (60.0012)b

Shared hotspots 0.419 (60.0044)a 0.419 (60.0036)b,c

Coldspots 0.416 (60.0014)a 0.411 (60.0012)b,c

Genome-wide 0.420 (60.0003)a 0.417 (60.0003)b

a–cGroups significantly different within populations by Wilcoxon rank test;
P<0.05; adjusted for multiple testing with a Bonferroni correction.
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region (PAR) (Peichel et al. 2004; Roesti et al. 2013; Yoshida

et al. 2014; White et al. 2015). Because of the potential for

high rates of crossing over in the PAR, we estimated

population-scaled recombination rates for this region inde-

pendently from the autosomes. The average recombination

rate in the PAR was 0.232 q/bp for Puget Sound and 0.129 q/

bp for Lake Washington. These rates were significantly higher

than the average recombination rate across the autosomes

(Wilcoxon rank test; Lake Washington autosome average

rate: 0.035 q/bp, P< 0.001; Puget Sound autosome average

rate: 0.072 q/bp, P< 0.001; supplementary fig. 16A,

Supplementary Material online). Although we observed

some fine-scale variation in recombination rates across the

PAR (supplementary fig. 16A, Supplementary Material on-

line), we identified very few hotspots, which may be due to

the increased background recombination rate across the

region.

We also estimated population-scaled recombination rates

across the entire X chromosome using only females. The av-

erage recombination rate across the X chromosome (includ-

ing the PAR) was 0.052 q/bp for Lake Washington and 0.103

q/bp for Puget Sound. With the PAR excluded, the average

recombination rate was 0.024 q/bp and 0.052 q/bp for Lake

Washington and Puget Sound, respectively (supplementary

fig. 16B, Supplementary Material online). We tested whether

the reduced recombination rate on the X chromosome, rela-

tive to the autosomes (Lake Washington average autosomal

rate: 0.035; Puget Sound average autosomal rate: 0.072),

was due to the smaller sample size used for the X chromo-

some. We downsampled a single autosome (chromosome

one), matching the sample size for the X chromosome rate

estimation, to test if there was an effect on recombination

rate. After downsampling, we did not observe a significant

change in average recombination rate for chromosome one

(Wilcoxon one-sample test; Lake Washington: P¼ 0.073;

Puget Sound: P¼ 0.156; supplementary table 9,

Supplementary Material online), indicating the reduced rate

across the X chromosome is likely not an effect of sample size

and is instead an intrinsic feature of the demographic history

of the threespine stickleback sex chromosomes.

PRDM Genes Are Weakly Associated with Threespine
Stickleback Recombination Hotspots

Hotspots in many species are targeted to specific regions of

the genome by DNA-binding motifs (Kon et al. 1997; Steiner

et al. 2002; Myers et al. 2008; Baudat et al. 2010). In species

where PRDM9 targets recombination hotspots to specific

regions of the genome, the zinc finger domain of PRDM9 is

typically under strong positive selection (Oliver et al. 2009;

Myers et al. 2010) and the protein contains functional KRAB

and SSXRD domains (Baker et al. 2017). Recent work has

suggested that the KRAB domain is important for recruiting

other recombination proteins to where PRDM9 is bound

(Grey et al. 2017; Imai et al. 2017). In teleost fish, two paral-

ogs of Prdm9 have been identified, Prdm9a which contains all

the protein domains and Prdm9b which lacks the KRAB and

SSXRD domains (Baker et al. 2017). Threespine stickleback

fish appear to have lost Prdm9a but retain Prdm9b. The func-

tion of Prdm9b is unknown. Consistent with a lack of function

directing recombination hotspots, we did not observe strong

signatures of positive selection in the zinc finger domain of

Prdm9b. We found zero fixed differences between threespine

and blackspotted stickleback within Prdm9b. There was one

synonymous and one nonsynonymous mutation at moderate

frequency in Lake Washington and two synonymous and

three nonsynonymous mutations at moderate frequency in

Puget Sound, indicating these mutations are likely not causing

the population-specific localization of hotspots we observed

between Lake Washington and Puget Sound.

We also examined whether the predicted binding sites of

any of the 11 previously annotated Prdm genes in threespine

stickleback fish were enriched in recombination hotspots. Less

than 14% of hotspots contained any of the predicted PRDM

zinc finger binding domain motifs (supplementary table 10,

Supplementary Material online). However, six of the motifs

were significantly enriched in hotspots, including PRDM9b,

when compared with scrambled motifs of the same size

and GC content (supplementary table 10, Supplementary

Material online), indicating Prdm genes could have some

role in localizing a subset of recombination hotspots.

Outside of PRDM9 in mammals, multiple DNA-binding motifs

assist with hotspot targeting in other systems such as S.

pombe (Kon et al. 1997; Steiner et al. 2002, 2009). To see

if other DNA motifs were targeting hotspots in threespine

stickleback fish, we searched for motifs enriched in hotspots.

The most significant motifs identified were simple mono- or

di-nucleotide repeats which were present only in a subset of

the hotspots (supplementary fig. 17, Supplementary Material

online). These repeats were not specific to hotspots as they

were also found in GC-matched coldspots.

Discussion

Broad-Scale Recombination Rates Are Conserved among
Threespine Stickleback Populations

At a broad scale, recombination rates across the threespine

stickleback genome were conserved between the two pop-

ulations. This broad-scale conservation of recombination rates

is a feature observed in many taxa (Kong et al. 2002; Serre

et al. 2005; Fledel-Alon et al. 2009; Stevison et al. 2016) and

may reflect the necessity of crossing over for the proper seg-

regation of chromosomes during meiosis (Mather 1936;

Kaback et al. 1992; Davis and Smith 2001). Additionally, we

observed differential rates of recombination associated with

broad genomic regions that have been observed in other

systems. For one, we observed higher recombination rates
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toward the terminal chromosome ends. In many species, the

terminal chromosome ends have higher rates of recombina-

tion (Kong et al. 2002; Barton et al. 2008; Roesti et al. 2013;

Berner and Roesti 2017; Haenel et al. 2018; Sardell et al.

2018), which is thought to be driven by male-specific locali-

zation of recombination (Broman et al. 1998; Singer et al.

2001; Moen et al. 2008). Our LD-based method estimates

sex-averaged recombination rates, which does not allow us

to test whether the pattern we observed around the terminal

chromosome ends is driven by males. However, sex-specific

genetic linkage maps between the Japan Sea stickleback

(Gasterosteus nipponicus) and the threespine stickleback (G.

aculeatus) corroborate this pattern (Sardell et al. 2018). The

mechanisms that drive this pattern remain unclear (Hurst et al.

2005; Stapley et al. 2017; Haenel et al. 2018). We showed

that hotspots are not clustered near the terminal chromo-

some ends, which indicates an overall increase in hotspot

number is likely not responsible. However, the hotspots that

we did detect in the terminal chromosome ends were more

intense, with higher recombination rates overall. Therefore,

one possible mechanism to increase recombination rates may

be to increase intensity of existing hotspots in the terminal

chromosome ends, rather than increase the total hotspot

number.

Across the X chromosome, we observed distinct regional

differences in recombination rates. Within the PAR, we ob-

served higher recombination rates compared with autosomes.

Recombination rates in PARs are often orders of magnitude

above autosome-wide averages, as an obligate crossover

should occur between the X and Y chromosomes in these

small regions during every male meiosis (Otto et al. 2011;

Kauppi et al. 2012; Hinch et al. 2014). Outside of the PAR,

we found there was a lower average recombination rate on

the X chromosome compared with autosomes. In populations

with an equal sex ratio, recombination only occurs on the X

chromosome in two-thirds of meioses each generation

(Schaffner 2004). This results in a recombination rate across

the X chromosome that is two-thirds of the genome-wide

average (Kong et al. 2002). Consistent with this theoretical

prediction, the X chromosome recombination rates we esti-

mated with our LD-based approach are also approximately

two-thirds of the average autosome recombination rates

(Lake Washington: 0.686 of autosomes; Puget Sound:

0.722 of autosomes).

Overall, the genome-wide average recombination rate for

Puget Sound was 2-fold higher than in Lake Washington.

Rate variation between populations or species can be driven

by several processes. Structural variation (i.e., inversions, chro-

mosomal rearrangements, and copy number variants) can

contribute to rate variation among genomes. Indeed, recom-

bination rates have been shown to vary across chromosomal

regions due to segregating inversions between marine and

freshwater populations of threespine stickleback (Jones,

Grabherr, et al. 2012; Glazer et al. 2015). However, structural

variation would only explain the genome-wide recombination

differences we observed if genomic rearrangements were

heterozygous within a single population. In threespine stick-

leback fish, most structural variants are fixed between marine

and freshwater populations though there are a few excep-

tions (Jones, Grabherr, et al. 2012; Chain et al. 2014; Hirase

et al. 2014; Roesti et al. 2015). Over longer evolutionary time-

scales, recombination rate also can evolve neutrally (Dumont

and Payseur 2008), driving genome-wide rate variation be-

tween species. However, neutral divergence is likely not oc-

curring at a pace that would alter genome-wide

recombination rates between recently diverged populations

of threespine stickleback fish. One plausible explanation for

the observed rate differences is differences in demographic

history between the Lake Washington and Puget Sound pop-

ulations. A larger effective population size could increase the

population-scaled recombination rate (Burt 2000;

Charlesworth 2009; Adrian et al. 2016). In threespine stickle-

back, marine populations typically have a larger Ne than fresh-

water populations (Gow et al. 2006; Makinen et al. 2006;

DeFaveri and Merila 2015), consistent with our observed pat-

tern of a higher recombination rate in Puget Sound relative to

Lake Washington.

Demographic Processes Do Not Completely account for
Hotspot Divergence

LD-based estimates of recombination rates can be affected by

demographic processes that change patterns of LD across the

genome (Chan et al. 2012; Johnston and Cutler 2012; Wall

and Stevison 2016; Dapper and Payseur 2018). The duration

and timing of these events can have varying effects on hot-

spot identification, often reducing the power to detect hot-

spots and increasing the rate of errors (Dapper and Payseur

2018). Threespine stickleback fish have a complex history of

bottleneck events and population expansions over the last

10–15 thousand years which vary across geographic regions

(Bell and Foster 1994) and our analyses have shown that

Puget Sound and Lake Washington are distinct populations.

Consistent with what has been observed in other populations,

we found Puget Sound and Lake Washington both experi-

enced past bottleneck events. Based on simulations, demo-

graphic history could have some role in the observed

divergence in hotspot location between Lake Washington

and Puget Sound populations, but it seems likely that popu-

lation demography does not completely explain the pattern.

Only in the scenario where both populations experienced a

strong bottleneck do error rates rise high enough to mimic the

observed divergence in hotspot location. This bottleneck

strength exceeded the reductions in population size we esti-

mated through PSMC.

Our estimates of effective population size over time

revealed that Lake Washington and Puget Sound did not ex-

perience similar fluctuations. Both populations began with
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effective population sizes that largely parallel those observed

in other threespine stickleback fish populations (Liu and

Hansen 2017; Ravinet et al. 2018). Puget Sound then experi-

enced a larger population expansion roughly 18,000 years

ago, followed with a decrease in population size at

�8,000 years ago. Lake Washington had a slight increase in

population size, followed by a small bottleneck around the

same time, but overall changes in effective population size

were more stable in this population. Little is known about

the colonization history of these specific populations, making

it unclear why Puget Sound experienced a stronger bottleneck

over time.

Recombination Hotspots Are Not Artifacts of Selection

Positive selection can alter local patterns of LD, which can

mimic the signal of a recombination hotspot (Przeworski

et al. 2005; Reed and Tishkoff 2006). In these cases, nucleo-

tide diversity at linked sites should be depleted as the selected

variant is swept toward fixation (Kaplan et al. 1989;

Charlesworth et al. 2009) and genetic differentiation between

populations should increase (Charlesworth et al. 1997;

Przeworski et al. 2005; Charlesworth et al. 2009;

Charlesworth 2012; Comeron 2017). Some hotspots in

Puget Sound and Lake Washington had elevated FST relative

to background genomic levels. However, hotspots in both

populations did not exhibit reduced nucleotide diversity com-

pared with the genome-wide background, which is not con-

sistent with strong positive selection. In the case of very strong

positive selection, the selective sweep could resemble a re-

combination coldspot. Although we cannot discount that

some of the hotspots or coldspots we identified are artifacts

of selection, it seems unlikely that a majority of these are false

positives. Genome-wide scans of selection between marine

and freshwater populations of threespine stickleback fish

have found a much smaller number of loci under strong pos-

itive selection (Hohenlohe et al. 2010; Jones, Chan, et al.

2012; Jones, Grabherr, et al. 2012). Balancing selection may

also create a false positive hotspot signal, locally increasing

nucleotide diversity, while reducing genetic divergence.

Although this pattern matches the signal of a true hotspot,

it is unlikely balancing selection is responsible for the entire set

of population-specific hotspots in Lake Washington and

Puget Sound. Even fewer loci with signatures of balancing

selection have been identified between marine and freshwa-

ter populations (Hohenlohe et al. 2010).

Recombination Hotspots Are Weakly Conserved between
Marine and Freshwater Populations of Threespine
Stickleback Fish

Of the 3,995 hotspots between Lake Washington and Puget

Sound, only�15% of hotspots are shared, indicating many of

the hotspots are recently derived within populations of threes-

pine stickleback fish. One possible model for the observed

divergence is that recombination hotspots are being directed

by a PRDM9-dependent mechanism as observed in mammals.

In mammals, strong positive selection acting on the zinc finger

binding domain of PRMD9 has led to multiple distinct DNA-

binding motifs between closely related species (Baudat et al.

2010; Myers et al. 2010; Pratto et al. 2014). This rapidly shifts

the locations of hotspots (Brick et al. 2012; Pratto et al. 2014;

Baker et al. 2015; Smagulova et al. 2016; Stevison et al.

2016). Typically, �40% of hotspots will contain a PRDM9

motif in mouse and humans (Myers et al. 2008; Baudat

et al. 2010). In threespine stickleback fish, we found that

<14% of hotspots had any PRDM motifs (PRDM9 motifs

were only present in 190 Lake Washington hotspots and

260 Puget Sound hotspots), contrary to what we would ex-

pect if PRDM9 was controlling hotspot location in threespine

stickleback. A lack of PRDM9 enrichment was also found

among recombination hotspots in a genetic cross between

populations of threespine stickleback (Sardell et al. 2018). In

this study, a much smaller pool of hotspots was detected,

limiting the overall power to detect enrichment. Because we

observed a slight enrichment of PRDM motifs, we cannot

completely discount some role of a PRDM protein in the reg-

ulation of recombination in threespine stickleback fish. Prdm

genes in general have been shown to be involved with mod-

ifying histones which can affect chromatin structure (Fog et al.

2012; Vervoort et al. 2016). Additional work is necessary to

explore the function of Prdm genes during meiosis in threes-

pine stickleback fish. We did not observe an enrichment of

any other DNA motifs in hotspots that would indicate a role of

an alternative DNA-binding protein in localizing hotspots.

Using a more direct approach to detect all possible locations

where DSBs are occurring across the genome, such as ChIP-

seq against DMC1 (Smagulova et al. 2011, 2016), may pro-

vide additional insights into what genomic features are target-

ing recombination hotspots in threespine stickleback fish.

Another possible model is that recombination hotspots can

shift over short evolutionary timescales among regions of the

genome that are susceptible to homologous recombination,

such as regions of accessible chromatin. Both evolutionarily

conserved and rapidly evolving hotspots tend to locate to

regions of accessible chromatin (Pan et al. 2011; Comeron

et al. 2012; Tischfield and Keeney 2012) or regions with his-

tone 3 lysine 4 trimethylation (H3K4me3) (Smagulova et al.

2011; Brick et al. 2012; Tischfield and Keeney 2012; Baker

et al. 2015; Powers et al. 2016; Marand et al. 2017). In taxa

where hotspots are evolutionarily conserved, hotspots are

highly enriched around TSSs (Pan et al. 2011; Tischfield and

Keeney 2012; Auton et al. 2013; Singhal et al. 2015;

Kawakami et al. 2017).This pattern could be due to either

higher selective constraints at TSSs or the chromatin structure

at TSSs. TSSs are often under purifying selection and if a ge-

nomic feature, like a DNA motif, is targeting hotspots to these

regions, these features would also be preserved through pu-

rifying selection, maintaining the location of the hotspot (Tsai
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et al. 2010; Lam and Keeney 2015; Singhal et al. 2015;

Kawakami et al. 2017). On the other hand, an open chroma-

tin conformation could be driving this pattern. TSSs and the

surrounding regions must be accessible for transcription to

occur while also providing sites for Spo11 to bind, initiating

recombination as Spo11 will create DSBs at any sites with

accessible chromatin (Romanienko and Camerini-Otero

1999; Celerin et al. 2000; Pan et al. 2011). In Lake

Washington and Puget Sound populations, we found some

enrichment of hotspots at TSSs (Lake Washington: 26% of

hotspots fell within 3 kb of a TSS; Puget Sound: 29% of

hotspots fell within 3 kb of a TSS) which is similar to hotspot

enrichment around TSS in taxa that do not have a functional

PRDM9 protein. In birds and dogs, for example,�20–30% of

hotspots overlap with TSSs (Auton et al. 2013; Singhal et al.

2015; Kawakami et al. 2017). Additional characterization is

needed to determine if hotspots in threespine stickleback are

occurring in regions of the genome that are already open due

to transcription or if there is a mechanism that creates acces-

sible chromatin specifically for DSB formation, like what is

believed to occur with PRDM9 in mammalian species

(Hayashi et al. 2005; Powers et al. 2016; Diagouraga et al.

2018).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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