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Purpose: To evaluate the impact of (k,t) data sampling on the variance of 
tracer‐kinetic parameter (TK) estimation in high‐resolution whole‐brain dynamic 
contrast enhanced magnetic resonance imaging (DCE‐MRI) using digital reference 
objects. We study this in the context of TK model constraints, and in the absence of 
other constraints.
Methods: Three anatomically and physiologically realistic brain‐tumor digital refer-
ence objects were generated. Data sampling strategies included uniform and variable 
density; zone‐based, lattice, pseudo‐random, and pseudo‐radial; with 50‐time frames 
and 4‐fold to 25‐fold undersampling. In all cases, we assume a fully sampled first 
time frame, and prior knowledge of the arterial input function. TK parameters were 
estimated by indirect estimation (i.e., image‐time‐series reconstruction followed by 
model fitting), and direct estimation from the under‐sampled data. We evaluated 
methods based on the Cramér‐Rao bound and Monte‐Carlo simulations, over the 
range of signal‐to‐noise ratio (SNR) seen in clinical brain DCE‐MRI.
Results: Lattice‐based sampling provided the lowest SDs, followed by pseudo‐ 
random, pseudo‐radial, and zone‐based. This ranking was consistent for the Patlak 
and extended Tofts model. Pseudo‐random sampling resulted in 19% higher aver-
aged SD compared to lattice‐based sampling. Zone‐based sampling resulted in sub-
stantially higher SD at undersampling factors above 10. CRB analysis showed only 
a small difference between uniform and variable density for both lattice‐based and 
pseudo‐random sampling up to undersampling factors of 25.
Conclusion: Lattice sampling provided the lowest SDs, although the differences 
between sampling schemes were not substantial at low undersampling factors. The 
differences between lattice‐based and pseudo‐random sampling strategies with both 
uniform and variable density were within the range of error induced by other sources, 
at up to 25‐fold undersampling.
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1 |  INTRODUCTION

Dynamic contrast enhanced MRI (DCE‐MRI) of the brain 
provides a powerful tool to non‐invasively assess neurovas-
cular parameters, such as permeability of the brain–blood 
barrier (Ktrans), plasma (vp), and interstitial volume fraction 
(ve). Brain–blood barrier dysfunction with abnormal per-
meability has been shown to occur in multiple pathologies, 
including Alzheimer’s disease, multiple sclerosis, acute isch-
emic stroke, and brain tumors.1,2 For brain metastases, quan-
tification of permeability as well as perfusion shows potential 
to not only classify tumors, but moreover to predict, guide, 
and validate treatment response and success rate. Although 
much of the required information is available through im-
ages of tumor morphology on conventional post‐contrast 
T1‐weighted MRI, functional changes that can be monitored 
with DCE MRI happen on a shorter time scale. This makes 
DCE MRI a candidate to monitor early response to therapy 
and to potentially alter treatment to mend side‐effects or to 
opt for a more aggressive treatment and potentially enhance 
chances of survival.3

For routine clinical use, DCE‐MRI measurements of 
tracer‐kinetic (TK) parameters have to be accurate, precise, 
and reproducible.3-5 The precision of DCE MRI imaging 
has been the subject of a long history of studies.6-9 Among 
other dependencies, precision of TK parameter maps depends 
highly on the underlying (k,t) data sampling pattern and the 
ability to find a suitable estimator to reconstruct TK parame-
ters from a given set of data samples.10 Undersampling within 
each time frame is inevitable to achieve desired temporal res-
olution to reliably capture bolus arrival, accumulation, and 
wash‐out, while still maintaining a clinically relevant FOV at 
high spatial resolution.1,2

Numerous (k,t) sampling strategies have been proposed 
for dynamic MRI in general (i.e., not specific to DCE‐MRI). 
For Cartesian sampling, these strategies could broadly be 
classified into zone‐based,11-13 lattice‐based,14-16 and ran-
dom sampling with uniform density17 or variable density.18-20 
Several of these approaches are based on specific imaging or 
modeling assumptions (e.g., x‐f support),21-23 and are tailored 
to the needs of a specific constrained reconstruction proce-
dure. A variety of methods have also been proposed that for-
mulate k‐ and (k,t)‐space sampling design as an optimization 
problem.21,23-36

Inherent to DCE‐MRI is a very high data redundancy in 
the mapping from multi‐coil, multi‐frame k‐space data to a 
few static TK parameter maps. This data redundancy can be 
exploited with a maximum‐likelihood‐like estimator37 that 
relaxes the requirements on the sampling strategy. Hence, it 
remains crucial to gain insight how the achievable precision 
of TK parameters scales for different sampling strategies as 
the undersampling rates increase to allow for a clinical high‐
resolution whole‐brain DCE‐MRI.

In this work, we compare (k,t) sampling patterns in a 
framework that assumes TK model consistency without mak-
ing additional assumptions about the object (e.g., that it is 
smooth, has limited support, etc.). We use pathologically 
and anatomically realistic digital reference objects and use 
both Cramér‐Rao bound (CRB) analysis and Monte‐Carlo 
simulation to evaluate TK parameter variances. We compare 
8 commonly used (k,t) data sampling patterns over a range 
of undersampling factors and SNR levels relevant to high‐ 
resolution whole‐brain DCE‐MRI.

2 |  METHODS

2.1 | Digital reference object
The optimal sampling strategy is expected to depend on the 
image characteristics and the specific details of the forward 
model. As a result, we conducted our analysis using real-
istic digital references objects (DROs) that are typical of 
the protocol used at our imaging center. Pathologically and 
anatomically realistic DROs38 were taken to be the ground‐
truth. Axial 2D DRO slices were used to evaluate the impact 
of (k,t) sampling on 3D DCE‐MRI, where the fully sampled 
readout direction is superior‐inferior. Cartesian 2D phase 
encoding is performed in the axial ky‐kz plane, and the im-
pact of sampling can be adequately studied with 2D axial 
DROs in the y‐z plane. All brain slices were cropped to con-
tain as little space around the head as possible and had 106 × 
88 pixels which corresponds to an approximate voxel size of 
4 mm × 4 mm × 5 mm. To cover a broader range of tumors 
that are likely to be found in clinical exams, 3 brain DROs 
with one large tumor, one small tumor, and one metastasized 
tumor were used. Tumor data originated from high grade 
glioma patients. The DROs are shown in Figure 1.

Each tissue was then simulated at 3T using the pro-
ton density ρ, precontrast spin‐lattice relaxation time 
T10, plasma volume vp, interstitial volume fraction ve, 
and volume‐transfer constant Ktrans listed in Supporting 
Information Table S1. All DROs were based on the fol-
lowing experimental parameters: pre‐contrast white‐matter 
SNR = 10–100, 25° flip angle, 50 time frames, 5 s tempo-
ral resolution, and a 5 ms repetition time (i.e., 1000 phase 
encodes per time frame). These are typical parameters for 
brain DCE‐MRI and are within the recommend range of 
the current RSNA‐QIBA DCE‐MRI Profile.39

2.2 | Data model
DCE MRI monitors bolus arrival, accumulation, and wash‐
out over time in a given field‐of‐view (FOV). Specifically, 
the DCE MRI experiment can be modelled mathematically as

(1)k
t
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where kt denotes samples in (k,t) space, U the undersampling 
operator, F the Fourier operator, S coil sensitivity encoding, 
and Φt incorporates Bloch simulation and TK modeling to 
generate the signal intensity at time t for a given set of tracer‐
kinetic parameters θ. nt is additive complex, circularly symmet-
ric Gaussian noise.40 The signal intensity was simulated for a 
spoiled gradient echo (SPGR) pulse sequence assuming the fast 
exchange limit for conversion from concentration time curves 
to longitudinal relaxation. To investigate the generalizability 
of the results across different models, we generated concen-
tration time curves following the linear Patlak model as well 
as the nonlinear extended Tofts model.41 For both TK models, 
this results in a nonlinear mapping from the TK parameters to 
the measured complex k‐space data. A population‐based arte-
rial input function was chosen for this simulation.42 Coil sen-
sitivities for an 8‐channel head array and the noise covariance 
matrix were taken from measurements of a typical brain tumor 
patient undergoing a clinical DCE MRI exam at our institution  
(3T, HD23, GE Healthcare, Waukesha, WI).

2.3 | Data sampling patterns
Eight different sampling patterns were compared and are 
shown in Figure 2 and Supporting Information Video S1. 

For all sampling patterns, the first time frame was fully sam-
pled. Although many different sampling strategies exist for 
dynamic MRI exams, many of these combine ideas of zone‐
based, lattice, random sampling, both in uniform and variable 
density variants, or (pseudo) radial sampling. We compared 
each of these sampling pattern classes with each other. In 
this study, zone‐based (k,t) space sampling is represented by 
Keyhole sampling43 and TRICKS.12 In contrast to Keyhole 
sampling,43 TRICKS updates the outer k‐space on a regu-
lar basis. Therefore, the task of filling in missing (k,t) space 
samples becomes an interpolation rather than an extrapola-
tion problem which is intrinsically better posed.30,44,45 For 
lattice‐based sampling, a (k,t) lattice was used with uniform 
(UD) and variable lattice density (VD). Breuer et al46 intro-
duced CAIPIRINHA‐type lattice sampling whose structure is 
generated by replication of elementary cells of size R × R in 
the 2D phase‐encoding plane for a given sampling reduction 
factor R. The CAIPIRINHA‐type reduction factor is speci-
fied by

with Ry and Rz as reduction factors in the two phase‐
encoding directions, and Δ the circular shift between two 
consecutive rows of the lattice elementary cell. Breuer et al46  

(2)RCAIPI =Ry × R
(Δ)
z

,

F I G U R E  1  Three DROs were used to test for robustness of the results: Brain slice with large tumor with enhancing rim (A), brain slice with 
smaller tumor (B), and brain slice with metastases (C). These were formed by inserting previously developed brain tumor DCE‐MRI reference 
objects38 into brain data from subject 4 of the BrainWeb Database.68 Through this process, additional DROs can be easily created
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found a lattice generated according to RCAIPI =1 ×R

√
R to 

yield among the lowest g‐factor for 3D (static) brain imag-
ing. Following this notation, the elementary cells of the 3D 
phase‐encoding lattice (ky × kz × t) in this study are chosen 
according to

The lattice structure is built from the elementary cells by 
replication of the elementary cells in linear order along the 
two phase‐encodes ky, kz, and time t before cropping the lat-
tice to the desired k‐space dimensions. Analogously, random 
sampling was implemented with uniform and variable density 
in (k,t) space. For each of these Cartesian sampling patterns, 
the number of samples per frame and region of sampling den-
sity are approximately identical for every frame. We further 
included pseudo radial sampling with golden angle incre-
ments (GAR) and its randomized derivative in our analysis 
(RGAR).20 For both variants, the spokes are generated cen-
ter‐out with counter‐clockwise Golden Angle increments. For 
RGAR, the samples along a spoke are accepted by chance with 
probability 0.3. These pseudo radial sampling patterns replace 
non‐Cartesian sampling locations by the nearest neighbor on a 
Cartesian grid. This allows pseudo radial sampling patterns to 
be analyzed in the same pipeline with the Cartesian sampling 
patterns. Every sampling trajectory in this study assumes in-
stantaneous sampling within each time frame.

2.4 | Monte‐Carlo simulation
We used Monte‐Carlo simulations to quantify the precision 
of TK parameter fitting. We evaluated efficiency of direct 

reconstruction37 and SENSE reconstruction with subsequent 
TK parameter fitting of concentration time curves. Direct re-
construction poses the estimation of TK parameters as opti-
mization problem of the form

In the weighted least squares (WLS) variant, C is chosen 
to be the Cholesky decomposition of the noise covariance 
matrix. In the ordinary least squares (OLS) approach C is set 
to identity. In both cases the optimization problem is solved 
using nonlinear conjugate gradient descent.

We did not apply any spatial or temporal constraint 
during SENSE reconstruction. Monte‐Carlo simulations 
were performed over a pre‐contrast white matter SNR range 
from 10–100. The goal was to determine the operational 
minimum SNR for each method. This range covers best 
case and clinically realistic scenarios down to noise levels 
that make TK parameter estimation practically infeasible. 
For each SNR level, we used 100 noise realizations that 
were found to be sufficient for the variance estimates to 
stabilize.

2.5 | Data analysis
We compared the Cramér‐Rao bound (CRB) for the com-
mon TK parameters of the extended Tofts and the Patlak 
model (i.e., vp and Ktrans) for a broad range of undersampling 
factors. The CRB gives a lower bound on the covariance 
of any unbiased estimator for the desired parameter vec-
tor,47 and has been widely used to optimize MRI experiment 
design7,28,36,48,49

(3)RCELL =1×R

√
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F I G U R E  2  Illustration of data sampling strategies for 9‐fold undersampling. Shown are the ky, kz phase‐encoding plane for the 29th time 
frame (top row), and the kz‐t plane for the central ky (bottom row). White dots indicate phase‐encodes that are acquired (i.e., a whole line k‐space 
along kx). Black indicate phase‐encodes that are not acquired. Left‐to‐right: Keyhole, TRICKS, lattice with uniform density, lattice with variable 
density, random with uniform density, and random with variable density, pseudo‐radial with Golden Angle increments (GAR) and randomized 
pseudo‐radial with Golden Angle increments (RGAR). Each sampling pattern had a fully sampled first time frame and varied for all subsequent 
time frames, as shown in Supporting Information Video S1
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Here, J(θ) is the Fisher information matrix (FIM). The 
corresponding unbiased estimator that meets this bound 
tightly is called efficient. If the FIM is singular, this indi-
cates that the CRB is near‐infinite for certain parameters 
(i.e., those parameters are not able to be estimated accu-
rately), which is undesirable. Hence, from a measurement 
point of view these settings should be avoided if possi-
ble.50 An example of such experiment setup is given by 
Keyhole sampling strategies.43 In Keyhole sampling, the 
first pre‐contrast time frame is fully sampled, whereas all 
subsequent frames trade low‐spatial resolution for higher 
temporal resolution. Because the pre‐contrast frame does 
not contain any information about TK parameters, limited 
high spatial frequency information is available for TK the 
parameter maps.

The CRB values were computed for the entire image 
but were analyzed within regions‐of‐interest (ROIs) tightly 
drawn around all tumors. We also compared spatial maps of 
the CRB at an undersampling factor of 16. To be able to com-
pare all sampling patterns at the same undersampling factor, 
the figures of merit for lattice sampling with variable density 
were linearly interpolated to match the nominal undersam-
pling factors.

3 |  RESULTS

Figure 3 summarizes estimator performance for the extended 
Tofts model as a function of SNR and undersampling factor. 
The CRB is compared with empirical SDs from Monte‐Carlo 
simulations with conventional and direct reconstruction both 
with (WLS) and without (OLS) accounting for correlated, 
non‐isotropic noise. For both TK parameters, SDs of di-
rect parameter estimation in both formulations were always 

within 2.5 times the CRB. Conventional indirect reconstruc-
tion results in SDs of about one order of magnitude above the 
CRB. For both reconstruction approaches, the weighted least 
squares formulation leads to small improvements in achiev-
able SDs.

Figure 4 shows CRB‐based predictions of the average SD 
and maximum coefficient of variation of TK parameters vp 
and Ktrans for the extended Tofts model across the three tumor 
ROIs. For all sampling patterns except Keyhole sampling, the 
averaged SDs for both TK parameters scale approximately 
with the square root of the undersampling factor, which in-
dicates the loss in measurement precision to be dominated 
by fewer measurements and shorter acquisition time.51 As 
the undersampling factor is increased, the scaling behavior 
deviates from this rule indicating an increased interaction be-
tween the undersampling and the coil geometry.52 At low un-
dersampling rates (i.e., R = 4), lattice sampling with variable 
density and both variants of random sampling achieve lower 
(average) SDs than lattice sampling with uniform density for 
vp whereas they are all approximately equal for Ktrans. At all 
higher undersampling rates (i.e., R ≥ 9), lattice sampling with 
uniform density outperforms all other sampling strategies in 
this comparison. Although Keyhole sampling achieves SDs 
comparable to those of the other seven sampling strategies in 
this comparison, the SDs of Keyhole sampling lie well above 
the all other sampling patterns at R ≥ 9.

Figure 5 shows the increase in the CRB‐based predictions 
of the SD and coefficient of variation (relative to lattice sam-
pling with uniform density) as a function of undersampling 
factor for the extended Tofts model. Overall, the relative dif-
ferences in achievable SDs between sampling patterns are 
higher for vp than for Ktrans. There is an increase in average 
SDs of up to 19% for vp and 10% for Ktrans when random 
instead of lattice sampling is applied. For both lattice and ran-
dom sampling, there is little difference among their respec-
tive uniform and variable density layouts. For pseudo radial 

(5)Cov (�)≥J
−1

(�).

F I G U R E  3  Estimator performance as a function of SNR for both vp (left column) and Ktrans (right column) of the extended Tofts model: 
Comparison of SDs predicted by CRB with SDs computed by Monte‐Carlo simulation with conventional (conv) and direct reconstruction 
with (WLS) and without (OLS) accounting for correlated, non‐isotropic noise for uniform random sampling with R = 4 and uniform density 
undersampling
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sampling with GAR, randomization leads to an increase of 
SD of up to 14% for vp and up to 7% for Ktrans. With regard 
to the maximum coefficient of variation, the relative ranking 
between different sampling patterns remains approximately 
identical for vp up to R = 25 compared to the ranking seen 
for the averaged SDs. For Ktrans, the maximum coefficients of 
variation obtained by TRICKS, random sampling with uni-
form and variable density, lattice sampling with uniform and 
variable density, and Golden Angle radial are roughly iden-
tical across all undersampling rates. At lower undersampling 
rates, i.e., R < 25, randomized Golden Angle pseudo‐radial 
sampling achieves lower maximum coefficient of variation 
compared to all other sampling patterns.

Figures 6 and 7 compare CRB‐based predictions of the 
SDs for TK parameters vp and Ktrans of the extended Tofts 
model across all tumor ROIs for the DROs in Figure 1 as 
a function of sampling strategy and undersampling factor. 
All comparisons are performed with respect to fully sampled 
data. Confirming findings of Figures 4 and 5, both lattice 
and random sampling strategies perform similarly well at 
R = 4. With higher undersampling factors, lattice sampling 
with uniform density gives lowest SDs. For the estimation 
of Ktrans, the plots in Figure 7 show that lattice and random 
sampling strategies lead to an approximately linear increase 
in the observed SD (i.e., a higher SD in the fully sampled 
reference also entails a higher increase of the SD because of 

undersampling). The slope of this effect increases with un-
dersampling factor. TRICKS and GAR share a similar be-
havior at low R, while RGAR is overall best performing at 
R = 4. At higher undersampling factors, Keyhole, TRICKS, 
GAR, and RGAR show an increased number of tumor voxels 
with low SD in the fully sampled case but high (super‐linear) 
increase of SDs because of undersampling.

Figures 8 and 9 illustrate spatial distributions of CRBs for 
the extended Tofts model computed for all sampling patterns 
for an undersampling factor of 16. All sampling patterns 
show enhancement of the bounds in the center of the slice 
that coincides with the tissue region of least sensitivity of 
the pick‐up coil array. Again, Keyhole, TRICKS, and pseudo‐ 
radial sampling show the highest bounds. TRICKS sampling 
exhibits a spiral‐like pattern in the predicted SD maps. An 
SNR map for the fully sampled multi‐channel coil config-
uration showing a similar swirl‐like pattern can be found in 
Supporting Information Figure S9. For both lattice sampling 
patterns, the CRBs in Figures 8 and 9 show stripes of en-
hanced SD.

Figure 10 shows the spatial distribution of CRBs for Ktrans 
of the extended Tofts model zoomed into the tumor region of 
the first DRO in Figure 1. The bounds are shown for a sample 
undersampling factor of 16 with and without accounting for 
coil sensitivities in the CRB computation. When the impact 
of coil sensitivities is disregarded, SDs throughout the tumor 

F I G U R E  4  Comparison of sampling patterns as a function of undersampling factor for the estimation of vp (left column) and Ktrans (right 
column) of the extended Tofts model. CRB‐predicted SDs averaged over brain tumor regions are shown in the top row and maximum coefficient 
of variation (i.e., SD divided by true parameter) in the bottom row. For all sampling patterns except Keyhole sampling, the averaged SDs for both 
TK parameters scale approximately with the square root of the undersampling factor at low undersampling factors. As the undersampling factor is 
increased, the scaling behavior deviates from this rule indicating an increased interaction between the undersampling and the coil geometry



   | 1631BLIESENER Et aL.

are dominated by proximity to the brain center. Decoupling 
this effect by computing the CRB for a single channel with 
uniform coil sensitivity reveals lattice and random sampling 
to have comparable ability to detect tumor heterogeneity. For 
TRICKS, GAR, and RGAR, the spatial distribution of SDs is 
substantially different from lattice and random sampling with 
higher SD toward the center of the field‐of‐view.

Figures 3-10 are replicated for the Patlak model and 
are shown in the supporting information as Supporting 
Information Figures S1–S8. As opposed to the TK parameter 
estimation for the extended Tofts model, direct reconstruc-
tion in WLS formulation provides an efficient estimator for 
the (linear) Patlak model (i.e., the SD of the estimator meets 
the CRB tightly). The average SDs for the tumor vp are ap-
proximately on the same order of magnitude irrespective of 
whether the Patlak or extended Tofts model is used. Average 
SDs for Ktrans, however, are about one order of magnitude 
lower for the Patlak model compared to the extended Tofts 
estimates across all sampling patterns. Although the exact 
values for SDs of TK parameters estimated according to the 
Patlak and extended Tofts model differ, the trends and relative 
rankings are identical for higher undersampling rates (i.e., 
R ≥ 9). For the Patlak model, the relative rankings of sam-
pling patterns are identical irrespective of the TK parameter 
and whether low SD or maximum coefficient is of concern. 

Lattice sampling with uniform density outperformed all other 
sampling patterns in this comparison at R ≥ 9. This is in con-
trast to estimation of Ktrans of the extended Tofts model where 
randomized Golden Angle pseudo‐radial sampling achieves 
lowest maximum coefficient of variation.

4 |  DISCUSSION

This study compared eight different Cartesian sampling 
strategies for high‐resolution whole brain DCE‐MRI with 
tracer‐kinetic model constraints. Uniform density, lattice‐
based sampling provided the best performance overall. 
Lattice‐based sampling with higher density at the k‐space 
center led to a loss in precision of up to 5%. Differences in 
averaged SD to random sampling with uniform and variable 
density were up to 19% for vp and 10% for Ktrans at under-
sampling factors of up to R = 25. TRICKS as well as pseudo 
radial sampling with Golden Angle and its randomized de-
rivative exhibited substantially higher SDs at R > 5 that in-
curred a loss relative to uniform lattice sampling of no more 
than 10% in maximum coefficient of variation for Ktrans up to 
R = 25. At R = 4, randomized Golden Angle radial sampling 
achieved the lowest average SDs and maximum coefficient 
of variation for extended Tofts Ktrans in the tumor ROI.

F I G U R E  5  Relative comparison of sampling patterns as a function of undersampling factor for the estimation of vp (left column) and  
Ktrans (right column) for the extended Tofts model. Relative increase in SD bounds averaged across the tumor ROI (top row) and maximum 
coefficients of variation across the tumor ROI (bottom row) are shown with respect to figures of lattice with UD. Although random sampling 
with uniform and variable density perform best at R = 4, lattice sampling leads to lowest average SD for both vp and Ktrans compared to uniform 
sampling at higher undersampling factors. For both lattice and random sampling, the uniform density variants perform comparable to their variable 
density counterparts
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We observed several effects for the different sampling 
patterns in the spatial maps of CRB‐predicted SDs: For the 
simulated 8‐channel head array all spatial maps showed 
central enhancement. As a consequence, measurements of 
tumors located in the center of the brain (e.g., pituitary adeno-
mas) will be associated with higher measurement uncertainty 
because of noise rather than tumors at the brain boundary 
(e.g., meningioma). TRICKS sampling displayed swirl‐like 
pattern in the CRB‐predicted SD maps whereas lattice‐based 
sampling resulted in stripes of enhanced SD. Similar to g‐
factor maps, CRBs do no provide a way to directly explain 
the sources of noise amplification arising from correlations 
in (k,t) space and arbitrary undersampling.27 The origins of 
these effects and patterns remain subject to future research.

We found the SDs for Ktrans obtained with the Patlak model 
to be about one order of magnitude lower compared to those 
of the extended Tofts model. This suggests a substantial per-
formance boost if the simpler Patlak model is used when ap-
propriate. We anticipate that this could be taken advantage of 
by incorporating model selection criteria, such as the Akaike 
Information Criterion, the Bayesian Information Criterion, 

or F‐tests,53 into a recently published framework by Guo  
et al54 This framework allows fitting of TK parameters to raw 
k‐space data, while providing the necessary flexibility in the 
TK modelling to incorporate such model selection.

Other prominent sources of error in DCE‐MRI are esti-
mation errors in the auxiliary input parameters such as pre‐
contrast T1 and the arterial or vascular input functions that 
propagate into the TK parameter estimates. Bane et al55 
found average precision error measured as CV in native T1 
maps of about  20% on 3T scanners using the commonly 
deployed Variable Flip‐Angle  (VFA)   Method. Applying 
first order error propagation analysis, such error would 
propagate (super‐) proportionally into the CV of TK pa-
rameters.8,56,57 Huang et al5 found a maximum CV of 70% 
in Ktrans in prostate DCE‐MRI because of AIF detection, 
whereas Klawer et al58 showed that the average CV of Ktrans 
because of inaccuracy in AIF estimation can be reduced to 
about 12% with the proposed AIF estimation in the com-
plex plane. Accurate and precise estimation of the peak 
contrast during the first pass of the arterial input function 
remains an open and challenging problem59 that leads to 

F I G U R E  6  CRB‐predicted SD bounds for the extended Tofts tracer‐kinetic parameter vp within brain tumor regions of interest, as a function 
of sampling strategy and undersampling factor. Fully sampled data is chosen as reference. Top row left to right: Keyhole sampling, TRICKS, 
Golden Angle radial, and randomized Golden Angle radial. Bottom row left to right: lattice with uniform (UD) and variable density (VD), random 
sampling with uniform (UD). and variable density (VD). Different undersampling factors are indicated by color. Bounds are shown for SNR = 30
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(super‐) proportional errors in estimated TK parameters.8 
Regarding these additional error sources, a choice of a 
sampling pattern based on the presented noise statistics 
during the dynamic part of a brain tumor DCE‐MRI exam 
could likely be outweighed by other sources of error.

Although the main focus of this study is DCE‐MRI for brain 
tumors, this study could potentially inform DCE‐MRI proto-
cols for age‐related neurological diseases such as Alzheimer’s 
disease. These DCE‐MRI exams typically observe very slow 
leakage with Ktrans on the order of approximately 10−4 to 
10−3 min−1.9,60 This low leakage regime requires high pre-
cision protocols to compare subject versus control cohorts.60 
Previous work demonstrated that such specialized protocols 
can be obtained by long baseline acquisitions in conjunc-
tion with measures to achieve many high‐quality samples of 
the CTCs (i.e., long acquisition times), high temporal sam-
pling rates, or by trading low temporal resolution (~60 s) for 
noise‐reduced, averaged samples.9,60 Although the problem 
of patient‐specific AIF estimation remains, it may especially 

be advantageous to opt for the noise‐optimal (k,t) sampling 
strategy in this low leakage regime.

This work assumed a known AIF, but as mentioned previ-
ously, an evaluation of different sampling strategies depends 
critically on the imaging assumptions. In practical settings, 
the AIF is not always considered to be known. Although 
population‐based AIFs can be used to reduce measurement 
uncertainty,42,61 benefits have been found in measuring 
patient‐specific AIFs because of large variability of AIFs 
across patients.62 In this case, the sampling pattern has to 
accommodate the needs to estimate the bolus arrival time and 
patient‐specific AIF on top of TK parameter estimation.10 The 
present results indicate design freedom in the choice of sam-
pling pattern when TK parameter estimation is concerned, 
which can be used to tailor sampling patterns toward their 
ability to detect bolus arrival and arterial input functions.63 
Fortunately, the same analysis (Monte‐Carlo analysis, CRB 
analysis) is also possible if the AIF is assumed to be unknown. 
This promises to be an interesting extension for future work.

F I G U R E  7  CRB‐predicted SD bounds for the extended Tofts tracer‐kinetic parameter Ktrans within brain tumor regions of interest, as a 
function of sampling strategy and undersampling factor. Fully sampled data is chosen as reference. Top row left to right: Keyhole sampling, 
TRICKS, Golden Angle radial, and randomized Golden Angle radial. Bottom row left to right: lattice with uniform (UD) and variable density 
(VD), random sampling with uniform (UD), and variable density (VD). Different undersampling factors are indicated by color. Bounds are shown 
for SNR = 30
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F I G U R E  8  Visualization of extended Tofts vp parameter SDs predicted by CRB for different sampling patterns at undersampling factor 
16 for the first DRO in Figure 1. Top row left to right: Keyhole sampling, TRICKS, Golden Angle radial, and randomized Golden Angle radial. 
Bottom row left to right: lattice with uniform (UD) and variable density (VD), random sampling with uniform (UD), and variable density (VD). All 
sampling patterns show central enhancement of SD bounds for both TK parameters

F I G U R E  9  Visualization of extended Tofts Ktrans parameter SDs predicted by CRB for different sampling patterns at undersampling factor 
16 for the first DRO in Figure 1. Top row left to right: Keyhole sampling, TRICKS, Golden Angle radial and randomized Golden Angle radial. 
Bottom row left to right: lattice with uniform (UD) and variable density (VD), random sampling with uniform (UD), and variable density (VD). All 
sampling patterns show central enhancement of SD bounds for both TK parameters
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In a similar vein, DCE MRI may suffer from motion cor-
ruption (e.g., in the case of liver or breast imaging). Previous 
work in dynamic MRI has addressed this issue by design of 
sampling patterns that enable motion to be estimated from 
the acquired data in (k,t) space for subsequent correction.64 
In case of expected dominant motion corruption, one could 
opt for a sampling scheme that lends itself well to motion 
correction without paying too high a noise penalty.

This work focused on Cartesian sampling patterns only. 
These types of sampling pattern do not require any form of 
gridding which is common in radial, spiral, kooshball, or 
cone sampling for example. Gridding introduces noise cor-
relations between different k‐space locations. Because such 
noise correlations were not part of the current study, these 
non‐Cartesian sampling strategies require further investiga-
tion to assess their performance.

The framework in this study consists of a digital reference 
object and Cramér‐Rao analysis to compare various (k,t) 
sampling strategies. We further use Monte Carlo simulations 
to demonstrate that direct fitting of TK parameters to k‐space 
data remain within 2.5 times the CRB predicted SDs for vp 
and Ktrans under no assumptions beyond knowledge of the AIF 
and the nonlinear 3‐parameter extended Tofts tracer kinetic 
model. Implementation and testing of all varieties of com-
pressed sensing and constrained reconstruction approaches 
for parameter estimation in DCE MRI is beyond the scope of 
this study. This present methodology could, however, be used 
to test the statistical variance of additional acquisition and re-
construction combinations, potentially including constrained 
reconstruction algorithms not included in this work.65-67 This 
framework can readily be translated to DCE exams for other 
body parts such as breast, prostate, or liver by creating the re-
spective anatomically realistic reference objects and measur-
ing coil sensitivity maps. This could help to elicit MRI exams 
that benefit from a specific choice of sampling pattern. This 

work follows a current trend in quantitative MRI with the 
goal of estimating parameters of known physiological models 
with low variance. Other examples include blood volume or 
flow and transit times in dynamic susceptibility contrast MRI 
or arterial spin labeling.

5 |  CONCLUSIONS

We have carried out an evaluation of the impact of (k,t) 
sampling scheme on the SDs of TK parameters in sparse 
brain tumor DCE‐MRI using digital reference objects. This 
approach is applicable when a realistic DRO is available, 
when an appropriate kinetic model is known, and when the 
AIF, coil sensitivities, and noise properties are known. We 
found that lattice sampling produced the lowest SDs over-
all for the estimation of TK parameters with the Patlak and 
extended Tofts model at undersampling rates above 9, and 
zone‐based sampling produced the highest SDs overall. This 
trend was consistent for the maximum coefficient of varia-
tion in the estimation of vp of the Patlak and extended Tofts 
model and Ktrans of the Patlak model. For Ktrans of the ex-
tended Tofts model, randomized golden angle pseudo‐radial 
sampling achieved lowest maximum coefficient of variation. 
Interestingly, we found no substantial benefit of variable over 
uniform density for both lattice and pseudo‐random sam-
pling. Furthermore, lattice and random sampling were nearly 
equivalent; with random sampling leading to at most 19% 
higher TK parameter SDs, which is smaller than many other 
known sources of variation in vivo.5,8,55,59 This suggests that 
among the lattice and random sampling variants, selection 
of 1 specific sampling scheme should be guided by indirect 
benefits such as estimation of the patient‐specific AIF, esti-
mation of coil sensitivity maps, and/or detection and com-
pensation of patient motion.

F I G U R E  1 0  Visualization of extended Tofts Ktrans SDs predicted by CRB for different sampling patterns at undersampling factor 16 for the 
tumor region of the first DRO in Figure 1. Top row: CRB accounts for measured coil sensitivities from an 8‐channel head array. Bottom row: CRB 
is computed for a single channel with uniform sensitivity
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SUPPORTING INFORMATION

Additional supporting information may be found online in 
the Supporting Information section at the end of the article.

FIGURE S1 Estimator performance as a function of SNR 
for both vp (left column) and Ktrans (right column) of the 
Patlak model: comparison of SDs predicted by CRB with 
SDs computed by Monte‐Carlo simulation with conven-
tional (conv) and direct reconstruction with (WLS) and 
without (OLS) accounting for correlated, non‐isotropic 
noise for uniform random sampling with R = 4 and uni-
form density undersampling
FIGURE S2 Comparison of sampling patterns as a function 
of undersampling factor for the estimation of vp (left column) 
and Ktrans (right column) with the Patlak model. CRB‐
predicted SDs averaged over brain tumor regions are shown 
in the top row and maximum coefficient of variation, i.e., SD 
divided by true parameter, in the bottom row. For all sam-
pling patterns except Keyhole sampling, the averaged SDs for 
both TK parameters scale approximately with the square root 
of the undersampling factor at low undersampling factors. As 
the undersampling factor is increased, the scaling behavior 
deviates from this rule indicating an increased interaction be-
tween the undersampling and the coil geometry
FIGURE S3 Relative comparison of sampling patterns as 
a function of undersampling factor for the estimation of vp 
(left column) and Ktrans (right column) with the Patlak model. 
Relative increase in SD bounds averaged across the tumor 
ROI (top row) and maximum coefficients of variation across 
the tumor ROI (bottom row) are shown with respect to figures 
of lattice with UD. Although random sampling with uniform 
and variable density perform best at R = 4, lattice sampling 
leads to lowest average SD for both vp and Ktrans compared to 

uniform sampling at higher undersampling factors. For both 
lattice and random sampling, the uniform density variants 
perform comparable to their variable density counterparts.
FIGURE S4 Patlak vp SD bounds within brain tumor regions 
of interest, as a function of sampling strategy and undersam-
pling factor. Fully sampled data is chosen as reference. Top 
row left to right: Keyhole sampling, TRICKS, Golden Angle 
radial and randomized Golden Angle radial. Bottom row left 
to right: lattice with uniform (UD) and variable density (VD), 
random sampling with uniform (UD) and variable density 
(VD). Different undersampling factors are indicated by color. 
Bounds are shown for SNR = 30
FIGURE S5 Patlak Ktrans SD bounds within brain tumor 
regions of interest, as a function of sampling strategy and 
undersampling factor. Fully sampled data is chosen as ref-
erence. Top row left to right: Keyhole sampling, TRICKS, 
Golden Angle radial and randomized Golden Angle radial. 
Bottom row left to right: lattice with uniform (UD) and vari-
able density (VD), random sampling with uniform (UD) and 
variable density (VD). Different undersampling factors are 
indicated by color. Bounds are shown for SNR = 30
FIGURE S6 Visualization of Patlak vp parameter SDs pre-
dicted by CRB for different sampling patterns at undersam-
pling factor 16 for the first DRO in Figure 1. Top row left to 
right: Keyhole sampling, TRICKS, Golden Angle radial and 
randomized Golden Angle radial. Bottom row left to right: 
lattice with uniform (UD) and variable density (VD), random 
sampling with uniform (UD) and variable density (VD). All 
sampling patterns show central enhancement of SD bounds 
for both TK parameters
FIGURE S7 Visualization of Patlak Ktrans parameter SDs 
predicted by CRB for different sampling patterns at under-
sampling factor 16 for the first DRO in Figure 1. Top row left 
to right: Keyhole sampling, TRICKS, Golden Angle radial 
and randomized Golden Angle radial. Bottom row left to 
right: lattice with uniform (UD) and variable density (VD), 
random sampling with uniform (UD) and variable density 
(VD). All sampling patterns show central enhancement of SD 
bounds for both TK parameters
FIGURE S8 Visualization of Patlak Ktrans SDs predicted by 
CRB for different sampling patterns at undersampling factor 16 
for the tumor region of the first DRO in Figure 1. CRB accounts 
for measured coil sensitivities from an 8‐channel head array
FIGURE S9 The SNR map for the simulated 8‐channel head 
array with measured coil sensitivities and noise covariance 
matrix. The SNR map is computed for a hypothetical object 
with uniform signal across the whole field‐of‐view.74,75 The 
SNR map shows a decrease of SNR in the center of the field‐
of‐view characteristic for head array coils.75 The SNR map 
is mildly asymmetric with respect to the center of the FOV
TABLE S1 Simulation parameters for each tissue type in 
the Digital Reference Objects. Parameters for tissue types 
are taken from literature values1,38,42,60,69-73 and chosen to 
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visually match magnitude images in clinical brain tumor 
DCE exams at our institution (3T, HD23, GE Healthcare, 
Waukesha, WI)
VIDEO S1 Illustration of data sampling strategies for 9‐fold 
undersampling. Shown are the ky, kz phase encoding planes 
for different time frames. White dots indicate phase encodes 
that are acquired. Black indicate phase encodes that are 
not acquired. Left‐to‐right: Keyhole, TRICKS, lattice with 
uniform density, lattice with variable density, random with 
uniform density, and random with variable density, pseudo‐
radial with Golden Angle increments (GAR) and randomized 

pseudo‐radial with Golden Angle increments (RGAR). Each 
sampling pattern had a fully sampled first time frame, and 
varied for all subsequent time frames
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