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Abstract 

Background:  The mandible is a functional bio-organ that supports facial structures and helps mastication and 
speaking. Large mandible defects, generally greater than 6-cm segment loss, may require composite tissue recon‑
struction such as osteocutaneous-vascularized free flap which has a limitation of additional surgery and a functional 
morbidity at the donor site. A 3D bio-printing technology is recently developed to overcome the limitation in the 
composite reconstruction of the mandible using osteocutaneous-vascularized free flap.

Review:  Scaffold, cells, and bioactive molecules are essential for a 3D bio-printing. For mandibular reconstruction, 
materials in a 3D bio-printing require mechanical strength, resilience, and biocompatibility. Recently, an integrated 
tissue and organ printing system with multiple cartridges are designed and it is capable of printing polymers to rein‑
force the printed structure, such as hydrogel.

Conclusion:  For successful composite tissue reconstruction of the mandible, biologic considerations and compo‑
nents should be presented with a comprehensive on-demand online platform model of customized approaches.

Keywords:  Mandibular defect, Reconstruction of the mandible, Osteocutaneous-vascularized free flap, 3D bio-
printing technology, Integrated tissue, Organ printing
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Introduction
The mandible is a functional bone that supports facial 
structures and implements mastication and speaking. 
Tumor, osteomyelitis, trauma, radiation therapy, con-
genital disease, and medication-related osteonecrosis 
can lead to the destruction of the mandible. Significant 
defects of the mandible can result in the loss of function 
and aesthetics in patients, which has significant implica-
tions for their quality of life [1, 2].

Various graft materials have been used in clini-
cal practice such as the xenogeneic graft, allograft, 
and autogenous bone. Xenogeneic graft and allograft 
require additional chemical and thermal processes to 
reduce immunoreaction and risk of infection. They 
also lack cell viability and biocompatibility compared 
to the autogenous bone [3–6]. Additional surgery 
required for the donor site and a limited amount of 
graft material are still limiting the widespread utiliza-
tion of autogenous bone graft, even though it has an 
excellent biocompatibility in terms of osteogenesis, 
angiogenesis, and less risk of infection at the recipi-
ent site. A large mandibular defect, more than 6 cm 
full segment loss, often requires a vascularized autoge-
nous graft to achieve adequate reconstruction. Several 
options have been suggested to achieve the recon-
struction of segmental defects using titanium plates 
or meshes, however, long-term results have not been 
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very successful [1]. Moreover, large segmental defect 
wounds are often accompanied by loss of adjacent soft 
tissue such as skin, oral mucosa, and muscle, thereby 
requiring composite tissue reconstruction in most 
cases. So far, osteocutaneous-vascularized free flap 
(OCFF) has been the gold-standard treatment option 
for composite tissue reconstruction of the mandible 
[7]. However, an inevitable defect at the donor site 
can be associated with considerable complications and 
morbidity [8].

With the recent development of bio-printing and 
tissue engineering using the 3D bio-printing technol-
ogy, an alternative treatment to OCFF is emerging. 
The 3D computer-aided design and computer-aided 
manufacturing (CAD-CAM) module help in designing 
precise bio-printing materials which are customized 
to suit individual patient anatomy [9, 10]. Especially 
when implemented on an online platform, the overall 
process of 3D bio-printing can be controlled by mul-
tidisciplinary members of the reconstructive team, 
starting from the case analysis to the clinical applica-
tion. In this review, biological considerations and its 
components will be addressed and discussed in con-
junction with some of the pre-existing studies of 3D 
bio-printing for composite tissue reconstruction of the 
mandible. Also, a comprehensive on-demand online 
platform model will be suggested to facilitate custom-
ized approaches for individual patients.

Functional anatomy for composite tissue 
reconstruction
A mandible is a separated facial bone that is connected 
to other facial bones with the muscles and ligaments in 
the maxillofacial area. When considering composite 
reconstruction of mandibular defects, the anatomical 
components of the mandible are broken down into tem-
poromandibular joint, dentition, oral mucosa, inferior 
alveolar nerve, and parenchymal bone frame [11]. Most 
clinical situations require composite reconstruction with 
more than two tissue components, especially in case of a 
segmental defect of the mandible. Therefore, in design-
ing the 3D bio-printing, anatomic components should be 
considered in terms of composite tissue reconstruction 
(Fig. 1).

Temporomandibular joint (TMJ)
The mandible is held to the cranium by temporoman-
dibular joints (TMJs) bilaterally with masticatory muscles 
and adjunctive ligaments. The articular disc is a spe-
cific tissue, composed of fibrocartilage, which is located 
between the mandibular condyle and condylar fossa of 
the temporal bone [12]. TMJs control the mouth opening 
with translation and sliding movements and stabilize the 
lateral movement of the contralateral side, which require 
a long-term resistance to masticatory loading for all life 
cycles [13]. Therefore, composite tissue repair includes 
the fibrous tissue, bone, cartilage, and mechanical stress 

Fig. 1  Composite tissue anatomy of mandible, for composite tissue reconstruction of mandible, the anatomic component generally include 
temporomandibular joint, dentition, oral mucosa, inferior alveolar nerve, and parenchymal bone frame
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becomes critical consideration for the functional recon-
struction of the TMJ complex.

Dentition
Teeth are hard structures implanted in the body of the 
mandible which has functions of breaking down the food 
and pronouncing words. Teeth are composed of hard tis-
sue, enamel and dentin, and soft tissue involving pulp 
core, which is a neurovascular bundle and periodontal 
ligament [14, 15]. Regeneration of the components in 
dentition is currently not achievable with 3D bio-printing 
technology [16]. However, dental implants made of tita-
nium can be a successful alternative to achieve normal 
dental occlusion. In the reconstruction of the mandible, 
the regeneration of the dental structure is only consid-
ered once adequate reconstruction of the mandibular 
defect is achieved, and the dental implant is a valid option 
for the repair of dentition [17]. In general, the mandibu-
lar reconstruction mainly focuses on reconstructing the 
bony tissue of the body of the mandible, which is then 
used as a platform in which dental prosthesis can be 
implanted [18, 19].

Oral mucosa
Most mandibular defects are accompanied by oral 
mucosa which includes keratinized gingiva and mucosa 
proper. Composite tissue reconstruction using micro-
vascular osteocutaneous free flap such as fibula free 
flap and deep circumflex iliac artery free flap need con-
comitant harvesting of soft tissue to repair defects of 
the oral mucosa [20–22]. Soft tissue coverage protects 
reconstructed hard tissue in the defect of the bone and 
enhances functional stability for mandibular movement. 
For the long-term success of the dental implant, immo-
bilized soft tissue like keratinized gingiva is necessary for 
the prevention of food impaction and maintenance of 
hygiene [23, 24]. Regeneration of keratinized soft tissue 
with supporting bone should be considered at the initial 
stage of bio-printing for the mandibular reconstruction.

Inferior alveolar nerve
An inferior alveolar nerve is the largest branch of the 
mandibular nerve and passes through the body of the 
mandible. The nerve enters the lingula of the mandibu-
lar ramus and comes out through the mental foramen of 
the mandibular body, which innervates the gingiva, teeth, 
periodontal ligament, and skin of the chin area [24, 25]. 
The occurrence of large defects in the mandible usually 
involves loss of the inferior alveolar nerve. Sensory nerve 
regeneration is still a difficult process especially when 
trying to be accomplished with the reconstruction of the 
bone tissue. However, proprioception of tooth and gin-
giva and touch sensory of the facial skin give feedback to 

reconstructed composite tissue, thereby coordinating a 
delicate masticatory system [26–28]. Recovery of inferior 
alveolar nerve function accompanied by regeneration of 
bone tissue would be a critical factor in improving the 
quality of comprehensive reconstruction of a composite 
structure of the mandible [28, 29].

Mandibular bone
The facial lower third part is supported by the man-
dibular body and ramus. Mandible develops through 
intramembranous ossification, consequently composed 
of sturdy cortical plate and cell-rich bone marrow space 
[30]. Mandibular bone stabilizes facial soft tissue by 
presenting attachment of masticatory and facial expres-
sion muscles. The alveolar part of the mandible supports 
dentition, which makes a dental arch for masticatory 
action. The body of the mandible holds alveolar parts and 
endures functional stress and protects the airway and 
lower third of the facial compartment [31]. Therefore, in 
the design of 3D bio-printing of the mandible, facial con-
tour and mechanical stress from mastication should be 
considered.

3D bio‑printing technology
Bio-printing is a performance system actuated by additive 
manufacturing that controls the printing of biomaterials 
under precise coordination. It uses computerized dimen-
sions to reconstruct biological defects in the human 
body [32]. It should print out a stabilized 3D structure 
which was designed to incarnate original composite tis-
sue based on the medical image without damage to bio-
materials. Availability, especially to simultaneously print 
multiple biomaterials, is critical to perform the 3D bio-
printing of composite tissue. The primary bio-printing 
methods include laser-induced bio-printing (LIB), inkjet-
based bio-printing (IBB), and micro-extrusion-based bio-
printing (EBB) according to their performance modalities 
(Fig. 2) [33].

Laser‑induced bio‑printing
Laser-induced bio-printing (LIB) consists of a pulse 
energy laser, ribbon substrate coated with bioink and 
receiving plate. When laser pulse energy is transferred to 
the ribbon layer, the energy absorbing layer is then acti-
vated, which dispatches bioink onto receiving substrate 
[34]. In general, LIB can make a relatively deliberate 
printing structure while maintaining cell viability; thus, 
this technique would be expected to be applied to single-
cell-layered structures such as the oral mucosa, blood 
vessels, and skin [35]. However, printed products do 
not provide sufficient mechanical strength to withstand 
functional loading in the mandibular bone. Accordingly, 
it is useful for a layer structure which needs simplicity, 
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precision, and pliability [36]. In terms of composite tissue 
reconstruction of the mandible, it would be suitable for 
oral mucosa or periosteum.

Inkjet based bio‑printing
Biomaterials usually containing cells and bioactive mol-
ecules are transformed to droplets by the piezoelectric 
or thermal-based energy source when inkjet based bio-
printing (IBB) gets actuated [37]. IBB modality needs 
lower viscosity for flowable printability, which makes 
it difficult to print complex 3D structures with proper 
hardness [33, 38]. Therefore, the structures which are 
delicate but not requiring high strength would be an indi-
cation, for example, the muscle, ligament, blood vessel, 
and cartilage of the ear and nose [34]. Biopaper of cal-
cium chloride solution can be used as a stiffness-induc-
ing background to reinforce structure and strength [39, 
40]. Bioreactor additionally would be used for further 
maturation of printed structures before graft implanta-
tion [41, 42]. Even though bone cells can be printed in the 

IBB modality, IBB would not be a mainstay bio-printing 
modality for mandible reconstruction especially for bone. 
Masticatory and contractile forces from facial soft tis-
sue are also hurdles for a successful outcome [34]. IBB 
modality can be limitedly used for the bio-printing of soft 
tissue around the mandibular bone.

Micro‑extrusion based bio‑printing
Extrusion-based bio-printing (EBB), a kind of fused 
deposition modeling (FDM) modality, is a primary bio-
printing modality for bone regeneration [34]. Biomate-
rial in the EBB setting is loaded in the syringe combined 
with a microscale nozzle. Biomaterials in the syringe are 
pushed by the pressure of a pneumatic, piston, or screw 
[43]. Multiple cartridge settings can be devised in EBB, 
which makes simultaneous printing of various cells and 
bioactive materials on demand [44]. EBB cannot print 
biomaterial structures with high precise resolution as LIB 
or IBB does though, polymers that reinforce mechani-
cal strength can be printed with three-dimensional 

Fig. 2  Bio-printing modalities, the primary bio-printing methods include laser-induced bio-printing (LIB), inkjet-based bio-printing (IBB), and 
micro-extrusion-based bio-printing (EBB) according to their performance modalities. In addition, integrated tissue and organ printing (ITOP) system, 
equipped with multiple cartridges can print composite tissue at one time
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structures via EBB [32]. In general, the hydrogel is the 
mainstay media for cells and bioactive molecules that 
control osteogenic cell ingrowth and vascularization into 
the implanted scaffold for mandibular reconstruction. 
However, single hydrogel media are not appropriate for 
mandibular reconstruction, for it cannot provide suffi-
cient mechanical strength [45]. Therefore, additional bio-
materials to complement mechanical strength need to be 
printed at the same time. EBB can be designed to print 
composite tissue by setting multiple biomaterial car-
tridges, which make mandibular regeneration affordable 
[32, 44].

Recently, an integrated tissue and organ printing 
(ITOP) system, equipped with multiple cartridges can 
print out polymers which reinforce the printed structure 
as well as hydrogel. For this reason, ITOP overcomes the 
limitation of mechanical strength. In terms of mandibu-
lar reconstruction, the printed materials should continu-
ously withstand masticatory stress and needs to support 
the facial muscle and skin; thus, ITOP would be an abso-
lutely suitable indication (Fig. 2) [44].

Biomaterials for reconstruction
Reconstructed mandibles should bear masticatory stress 
and contractile force from the facial muscle and skin. On 
the other hand, regenerative materials with over stiffness 
inflict significant strain on the overlying skin that conse-
quently incurs skin dehiscence. Therefore, the materials 
for bio-printing should have mechanical strength, resil-
ience, and biocompatibility [46, 47]. Scaffolds, cells, and 
bioactive molecules are essential components to meet the 
required conditions for successful reconstruction [48]. 

Various materials have been suggested to be utilized for 
3D printing of mandible reconstruction. Simple scaf-
folds of single materials can be used for reconstruction, 
which would be simply designed with low effectiveness 
and applied promptly to the operation room. However, 
additional cells and bioactive molecules can be combined 
for the improvement of performance in the human body 
(Table 1) [34, 49].

Scaffolds
In mandibular reconstruction, scaffold generally comes 
to be focused on the regeneration of the bone tissue. Uti-
lized materials, composition techniques, and fabrication 
methods can affect the nature of the scaffold [50]. When 
the reconstructive materials get implanted into the man-
dibular defect, the scaffold should resist against infec-
tion and provide space with proper mechanical strength 
as well as guide cell growth and vascularization [1, 51]. 
The mandibular bone is largely composed of inorganic 
components (hydroxyapatite) related to hardness and 
organic components (collagen) related to resilience [52]. 
Accordingly, several scaffold materials are contemplated, 
including bioceramics of calcium phosphate compo-
nents such as α-tricalcium phosphate (TCP), β-TCP, and 
hydroxyapatite (HA) [53, 54]; biopolymers which are 
synthetic polymer of PCL (polycaprolactone), PLA (pol-
ylactic acid), PLGA (polylactic glycolic acid), and PEG 
(polyethylene glycol) [55–59] and natural polymer of chi-
tosan, agarose, alginate, and silk [60–62].

PCL has a slower speed of degradation in the human 
body; on the other hand, it can withstand relatively large 
force and maintain the space [63, 64]. PLA, PLGA, and 

Table 1  Biomaterials for composite reconstruction of mandible

Biomaterials Components Features

Scaffold Bioceramic
α-TCP
β-TCP
hydroxyapatite (HA)

Excellent osteoconductivity for bone regeneration, but limited in large defect due to brittleness

Synthetic polymer
PCL (polycaprolactone)
PLA (polylactic acid)
PLGA (polylactic glycolic acid)
PEG (polyethylene glycol)

Favorable mechanical forces and biocompatibility

Natural polymer
Chitosan
Agarose
Alginate
Silk

High biocompatibility and degradability, loading bioactive molecule, poor mechanical strength

Cells Adult stem cell (ASC)
Embryonic stem cell-induced 
pluripotential stem cell (iPSC)

Potential to be differentiated into multiple composite tissue of mandible

Bioactive
molecules

Growth factor (GF)
Other cytokines and peptides

Modulating osteogenesis and angiogenesis
Potentials of cell mobilization and growth
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PEG show rapid degradation while having favorable bio-
compatibility compared to PCL [65]. Natural polymers 
have higher biocompatibililty and rapid degradation in 
addition to being available to deliver bioactive molecules, 
therefore are disadvantageous in terms of mechanical 
stress [66]. Bioceramics has excellent osteoconductiv-
ity, useful for the regeneration of the mandibular bone. 
However, their brittleness limits application for large 
defects [67, 68], the scaffold for mandible reconstruction, 
especially having complex anatomic structures including 
curvature, condyle, and needs combination of bioceram-
ics, synthetic, and natural polymers that can complement 
their defects.

Cells
Reconstructive mandibles are implanted in the defect, 
from which osteogenesis and angiogenesis will ensue. 
Delayed cell ingrowth endangers the successful inte-
gration of reconstructive materials due to the follow-
ing infection. For effective reconstruction, specific cell 
lineage needs to be integrated onto scaffolds. There are 
three types of available stem cells that can be considered 
in mandibular reconstruction; adult stem cells (ASCs), 
embryonic stem cells, and induced pluripotential stem 
cells (iPSCs) [48]. ASCs are a popular source of mesen-
chymal stem cells (MSCs) which is a mainstay for man-
dibular reconstruction, because they are easily collectible 
and cost-effective [69]. MSC can be harvested from the 
matured bone marrow and adipose, then differentiated 
into various mesenchymal origin tissues which are the 
bone, cartilage, periodontal ligament, dental pulp, devel-
oping teeth, and gingival epithelium [70, 71]. This is an 
advantageous potential for composite tissue reconstruc-
tion of the mandible.

Bioactive molecule
Extracellular matrix (ECM) is a medium to provide a 
microenvironment for the biologic interaction of recon-
structive materials with the recipient bed [72, 73]. 
Bioink, simulating natural ECM, is a synthetic hydrogel 
background, which includes collagen and gelatin meth-
acrylate (GelMA) [32]. Hydrogel can be engineered to 
contain growth factors including transforming growth 
factor-β (TGF-β), fibroblast growth factor (FGF), vascu-
lar endothelial growth factor (VEGF), platelet-derived 
growth factor (PDGF), insulin-like growth factor (IGF), 
and bone morphogenic proteins (BMPs) that help regen-
erative action in the human body as well as cells [32, 38]. 
Bone regeneration with BMP-2 can produce a compara-
ble amount of bone formation to the autogenous graft, 
and it reduce some post-surgical complications, opera-
tion time, and hospitalization duration [74]. Delivered 
growth factors control MSC to modulate bone formation, 

angiogenesis, and newly growth of other mesenchymal 
origin tissue [75–77]. Cytokines and modified peptides 
that have potentials for cell mobilization and growth can 
be conjugated to hydrogel to be delivered as a form of bio 
reconstructive material with stability [78–80]. At last, 
nanotechnology can enhance the ability to mimic native 
bone ECM and improve the bone regeneration process 
[81].

Factors for clinical application
Mandible defects caused by trauma, osteomyelitis, and 
head and neck cancer require multiple composite tis-
sues such as oral mucosa, dentition, and bone [82]. Ade-
quate bone volume and vertical height of reconstructed 
bone are important for further surgical planning and as 
an indicator of the quality of reconstruction [8]. Recon-
structed mandibles should provide the function of mas-
tication and speak as well as support for facial soft tissue 
and airway, coping with harsh conditions of oral micro-
flora and life-long masticatory stress and continuous 
force from adjacent facial soft tissue [83, 84]. Therefore, 
for successful mandible reconstruction with long-term 
stability, critical factors should be included at the stage of 
designing the reconstruction printing. Some of the con-
siderations include mechanical strength, infection resist-
ance, biocompatibility, and future rehabilitation [85].

Mechanical strength
3D printed biomaterials for mandible reconstruction 
come to confront the challenge to maintain the functional 
space from the mechanical stress during while function-
ing and tensional force of facial soft tissue as soon as 
they are set into the defect [83, 86]. These stresses should 
not exceed the yield point, which can be measured from 
compression, bending, or tensile force [87]. Reinforced 
titanium plate has been used for decades though; accu-
mulated clinical results are not satisfactory especially in 
the cases of long-term function and postoperative radia-
tion therapy. They exhibited screw loosening, fracture of 
titanium plates, and exposure of fixation materials out of 
the skin or oral mucosa which would eventually ensue 
infection requiring complete removal of reconstructive 
materials [88]. Moreover, the future oral rehabilitation 
using dental implant usually became limited, for rein-
forced titanium plates were not able to provide the oral 
prosthesis with a supporting hard tissue table for reha-
bilitation of occlusion [89, 90]. A titanium mesh structure 
was also suggested that presented an occlusal table for 
an oral prosthesis as designed with a similar dimension 
to the original mandible. However, titanium still risks the 
potential of exposure and breakage of material entailing 
infection regardless of design [82]. For this reason, Jeong 
et al. reported that the bioabsorbable scaffold with virtual 



Page 7 of 13Park et al. Maxillofacial Plastic and Reconstructive Surgery           (2022) 44:31 	

simulation and 3D printing techniques may replace tradi-
tional non-absorbable implants in the future by virtue of 
its accuracy and biocompatible properties [91].

Osteocutaneous free flap (OCFF) is the gold standard 
for the composite tissue reconstruction of the mandible 
as of now. OCFF is the most biocompatible reconstruc-
tive option, which has the similar mechanical strength to 
the original mandible as well as long-term stability due to 
its biologic integration with the recipient bed after sur-
gery [92–94]. However, OCFF entails additional surgery 
to harvest composite tissue that requires patients’ longer 
operation time and healing period with second opera-
tion wound. Consequently, 3D bio-printing for mandible 
reconstruction should aim to overcome the limitation of 
OCFFs, while taking their advantages.

Expeditious vascularization
Successful integrations of reconstruction materials thor-
oughly depend on preventing postoperative infection. In 
terms of the environment at mandible defect, infection 
would be a constantly existing menace [95]. The oral cav-
ity has influential factors that are able to make an infec-
tious source at any time which are oral microflora and 
food impaction. When patients start mastication, oral 
mucosa that was sutured after reconstructive surgery 
would be exposed to mechanical irritants of food stuff 
[96, 97]. In the case of OCFF, oral mucosa gets positioned 
on the vascularized free flap that can make blood supply 
to overlying mucosa and even present well-vascularized 
soft tissue covering the bone tissue, thereby protecting 
underlying reconstructed mandible until the OCFF can 
be successfully integrated into the defect [22, 98]. How-
ever, the graft materials that failed to get early vasculari-
zation would easily be exposed out of the oral cavity and 
get an infection by oral microflora, which leads to failure 
of reconstruction [24, 82].

The disparity from defect sizes determines reconstruc-
tive options. When the mandibular defect is confined 
to the alveolar bone level that has underlying the basal 
bone, the graft can simply gain the blood supply from the 
adjacent bone marrow. While in segmental bone defects, 
the graft risks early exposure and subsequent infection if 
it could not promptly be vascularized. In the defect from 
4 to 6 cm in length of the mandibular segment, an autog-
enous bone graft basically should be considered as a first 
coming option. Moreover, for longer than 6 cm defects, 
OCFF would be an inevitable treatment strategy as of 
now [99, 100]. The limitation of 3D printed biomaterial 
corresponds to the long segmental dimension that has 
been addressed by OCFF; thus, those require prompt 
vascularization to avoid fatal infection. In order to 
reduce surgical site infection, stable soft tissue coverage 
over bone graft is essential. For this reason, it is highly 

recommended to harvest skin pedicles with bone graft. 
At the step of designing biomaterials, reconstructive 
mandibles should be considered to be concomitant with 
oral mucosa like composite tissue and vessel-inducing 
bioactive molecules or cells to achieve expeditious vascu-
larization that protects graft materials.

Rehabilitation of occlusion
Most cases of mandibular defect accompany the loss 
of multiple dentitions, which consequently causes an 
occlusal collision. Rehabilitation of occlusion is the end-
point of mandibular reconstruction [82, 101]. Composite 
tissue reconstruction of the mandible usually does not 
mean the simultaneous restoration of dentition, even in 
reconstruction with OCFF. Although some OCFF case 
reports suggested simultaneous dental implant instal-
lation, the indication seems to be still limited [9, 102]. 
Prolonged surgical time and ischemic time for immedi-
ate implant placement may impact flap survival and can 
increase a risk for direct injury to the vessel pedicle [103]. 
Occlusal rehabilitation generally can be planned when 
the long-term stability of reconstruction is biologically 
confirmed in patients’ body. Even in reconstruction with 
OCFF which is the most biocompatible option, rehabili-
tation using dental implants is a challenging procedure. 
Fibula free flap (FFF) which is one of the most popular 
OCFF options can only have about 1-cm bone height 
which is not enough for an ideal crown-to-root ratio 
in terms of dental prosthesis [101, 104, 105]. Deep cir-
cumflex iliac artery free flap (DICAFF) can provide the 
large quantity of bone dimension for both immediate 
and delayed placement of dental implants [106, 107]. 
Compared with FFF, it is limited to relatively short seg-
mental defects of the mandible due to its short pedicle 
length [106, 107]. In addition, OCFFs are not able to pro-
vide ideal peri-implant tissue such as keratinized gingiva 
[108]. Therefore, 3D printed biomaterials for mandibular 
reconstruction need a sufficient bone table to accommo-
date dental implants and keratinized epithelium to pro-
vide healthy peri-implant soft tissue.

On‑demand process for reconstruction
As mandibular defects appear in various morphologies 
which could be body, condyle, full dentition, or a combi-
nation of them, the design of 3D bio-printing should be 
customized according to the cases [34, 109]. Therefore, 
a comprehensive system of flow process based on on-
demand for individual patients needed to be established, 
which can integrate the anatomic image of individual 
patients, decide the composition of biomaterial, design 
of the reconstructive material, and get delivered to the 
operation field [7].
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The on-demand system should be an online platform on 
which all members of the reconstruction team including 
surgeons, researchers, engineers, and radiologists can easily 
access and communicate regarding an uploaded case, then 
devise surgical templates according to the treatment plan and 
design reconstructive mandible with scaffold, cells, and bioac-
tive materials that are required as patient’s own case (Fig. 3).

Design of neo‑mandible
Conventional panoramic radiograph is insufficient to 
analyze the anterior-posterior dimension and the influ-
ence of free flap rotation on the rehabilitation of patients 
[110]. Multiple image modality is essential to evaluate the 
exact volume required for mandibular reconstruction [8].

Multiple image modalities such as CT, MRI, and PET 
CT can be used for diagnosis and preliminary planning 
for reconstructive surgery. Multiple modalities would be 
helpful to figure out and customize the cases [32, 48]. CT 
has been a critical image modality for the reconstruc-
tion of maxillofacial defects. Because it can make 3D 
reconstruction images that present detailed anatomy of 
individual cases and precise spatial information for 3D 
printing compared to other modalities [111, 112].

After acquiring CT images followed by case analy-
sis, virtual surgery is performed on on-demand system 
by a surgeon; herein, the decision for the dimension of 
reconstructive material is confirmed. The feasible com-
position of biomaterial including scaffold, cells, and 
bioactive molecules is discussed at this stage according 
to a three-dimensional design by team members.

In addition, a surgical guide should be designed con-
comitant with bio-printing material. The surgical guide 
is a template that helps guide 3D printed biorecon-
structive material at planned position intraoperatively. 
Based on acquired 3D CT images, the surgical guide is 
designed to reproduce the surgical planning to put the 
reconstructive materials in the defect with precision 
and then printed to be used intraoperatively with CAD-
CAM technology [7, 10, 85, 110].

Bio‑fibrication
Modifications of design through multidisciplinary spe-
cialists on an online platform will be processed repeat-
edly until the most applicable design would be set up 
for a forthcoming surgery. After the final design is con-
firmed, the composite tissue can be printed as multiple 
cartridge manners such as ITOP [44]. Selected materi-
als for scaffold, cells, and bioactive molecules for the 
individual case are loaded on the 3D bioprinter and 
simultaneously printed according to the shape and 
dimension which were determined at the planning 
stage. Completed reconstructive material then will be 
confirmed by on-demand platform, either.

Intraoperative feedback
The printed products are then moved to the operation 
room for reconstructive surgery. Bone defect prepara-
tion as the recipient bed is preceded before setting the 
reconstructive material as helped by a surgical guide. 
The 3D-printed surgical guide gives information for the 

Fig. 3  On-demand process for customized mandible reconstruction, the comprehensive on-demand system for individual patients needed to 
be established, which can integrate anatomic image of individual patients, decide composition of biomaterial, design of reconstructive material, 
and get delivered to operation field for successful mandibular reconstruction (some part of this figure was with permission from Springer Nature. 
Copyright 2016)
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accurate setting of reconstructive material [113–115]. 
During the operation, a surgeon can check the pro-
cedure goes as it was planned intraoperatively with 
a tablet PC interconnected to an online platform. All 
data from intraoperative procedures and postoperative 
results were stored in the database of online platforms 
as feedback. The database would be conducive to the 
improvement of the design in reconstructive material 
for the next coming cases.

Conclusion
Mandible reconstruction based on 3D bio-printing needs 
coordination with oral mucosa, dentition, and other 
facial bones and muscles; thus, critical factors includ-
ing mechanical strength, facial contour, mastication, and 
maintenance of airway should be contemplated at the ini-
tial stage of designing biomaterial.

Harsh environments in maxillofacial areas, such 
as continuous mechanical stress, salivary fistula and 
radiation therapy, risks of breakage, and exposure to 
implanted grafts may cause fatal infection and failure of 
reconstruction. Biomaterials, basically composed of scaf-
folds, cells and bioactive molecules, require sufficient 
mechanical strength and biocompatibility to cope with 
disadvantageous conditions. OCFF is still the gold stand-
ard for composite tissue reconstruction of mandibles, 
even though it requires additional flap harvesting surgery 
and probable donor site morbidity. As of now, 3D bio-
printing technology seems to be not feasible in case of a 
complete segmental defect of the mandible. In the near 
future, the ITOP bio-printer will be able to print out mul-
tiple tissues and is expected to be used in the 3D compos-
ite reconstruction of the mandible to take over the place 
of OCFF.

3D CAD-CAM became an essential technology for the 
forthcoming 3D bio-printing reconstruction of mandi-
bles. The design of mandibular reconstruction with bio-
material should be customized according to dimension 
and tissue components in individual patients’ mandibular 
defects. For surgical templates, non-biologic 3D printing 
has already been utilized based on CAD-CAM technol-
ogy. Through on-demand platform, multidisciplinary 
approach to the reconstruction can be performed for 
designing a surgical template and reconstructive mandi-
ble based on acquired medical image. Then, printing sur-
gical template and reconstructive mandible will be done. 
Although the development of 3D bio-printing for com-
posite mandibular reconstruction is on the way as of now, 
on-demand platform for comprehensive reconstructive 
treatment should be set up accordingly for forthcoming 
technological advances.
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