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Abstract

The Drosophila Nonspecific Lethal (NSL) complex is a major transcriptional regulator of

housekeeping genes. It contains at least seven subunits that are conserved in the human

KANSL complex: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2), Rcd1/Nsl3 (KANSL3), Rcd5

(MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/KAT8). Previous studies have

shown that Dgt1, Rcd1 and Rcd5 are implicated in centrosome maintenance. Here, we ana-

lyzed the mitotic phenotypes caused by RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2

or Wds in greater detail. Depletion of any of these proteins in Drosophila S2 cells led to

defects in chromosome segregation. Consistent with these findings, Rcd1, Rcd5 and MBD-

R2 RNAi cells showed reduced levels of both Cid/CENP-A and the kinetochore component

Ndc80. In addition, RNAi against any of the four genes negatively affected centriole duplica-

tion. In Wds-depleted cells, the mitotic phenotypes were similar but milder than those

observed in Rcd1-, Rcd5- or MBD-R2-deficient cells. RT-qPCR experiments and interro-

gation of published datasets revealed that transcription of many genes encoding centro-

mere/kinetochore proteins (e.g., cid, Mis12 and Nnf1b), or involved in centriole duplication

(e.g., Sas-6, Sas-4 and asl) is substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells,

and to a lesser extent in wds RNAi cells. During mitosis, both Rcd1-GFP and Rcd5-GFP

accumulate at the centrosomes and the telophase midbody, MBD-R2-GFP is enriched only

at the chromosomes, while Wds-GFP accumulates at the centrosomes, the kinetochores,

the midbody, and on a specific chromosome region. Collectively, our results suggest that

the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds depletion are primarily due

to reduced transcription of genes involved in kinetochore assembly and centriole duplica-

tion. The differences in the subcellular localizations of the NSL components may reflect
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direct mitotic functions that are difficult to detect at the phenotypic level, because they are

masked by the transcription-dependent deficiency of kinetochore and centriolar proteins.

Author summary

The Drosophila Nonspecific Lethal (NSL) complex is a conserved protein assembly that

controls transcription of more than 4,000 housekeeping genes. We analyzed the mitotic

functions of four genes, Rcd1, Rcd5, MBD-R2 and wds, encoding NSL subunits. Inactiva-

tion of these genes by RNA interference (RNAi) resulted in defects in both chromosome

segregation and centrosome duplication. Our analyses indicate that RNAi against Rcd1,

Rcd5 or MBD-R2 reduces transcription of genes involved in centromere/kinetochore

assembly and centriole replication. During interphase, Rcd1, Rcd5, MBD-R2 and Wds are

confined to the nucleus, as expected for transcription factors. However, during mitosis

each of these proteins relocates to specific mitotic structures. Our results suggest that the

four NSL components work together as a complex to stimulate transcription of genes

encoding important mitotic determinants. However, the different localization of the pro-

teins during mitosis suggests that they might have acquired secondary “moonlighting”

functions that directly contribute to the mitotic process.

Introduction

The spindle is a microtubule (MT)-based highly dynamic molecular machine that mediates

chromosome segregation during cell division. Spindle formation requires many proteins that

specifically bind and/or regulate MT assembly and dynamics, and also some proteins that are

associated with the chromatin during interphase [1]. These latter proteins dissociate from the

chromosomes upon mitotic entry and return to the nucleus during telophase; they have there-

fore functional roles in both interphase chromatin and in mitotic spindle assembly. Examples

of these proteins are the components of the human KAT8-associated nonspecific lethal

(KANSL) complex, which includes at least seven proteins: KANSL1, KANSL2, KANSL3,

MCRS1, PHF20, WDR5 and the MOF/KAT8 histone acetyltransferase. The KANSL complex

localizes in the nucleus of interphase cells where it regulates transcription of a specific set of

genes and contributes to stem cell identity [2, 3]. Mutations in KANSL1 dominantly induce

the Koolen-de Vries syndrome characterized by mental retardation and peculiar facial fea-

tures, and mutations in KANSL2 have been associated with intellectual disabilities [4–6]. Stud-

ies on human cells and Xenopus egg extracts have shown that during mitosis, KANSL1,

KANSL3 and MCRS1 re-localize from the chromatin to the MT minus ends of the mitotic

spindle, playing essential roles in spindle assembly and chromosome segregation [7, 8]. Also

WDR5 associates with the spindle during mitosis, and its RNAi-mediated depletion leads to

spindle defects and chromosome misalignment [9]. Thus, the subunits of the KANSL complex,

which is restricted to the nucleus during interphase, after the nuclear envelope breakdown

redistribute to spindle structures where they are thought to play mitotic functions.

The Drosophila Nonspecific Lethal (NSL) complex is the fly counterpart of the KANSL

complex. It includes seven conserved subunits: Nsl1/Wah (KANSL1), Dgt1/Nsl2 (KANSL2),

Rcd1/Nsl3 (KANSL3), Rcd5 (MCRS1), MBD-R2 (PHF20), Wds (WDR5) and Mof (MOF/

KAT8). MBD-R2, Rcd5, Nsl1, and Mof colocalize in the interbands of polytene chromosomes

of third instar larvae, and MBD-R2 physically interacts with the histone modifying complexes

The NSL complex is required for Drosophila mitosis
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Trx/MLL and the Nup98 nucleoporin [10, 11]. Wds is not only a member of the NSL complex,

but is also part of several chromatin complexes including the ATAC histone acetyltransferase

and the Trx/MLL histone methyltransferase [9, 12, 13]. The NSL complex associates with the

promoters of more than 4,000 housekeeping genes, indicating that it acts as a major transcrip-

tional regulator [10, 12, 14].

As in the case of their human counterparts, depletion of the NSL complex members results

in mitotic defects. Genome-wide RNAi screens performed in S2 cells showed that Dgt1, Rcd1

and Rcd5 control mitotic centrosome behavior. Dgt1 (diminished γ-tubulin 1) is required for

γ-tubulin recruitment, Rcd1 (Reduction in Cnn dots 1) for centriole duplication, and Rcd5

(Reduction in Cnn dots 5) for both centriole duplication and pericentriolar material (PCM)

recruitment at the centrosomes [15, 16]. However, the mechanisms through which Dgt1, Rcd1

and Rcd5 regulate centriole duplication and centrosome maturation are currently unknown.

Another RNAi-based screen in S2 cells showed that Rcd1 and MBD-R2 are required for

mitotic chromosome segregation, but the mechanisms leading to this phenotype are also

unknown [17].

Here, we analyzed the mitotic phenotypes caused by Rcd1, Rcd5, MBD-R2 or Wds deple-

tion in greater detail. Cells depleted of these proteins showed a common defect in centrosome

duplication, confirming the centrosome phenotype described earlier for Rcd1 and Rcd5 RNAi

cells [16]. However, we found that Rcd1, Rcd5 and MBD-R2 RNAi cells, and to a lesser extent

wds RNAi cells, also exhibit defects in chromosome alignment and segregation. Accordingly,

Rcd1-, Rcd5- and MBD-R2-depleted cells displayed reduced levels of both Cid and Ndc80. Cid

is a centromere-specific histone variant homologous to CENP-A that is required for kineto-

chore assembly [18], and Ndc80 is the protein that directly mediates MT attachment to the

kinetochore [19]. We generated stable S2 cell lines for the inducible expression of Rcd1-GFP,

Rcd5-GFP, MBD-R2-GFP or Wds-GFP. We show that these tagged proteins largely rescue the

mitotic phenotype caused by RNAi-mediated depletion of their endogenous counterparts, and

localize to the nucleus of interphase cells, as expected for transcription factors. However, dur-

ing mitosis each protein relocalizes to a specific set of mitotic structures, including the centro-

somes, the kinetochores and different regions of the midbody. Our results suggest that the

common mitotic phenotypes generated by the depletion of the four NSL components are pri-

marily due to reduced transcription of genes encoding centromere/kinetochore components

and genes required for centriole duplication. The different mitotic localizations of Rcd1, Rcd5,

MBD-R2 and Wds further suggest that these proteins might have acquired some direct mitotic

roles.

Results

Rcd1, Rcd5, MBD-R2 and wds RNAi cells are defective in centrosome

behavior

We first analyzed the centrosomal phenotype of S2 cells exposed to Rcd1, Rcd5, MBD-R2 or

wds double stranded RNAs (dsRNAs) for 5 days. To check for RNAi efficiency we performed

Western blotting of cell extracts using antibodies directed to Rcd1, MBD-R2 or Wds. These

assays showed that the antibodies specifically recognize bands of the expected molecular

weights (MWs) that are strongly reduced after RNAi (Fig 1A–1C). The efficiency of RNAi

against Rcd5 was demonstrated by RT-qPCR, which revealed a drastic reduction of the Rcd5
transcript level (Fig 1D). RNAi cells were fixed and stained for DNA, tubulin and the centroso-

mal marker Spd-2 [20, 21]. We examined only cells that appeared to have the basic karyotype

of the S2 cells (~ 12 chromosomes [22]) and did not consider cells that are clearly “polyploid”

The NSL complex is required for Drosophila mitosis
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Fig 1. RNAi against Rcd1, Rcd5, MBD-R2 and wds impairs centriole duplication. (A, B, C) Western blots of S2 cell

extracts showing that RNAi against Rcd1, MBD-R2 or wds strongly reduces the levels of the corresponding proteins; the

two bands detected by the anti-Rcd1 antibody likely correspond to different isoforms of this protein (FlyBase.org). Lamin

Dm0 (Lamin), α-tubulin and β-actin are loading controls. (D) RT-qPCR results showing that RNAi against Rcd5 strongly

reduces the level of its transcripts relative to a mock control that is set to 1. (E) Examples of cells showing different

centrosome numbers. (E1, E2) Prometaphase (E1) and metaphase (E2) showing two regular centrosomes; (E3, E4) cell

with basic karyotypes with 4 (E3) and 3 (E4) centrosomes; (E5-E8) prometaphases and metaphases showing a single

centrosome (E5, E6) or no centrosomes (E7, E8). Scale bars, 5 μm. (F) Frequencies of prometaphases and metaphases with

the indicated number of centrosomes; ¶, § and �, significantly different from control in the Chi-square test with p< 0.05,

p< 0.01 and p< 0.001, respectively. (G) Quantitation of Spd-2 fluorescence in cells with two centrosomes (at least 106

centrosomes examined for each treatment). The mean fluorescence intensities measured in Rcd1, MBD-R2 and wds RNAi

cells are not significantly different from control in the Wilcoxon Signed-Rank Test; in Rcd5 RNAi cells the centrosome

fluorescence intensity is significantly higher than in control with p< 0.01 (��). (H) Example of interphase nuclei

expressing Asl-GFP and showing (from left to right) 1, 4 and 2 Asl signals. Scale bar, 5 μm. (I) Frequencies of interphase

cells with the indicated number of Asl-GFP signals; ¶, § and �, significantly different from control in the Chi-square test

with p< 0.05, p< 0.01 and p< 0.001, respectively.

https://doi.org/10.1371/journal.pgen.1008371.g001
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that are common in S2 cell cultures. However, several S2 cells with the basic karyotype have

either a single centrosome or more than two centrosomes (Fig 1E).

To ascertain whether depletion of Rcd1, Rcd5, MBD-R2 or Wds affects centrosome struc-

ture and duplication, we scored the Spd-2 signals in prometaphase and metaphase cells from 3

independent experiments. In this analysis, we counted cells showing no centrosomes, a single

centrosome, two centrosomes, or more than 2 centrosomes. We did not subdivide the cells

with more than 2 centrosomes in subclasses (i.e. cells with different centrosome numbers),

because multiple centrosomes tend to overlap or cluster at the spindle poles and are therefore

difficult to count. In addition, we did not take into account cells showing very small Spd-2 sig-

nals, because it was unclear whether they represented examples of PCM fragmentation or were

produced by immunostaining artifacts.

In Rcd1, Rcd5, MBD-R2 and wds RNAi cells, the frequencies of cells showing 0–1 centro-

somes were significantly increased compared to controls, although in Wds-depleted cells this

increase was more modest that in the other RNAi cells (Fig 1F). The frequency of cells with

more than two centrosomes was either significantly decreased (Rcd1, Rcd5, MBD-R2 RNAi

cells) or unchanged (wds RNAi) compared to control (Fig 1F). We also measured the fluores-

cence intensity of Spd-2 signals in prometaphase and metaphase cells showing two centro-

somes; we found that in Rcd1, MBD-R2 and wds RNAi cells the average fluorescence of these

signals is not significantly different from controls, while in Rcd5-depleted cells it was slightly

but significantly higher (p< 0.01; Wilcoxon Signed-Rank Test) than in control (Fig 1G and S1

Data). Consistent with these findings, we found that the asters of these RNAi cells are indistin-

guishable from those of control cells. We note that the results on Rcd1 RNAi cells are fully con-

sistent with those of Dobbelaere et al. [16], who showed that depletion of Rcd1 reduces the

centrosome number without affecting PCM recruitment. Dobbelaere et al. also showed that

Rcd5 depletion negatively affects centrosome duplication but also reduces Cnn recruitment at

centrosomes. We confirmed that Rcd5 deficiency reduces centrosome number but we found

that it leads to a small increase in the fluorescence intensity of centrosome-associated Spd-2.

We do not know the reasons for this apparent discrepancy but it is possible that the centro-

somes of Rcd5-depleted cells are defective in Cnn recruitment but have normal or slightly

increased ability to associate with Spd-2.

In Drosophila S2 cells, which often contain multiple centrosomes and can divide even in the

absence of centrosomes, centrosome loss could arise either through defective centrosome sepa-

ration during prophase or defective centriole duplication during interphase [16, 23]. Failure in

centrosome separation in prophase would lead to formation of a bipolar spindle with two cen-

trosomes (each containing a pair of centrioles) at one pole and no centrosome at the other.

Because S2 cells can assemble fully functional monastral spindles [24], a defect in prophase

centrosome separation is expected to ultimately lead to an increase in both cells with zero and

with more than two centrosomes. In the case of defective centriole duplication during inter-

phase, the expectation is instead an increase in cells with 0–1 centrosomes and a decrease in

cells with more than 2 centrosomes. Thus, our results (Fig 1F) are consistent with the second

alternative, and suggest that depletion of the NSL components primarily impairs centriole

duplication.

To confirm and extend these results, we counted the number of centrioles in interphase

cells depleted of Rcd1, Rcd5, MBD-R2 or Wds. As centriole marker we decided to use Asterless

(Asl), a protein that is thought to link the centriole wall with the PCM [25–27]. However, pre-

liminary tests with antibodies directed to Asl or to other centriolar components revealed that

in our hands they do not stain the centrioles in all interphase cells. We thus constructed an S2

cell line that expresses Asl-GFP under the control of the copper-inducible Metallothionein A
(MtnA) promoter, and used it in the RNAi experiments against the NSL genes. As Asl

The NSL complex is required for Drosophila mitosis
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overexpression causes centriole overduplication during the S phase [26], we limited the impact

of this event by treating both RNAi and control cells with CuSO4 for only 12 hours before fixa-

tion (the cell cycle of S2 cells lasts approximately 24 hours). We stained control and RNAi cells

with an anti-GFP antibody and scored them for the number of Asl signals present in inter-

phase cells (Fig 1H). We did not take into account cells with zero signals because they could be

cells in which the Asl-GFP expression was not sufficiently strong to mark the centrioles.

RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds resulted in significant increases in

interphase cells showing a single Asl signal compared to control. We also found significant

decreases in cells with more than 2 signals in Rcd1, MBD-R2 and wds RNAi cells; the frequency

of Rcd5 RNAi cells with multiple centrioles was also reduced compared to control but not sig-

nificantly (p = 0.07) (Fig 1H and 1I). Collectively, these results reinforce the conclusion that

the NSL components are required for centriole duplication.

Rcd1, Rcd5 and MBD-R2 RNAi cells are severely defective in chromosome

segregation

An analysis of mitotic division in several independent experiments revealed that Rcd1-, Rcd5-

and MBD-R2-depleted cells exhibit very similar phenotypes. They display an approximately

ten-fold reduction in the frequency of anaphases compared to controls and very high frequen-

cies of PMLES (prometaphase-like cells with elongated spindles) figures (Fig 2A–2C). PMLES

(formerly called pseudo-ana-telophases, abbreviated with PATs [17]) are peculiar mitotic fig-

ures that contain late anaphase/early telophase-like spindles associated with chromosomes that

are improperly comprised of both sister chromatids and are usually scattered along the spin-

dles; in some cases PMLES exhibit central spindle-like structures and irregular cytokinetic

rings (Fig 2B and S1 Fig; see also refs. [17, 28]). Notably, several PMLES exhibit arched spin-

dles, which are presumably the consequence of an excessive spindle elongation within the con-

straints imposed by the plasma membrane. Despite their ana-telophase-like spindle structure,

PMLES contain high levels of Cyclin B, which is normally degraded at the beginning of ana-

phase (Fig 2A and 2B). Thus, PMLES appear to be in a pre-anaphase stage as far as sister chro-

matid separation and Cyclin B degradation are concerned, but they are nevertheless

permissive of typical telophase events, such as central spindle assembly and initiation of

cytokinesis.

To further characterize the PMLES, we measured the length of their spindle axis and com-

pared it with the length of the other mitotic figures. In Rcd1, Rcd5 and MBD-R2 RNAi cells the

prometaphase and metaphase spindles were morphologically normal but slightly longer

(~10%) than their control counterparts (Fig 2D, S2 Data). PMLES spindles of RNAi cells were

instead substantially longer than prometaphase/metaphase spindles (~ 60%) and anaphase

spindles (~ 25%) (Fig 2D and 2E). The average length of the PMLES spindles was either slightly

shorter or similar to the length of the spindles of control telophases (Fig 2E), indicating that

most PMLES can attain the maximum spindle elongation that is normally achieved by S2 cells.

The slight increase in the prometaphase and metaphase spindle length observed in RNAi cells

is likely to reflect the presence of some cells in the initial stages of evolution towards a PMLES

configuration.

Although Rcd1, Rcd5 and MBD-R2 RNAi cells exhibit very low anaphase frequencies (Fig

2C), they show relatively high frequencies of mitotic figures with telophase-like spindles, char-

acterized by the presence of a constricted central spindle and decondensed chromosomes at

the cells poles; about a third of these cells displayed lagging chromosomes between the cell

poles (Fig 2B and S1D Fig). Because the chromosomes in these cells are decondensed, it is not

possible to discern whether they contain one or two sister chromatids. Nonetheless, we favor

The NSL complex is required for Drosophila mitosis
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Fig 2. RNAi-mediated depletion of Rcd1, Rcd5, MBD-R2 or Wds disrupts chromosome segregation. (A-B) Mitotic figures observed in mock-

treated control cells (A), and in Rcd1, Rcd5 or MBD-R2 RNAi cells (B) stained for DNA (blue), α-tubulin (green) and Cyclin B (CycB; red). The cells

shown in (B) are PMLES, namely prometaphase-like cells with elongated anaphase-like or telophase-like spindles showing high Cyclin B levels. Note

that the cells with the arched anaphase-like spindles contain chromosomes comprised of both sister chromatids; see text for detailed explanation and S1

Fig for additional PMLES. Scale bar for panels A and B, 5 μm. (C) Frequencies of mitotic figures observed in Rcd1, Rcd5, MBD-R2 and wds RNAi cells

and in mock-treated control cells. Prometa, prometaphases; Meta, metaphases; PMLES, as those shown in panel (B) and S1 Fig; Ana, anaphases; Telo,

telophases; TeloL, telophases with lagging chromosomes. The Telo and TeloL classes could include real telophases or PMLES with telophase-like

spindles and decondensed chromosomes (see panel B of this figure and S1D Fig). Scale bar, 5 μm. (D) Box-Whisker plots showing the length of

prometaphase/metaphase spindles of mock-treated control (Ctr) and RNAi cells (Rcd1, Rcd5, MBD-R2 and wds). In Rcd1, Rcd5 and MBD-R2 RNAi

cells, the spindle is significantly longer than in control cells in the Wilcoxon Signed-Rank Test (p< 0.01 in all cases); the spindles of wds RNAi cells are

not significantly different from control spindles. (E) Box-Whisker plots showing the spindle length of anaphases (Ana), telophases (Telo) and PMLES

observed in control (Ctr) cells, and of PMLES seen in Rcd1, Rcd5, MBD-R2 and wds RNAi cells. The PMLES spindle length in Rcd5 and MBD-R2 RNAi

The NSL complex is required for Drosophila mitosis
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the idea that many of the “telophases” observed in Rcd1-, Rcd5- and MBD-R2-depleted cells

are in fact PMLES that managed to progress further through the mitotic process and undergo

chromosome decondensation as normally occurs in telophase. Regardless of the nature of

these telophase-like cells, it is clear that Rcd1, Rcd5 and MBD-R2 are all required for sister

chromatid separation and chromosome segregation.

Cells depleted of Wds displayed a mitotic phenotype qualitatively similar but quantitatively

milder than that observed in Rcd1-, Rcd5- or MBD-R2-deficient cells (Figs 1F and 2C-2E).

Thus, although the degree of RNAi-mediated depletion of the Wds protein is comparable to

that observed for the other NSL proteins (Fig 1C), in wds RNAi cells both the centrosome and

chromosome segregation phenotypes are substantially milder than those observed in Rcd1,

Rcd5 or MBD-R2 RNAi cells.

Rcd1, Rcd5 and MBD-R2 are required for centromere and kinetochore

formation

Collectively our findings indicate that Rcd1-, Rcd5- and MBD-R2-depleted cells are severely

defective in chromosome segregation. Depletion of Wds also perturbed chromosome segrega-

tion but caused a relatively mild defect. This chromosome segregation phenotype cannot be

ascribed to centrosome defects, as abundant evidence indicates that Drosophila mitotic spindle

assembly and functioning does not require the centrosomes [15, 17, 29–31].

We have previously observed frequent PMLES in S2 cells depleted of the centromere-spe-

cific histone H3 Cid/Cenp-A or the kinetochore components Ndc80, Nuf2 and Kmn1 [17, 32].

PMLES have been also observed in S2 cells depleted of Mast/Orbit that has a role in MT-kinet-

ochore attachment [33], or depleted of the Klp67A kinesin-like protein, which represses MT

plus end growth and is required for proper MT binding to kinetochores [32]. More recently,

PMLES were observed in S2 cells depleted of the Sf3A2 and Prp31 splicing factors that have

direct roles in MT-kinetochore interactions [28]. These results suggest that the PMLES found

in Rcd1, Rcd5 and MBD-R2 RNAi cells are a consequence of a defective kinetochore-MT

attachment.

To test this possibility, we first analyzed the effects of Rcd1, Rcd5, MBD-R2 or Wds deple-

tion on the intracellular concentration of the core centromere component Cid/CenpA that is

required for kinetochore assembly [18], and Ndc80 that is directly responsible for MT-kineto-

chore attachment [19, 34–36]. Western blotting analysis showed that in Rcd1-, Rcd5- and

MBD-R2-depleted cells Cid is considerably reduced compared to controls (32%, 36% and 40%

of the control level, respectively); the level of Cid was also reduced in Wds-depleted cells but to

a lesser extent (78%) (Fig 3A, S3 Data). In addition, Western blotting on extracts from Rcd1,

Rcd5 and MBD-R2 RNAi cells showed substantial reductions of Ndc80 compared to mock-

treated cells (32%, 35% and 52% of the control level, respectively), while in wds RNAi cells the

Ndc80 level was comparable to that of controls (Fig 3A, S3 Data).

To extend the analysis at the subcellular level we focused on Rcd1, Rcd5 and MBD-R2 RNAi

cells, which exhibit strong reductions in the Cid content compared to both control and Wds-

depleted cells. The Cid protein is detectable both at the centromeres of mitotic chromosomes

and in interphase nuclei; nuclei of control cells exhibit 3–6 foci corresponding to clustered

centromeres (Fig 3B). In Rcd1, Rcd5 and MBD-R2 RNAi cells, the frequencies of interphase

nuclei devoid of Cid signals were significantly higher than in controls (Fig 3B and 3C). We

cells is not significantly different from the length of control telophase spindles in the Wilcoxon Signed-Rank Test, while the PMLES spindles of Rcd1
and wds RNAi cells are slightly but significantly shorter than the telophase spindles of control cells (p < 0.01) (see also S2 Data). The numbers below

each box shown in D and E indicate the numbers of spindles measured.

https://doi.org/10.1371/journal.pgen.1008371.g002
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also examined prometaphases and metaphases with a basic karyotype for the presence of Cid sig-

nals. In general, RNAi cells displayed Cid signals of lower intensity compared to controls; they

also showed a great variability in the number of detectable signals, ranging from zero to more

than 20 signals (in a cell with 12 chromosomes the maximum number of Cid signals is 24). In

Rcd1-, Rcd5- and MBD-R2-depleted cells, the frequencies of cells with 0–9 signals were drasti-

cally increased compared to controls, in which this type of cells are virtually absent (Fig 3C).

Rcd1, Rcd5 and MBD-R2 are only partially interdependent

The similarity of the mitotic phenotypes observed in Rcd1-, Rcd5- and MBD-R2-depleted cells

might be a consequence of an interdependence of these proteins. Indeed, it has been previously

Fig 3. RNAi-mediated depletion of Rcd1, Rcd5 or MBD-R2 reduces the levels of Cid and Ndc80. (A) Western blotting analysis and band intensity

quantification relative to the control from 3 independent experiments showing that in Rcd1, Rcd5, MBD-R2 and wds RNAi cells the Cid level is reduced to

38%, 43%, 42% and 78% of the control level, respectively. In cells depleted of Rcd1, Rcd5 or MBD-R2, Ndc80 is reduced to 32%, 35% and 53% of the control

level, respectively; in cells depleted of Wds the Ndc80 level is not changed compared to control. β-actin and α-tubulin are loading controls (see also S3

Data). (B) Quantification of the Cid signals in interphase and mitotic cells from control and Rcd1-, Rcd5- or MBD-R2-depleted cells. The frequencies of

interphase nuclei with no Cid signals, and prometaphases/metaphases with 0–9 signals observed in Rcd1, Rcd5 or MBD-R2 RNAi cells are significantly

higher than those detected in mock-treated cells (Chi-square test; in all cases p< 0.001). (C) Examples of interphase and dividing cells from mock-treated

control and Rcd1 RNAi cultures stained for DNA (blue), Cid (red) and α-tubulin (green). Note that nearly all control cells display clear Cid signals; in

contrast, some of the Rcd1-depleted interphase and dividing cells exhibit extremely weak or no Cid signals (arrows). Scale bar, 5 μm.

https://doi.org/10.1371/journal.pgen.1008371.g003
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shown that depletion of Rcd5 in salivary glands leads to a severe reduction in Rcd1, while

Rcd1 depletion results only in a slight reduction in Rcd5 [10]. Similar results were obtained in

SL-2 cells, where RNAi-mediated depletion of Rcd5 caused a reduction in Rcd1, whereas Rcd1

depletion did not substantially affects the Rcd5 level [10]. In both salivary glands and SL-2

cells, MBD-R2 depletion did not affect the stability of the other members of the complex [10],

while the Wds levels were similar to those of controls in Rcd1, Rcd5 or MBD-R2 RNAi cells

[10]. We found that RNAi against Rcd5 leads to a small reduction in Rcd1 also in the S2 cell

line used here. Rcd5 RNAi cells displayed a small reduction in MBD-R2, while MBD-R2 deple-

tion did not substantially affect the Rcd1 level (Fig 4A). Consistent with these results, RT-

qPCR showed that RNAi against each of the four NSL genes studied here does not substantially

affect transcription of the others, which, with the exception of wds upon Rcd5 RNAi, are

expressed at slightly higher rates compared to control (Fig 4B). These results suggest that the

phenotypes observed in Rcd1-, Rcd5-, MBD-R2- and Wds-depleted cells are largely due to

the deficiency of each individual factor and do not reflect interdependencies among these

proteins.

Fig 4. Partial interdependence between Rcd5 and Rcd1. (A) Western blot showing that RNAi-mediated depletion of

Rcd5 leads to a small reduction in Rcd1 and an even smaller reduction in MBD-R2 levels. MBD-R2 depletion does not

substantially affect the Rcd1 level. β-actin is a loading control. (B) Average gene expression relative to control

measured by RT-qPCR after RNAi against Rcd1, Rcd5, MBD-R2, or wds. The numbers between brackets indicate

numbers of biological replicates.

https://doi.org/10.1371/journal.pgen.1008371.g004
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Rcd1, Rcd5, MBD-R2 and Wds localize to specific regions of the mitotic

apparatus

In the attempt of detecting a mitotic localization of the NSL subunits, we first tested the com-

mercial anti-MBD-R2 and anti-Wds antibodies and our anti-Rcd1 mouse antibody. All these

antibodies specifically recognize bands of the expected MWs that are strongly reduced in

RNAi cells (Figs 1A–1C and 4A). However, immunostaining using the same antibodies

showed that the anti-MBD-R2 and anti-Wds antibodies stain weakly only the interphase nuclei

but do not decorate any mitotic structure, while the anti-Rcd1 antibody did not work at all in

indirect immunofluorescence.

We then generated stable cell lines expressing Cherry-tubulin and any of Rcd1-GFP,

Rcd5-GFP, MBD-R2-GFP or Wds-GFP tagged proteins, all under the control of the copper-

inducible MtnA promoter. We exposed these cells for 12–14 hours to different concentrations

of CuSO4 (0.1, 0.25, 0.4 and 0.5 mM) and examined them under a confocal fluorescence

microscope. All GFP-tagged proteins showed strong nuclear signals but also displayed clear

but different mitotic localizations (Figs 5 and 6). In prometaphase and metaphase cells,

Rcd1-GFP and Rcd5-GFP proteins were no longer associated with chromatin, but accumu-

lated at the centers of the asters/centrosomes and were occasionally weakly enriched at the

Fig 5. Localization of Rcd1-GFP and Rcd5-GFP in live interphase and dividing S2 cells. The cells express Cherry-tubulin and either Rcd1-GFP

or Rcd5-GFP. Note that in metaphase cells Rcd1-GFP localizes to the center of the MT asters in a position that is normally occupied by the

centrosomes. Rcd1-GFP also localizes at both sides of the dark zone of the midbody of telophase cells. Rcd5-GFP localizes to the center of the

asters in metaphases and in the dark zone of the midbody of telophase cells. Scale bars, 5 μm for all panels.

https://doi.org/10.1371/journal.pgen.1008371.g005
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spindle area. In anaphase and telophase cells, the accumulation at the centrosomes was

reduced compared to the previous mitotic phases. In telophase cells, Rcd1-GFP and Rcd5-GFP

concentrated in the daughter nuclei as expected for transcription factors, but were also

enriched at the midbody, the structure that connects the two daughter cells during late telo-

phase and cytokinesis (Fig 5). The midbody contains bundled antiparalled MTs with their plus

ends overlapping at the center of the structure. The MT overlapping area is often dark (dark

zone) after staining with anti-tubulin antibodies because it is enriched in proteins that block

antibody binding to tubulin [37]. We see a dark zone also in living cells expressing Cherry-

tubulin, most likely because the same proteins that prevent antibody binding quench the

Cherry-tubulin fluorescence. Interestingly, while Rcd1 was excluded from the dark zone and

enriched at both sides of this region, Rcd5 was specifically accumulated in the dark zone at the

center of the midbody (Fig 5).

Fig 6. Localization of MBD-R2-GFP and Wds-GFP in live interphase and dividing S2 cells. The cells express

Cherry-tubulin and either MBD-R2-GFP or Wds-GFP. (A) MBD-R2-GFP is associated with the chromosomes and

fails to accumulate in either the centrosomes or the midbody of telophase cells. The cell in the third row is also stained

for DNA (blue) with the vital die Hoechst 33342. (B) In interphase cells, Wds-GFP localizes to the nucleus and is

enriched in a discrete nuclear region. In prophases and metaphases, Wds-GFP is enriched at the center of the asters

but this localization is rarely observed in anaphases and telophases. In metaphases, Wds-GFP is transiently associated

with structures that are likely to be the kinetochores. In telophases, Wds-GFP is consistently enriched at the midbody

dark zone. Finally, in all mitotic phases Wds-GFP is tightly associated with a discrete chromosomal region. (C) Fixed

prometaphase cell immunostained with an anti-GFP antibody and counterstained with DAPI. Note that the GFP

signal is located to a discrete region of an acrocentric chromosome that is likely to be the X chromosome. See text for

further explanation. Scale bar, 5 μm.

https://doi.org/10.1371/journal.pgen.1008371.g006
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After CuSO4 induction, MBD-R2-GFP and Wds-GFP were strongly enriched in interphase

nuclei but showed very different localization patterns in mitotic cells. MBD-R2-GFP localized

exclusively at the chromosomes and did not show accumulations at either the centrosomes or

the midbody (Fig 6A). In contrast, Wds-GFP was enriched at several mitotic structures (Fig 6B

and 6C). In all mitotic phases, Wds-GFP accumulated in a discrete region of a specific chro-

mosome. This GFP signal was also detected in both telophase and interphase nuclei of living

cells, and was sufficiently strong to be detected in fixed cells with well spread chromosomes

(Fig 6B and 6C). This allowed us to localize the Wds-GFP accumulation on a specific region of

an acrocentric chromosome characterized by a highly DAPI-fluorescent pericentric hetero-

chromatin (Fig 6C). The DAPI staining pattern of this chromosome and the localization of the

GFP signal along the chromosome suggest that Wds might associate with the nucleolus orga-

nizer of the X chromosome in both mitotic cells and interphase nuclei [22]. We also observed

an enrichment of Wds-GFP at the centrosomes; this enrichment was clearly visible in most

prophase, prometaphase and metaphase cells, but was hardly detectable in anaphases and telo-

phases. In addition, in most late prometaphase and metaphase cells, Wds-GFP was enriched at

structures that are likely to correspond to the centromeres/kinetochores (Fig 6B). This localiza-

tion is transient, and was never observed in the other mitotic phases. In all telophase cells,

Wds-GFP was accumulated at the midbody dark zone.

The cells shown in Figs 5 and 6 were treated for 12–14 hours with 0.4 mM CuSO4, as this is

the optimal concentration for a clear visualization of both the GFP-tagged protein and Cherry-

tubulin. However, we were able to see mitotic accumulations of GFP-tagged proteins also after

12–14 hours induction with 0.1 mM CuSO4. Importantly, at all CuSO4 concentrations, we

consistently observed the same localization patterns as those shown in Figs 5 and 6. Thus, the

mitotic localization of each protein appears to be a characteristic feature of the protein inde-

pendent of its intracellular concentration.

To obtain further insight into this issue, we also performed a Western blotting analysis to

determine the levels of the endogenous and the GFP-tagged forms of Rcd1, MBD-R2 and Wds

after CuSO4 induction (S2 Fig). We could not carry out this analysis for cells expressing

Rcd5-GFP due to the unavailability of an anti-Rcd5 antibody. These experiments showed that

MBD-R2-GFP and its endogenous counterpart were expressed at similar levels after induction

with 0.1 or 0.25 mM CuSO4, while induction with 0.5 mM CuSO4 led to a limited

MBD-R2-GFP overexpression (S2A Fig, S4 Data). In MtnA-Rcd1-GFP-bearing cells, the

endogenous and the GFP-tagged protein were expressed at similar levels after induction with

0.1 mM CuSO4, but the GFP protein was 2.5- and 3.9-fold more abundant than the normal

protein after induction with 0.25 and 0.5 mM CuSO4, respectively (S2B Fig, S4 Data). Wds-

GFP was expressed at relatively high levels at all CuSO4 concentrations, with the tagged protein

showing expression levels 3-4-fold higher than that of the corresponding endogenous protein

(S2C Fig, S4 Data). These results strongly suggest that Rcd1 and MBD-R2 localizations are

independent of the concentration of the individual proteins.

The lack of biochemical data on Rcd5-GFP and the fact the Wds-GFP is 3 to 4 times more

abundant than the endogenous protein do not permit us to exclude that the mitotic localiza-

tions of these proteins could be partially affected by their intracellular quantity. However, an

analysis of live cells expressing either Rcd5-GFP or Wds-GFP strongly suggests that this is not

the case. In cells induced with 0.1 mM CuSO4, there is great variability in the levels of the GFP

proteins expressed by the individual dividing cells. Nonetheless, regardless their degree of GFP

fluorescence, all mitotic cells showed the same Rcd5-GFP- or Wds-GFP-specific accumula-

tions (see Figs 5 and 6), suggesting that the mitotic localization of these proteins is largely inde-

pendent of their intracellular concentration.
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We also fixed the cells treated for 12 hours with either 0.1 or 0.5 mM CuSO4 and stained

them with anti-GFP and anti-tubulin antibodies. Cells expressing Rcd1-GFP, Rcd5-GFP,

MBD-R2-GFP or Wds-GFP fixed with standard formaldehyde- and paraformaldehyde-based

procedures (see Materials and Methods) showed an evident GFP staining of interphase nuclei.

However, the localization of these proteins on the mitotic apparatus was fixation-dependent

but independent of the concentration of CuSO4. In Rcd1-GFP and Rcd5-GFP expressing cells,

we did not detect any clear accumulation of the tagged proteins at either the centrosomes or

the central spindles (S3 Fig). This prevented double immunostaining experiments aimed

determining whether Rcd1 and Rcd5 precisely colocalize with the centrosomes. Previous work

has shown that both Rcd1 and Rcd5 are required for centriole duplication in S2 cells but failed

to detect accumulations of these proteins at the centrosomes [16]. However, in this study cells

expressing GFP-tagged Rcd1 or Rcd5 were fixed with 4% paraformaldehyde, a treatment that

likely disrupted centrosomal localization of the GFP-tagged proteins [16]. In contrast, fixed

cells expressing MBD-R2-GFP showed a strong and specific enrichment of the tagged protein

at the chromosomes (S3 Fig). Lastly, after fixation, Wds-GFP was consistently enriched at a

specific chromosomal region in metaphase and anaphase cells and at the dark zone of the mid-

body during telophase. The fixation-resistant localization of Wds on a discrete chromosomal

region is a likely example of mitotic chromosome bookmarking. Such bookmarking occurs

when transcription factors remain associated with chromosomes during mitosis so as to facili-

tate reactivation of a subset of genes in the subsequent cell cycle [38].

The observation that the GFP-tagged components of the NSL complex exhibit different

localization patterns during mitosis raises the question of whether these proteins have the

same functions as their non-tagged counterparts. To address this question we performed

RNAi using dsRNAs that target only the 5’ and 3’ untranslated regions (UTRs) of the Rcd1,

Rcd5, MBD-R2 and wds endogenous genes (see S1 Table) but not the coding sequences (CS) of

the GFP-tagged transgenes. We specifically asked whether the expression of the GFP-tagged

NSL proteins rescues the mitotic effects caused by treatments with the corresponding UTR

dsRNAs. In cells expressing the GFP-tagged proteins, dsRNAs targeting of CS resulted in very

strong phenotypic effects comparable to those observed in normal cells treated with the same

CS dsRNAs (compare Fig 2C with S2 Table). dsRNAs targeting the UTR sequences were less

effective than CS dsRNAs in inducing mitotic defects (Fig 2C, S2 Table), consistent with the

fact that the CS used for RNAi are considerably longer than the corresponding UTRs (S1

Table). However, when RNAi with UTR dsRNAs was performed in cells expressing the corre-

sponding GFP-tagged proteins (induced by 0.1 mM CuSO4; see Materials and Methods) the

mitotic effects were substantially milder than those observed in cells that express only the

endogenous proteins (S2 Table). In summary, the data reported in the S2 Table show that the

GFP-tagged forms of Rcd1, Rcd5, MBD-R2 and Wds rescue the phenotypic defects caused by

depletion of the endogenous proteins. This suggests that the GFP-tagged NSL components are

largely functional and supports the view that their different localizations during mitosis reflect

the normal localizations of their untagged counterparts.

Rcd1, Rcd5 and MBD-R2 regulate transcription of genes required for

kinetochore assembly and centriole duplication

The finding that Rcd1, Rcd5, MBD-R2 and Wds exhibit different localization patterns during

mitosis, and yet cause very similar phenotypes when depleted, suggests the hypothesis that

these proteins might act together in regulating the expression of mitotic genes. Previous work

has shown that at least four components of the NSL complex (Nsl1, Rcd1, Rcd5 and MBD-R2)

bind the active promoters of more than 4,000 constitutively expressed genes, suggesting that
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NSL acts as a complex to specifically upregulate this type of genes [10, 12, 14]. However, it

appears that NSL depletion results in diminished expression of only a subset of the genes to

which it is bound [12].

To address the possibility that depletion of the NSL components affects mitotic gene tran-

scription, we exploited the published ChIP and gene expression datasets generated in S2 cells

[12, 14] to ask whether the NSL complex binds the promoters and regulates the expression of

genes encoding (i) centromere and kinetochore proteins (cid, Cenp-C, Mis12, Nnf1a, Nnf1b,

Kmn1/Nsl1, Ndc80, Nuf2, Spc25/Mitch and Spc105R/KNL1), (ii) factors that mediate centriole

duplication (ana2, asl, SAK, Sas-4, Sas-6), and (iii) components of the spindle assembly check-

point (SAC) machinery (Mad1, mad2, Bub1, Bub3, BubR1, Zw10, rod, Zwilch, cmet, nudE).

We examined the SAC genes not only as a term of comparison with centromere/kinetochore

and centriole duplication genes but also to gather information on whether the SAC is compro-

mised in the absence of functional NSL complex. We found that the promoters of all these

genes are bound by at least two components of the NSL complex (Rcd1 and MBD-R2; Table 1

and S3 Table). In addition, interrogation of published datasets [12] revealed that RNAi-

Table 1. (1) Cen, centromere; Kin, kinetochore; SAC, spindle assembly checkpoint; Ced, centriole duplication. (2) ChIP data on Rcd1 and MBD-R2 are from [14];

ChIP data on Nsl1 are from [12]. We did not include Kmn2 in the table because it was not included in the analyses of [14] and [12]. Transcription factor binding to

the gene promoter region is indicated by +; for a quantitative analysis of promoter binding see S3 Table; NA, data not available. (3) Gene expression data are from

[12]. (4) The values reported are the means of a number (indicated between brackets) of independent experiments.

Gene Protein function

(1)

Promoter binding

measured by

ChIP analysis (2)

Expression after

nsl1 RNAi

(% of control)

(3)

Expression after RNAi against the indicated NSL

component

(% of control measured by RT-qPCR) (4)

Rcd1 MBD-R2 Nsl1 Rcd1 Rcd5 MBD-R2 wds
cid Cen + + NA 17.5 50.9 (6) 50.2 (5) 45.7 (5) 73.4 (3)

Cenp-C Cen + + NA 55.6

Mis12 Kin + + NA 6.9 15.4 (2) 26.4 (3) 24.8 (2) 74.5 (3)

Nnf1a Kin + + NA 51.0

Nnf1b Kin + + + 6.1 16.8 (2) 25.8 (3) 24.2 (2) 78.6 (3)

Kmn1 (Nsl1) Kin + + + 45.7

Ndc80 Kin + + + 37.6 81.2 (4) 65.7 (4) 56.1 (3) 86.5 (3)

Nuf2 Kin + + NA 25.4

Spc25 (Mitch) Kin + + NA 43.6 67.2 (6) 75.9 (5) 74.4 (5) 77.2 (3)

Spc105R (KNL1) Kin + + NA 71.1

Mad1 SAC + + + 41.8

mad2 SAC + + NA 36.3

Bub1 SAC + + NA 107.1

Bub3 SAC + + NA 43.4

BubR1 SAC + + + 37.7

Zw10 SAC + + + 83.9

rod SAC + + NA 22.4

Zwilch SAC + + NA 27.2

cmet SAC + + NA 66.1

nudE SAC + + + 89.6

ana2 Ced + + + 32.6

asl Ced + + NA 30.3 39.6 (2) 55.8 (3) 54.3 (2) 103.6 (3)

SAK Ced + + NA 55.1

Sas-4 Ced + + + 26.3 65.8 (2) 65.3 (3) 62.7 (2) 75.4 (3)

Sas-6 Ced + + NA 9.5 31.9 (2) 36.7 (3) 19.6 (2) 79.1 (3)

RpL32 + + NA 101.6 100.0 100.0 100.0 100.0

https://doi.org/10.1371/journal.pgen.1008371.t001
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mediated Nsl1 depletion results in reduced transcription of most of these genes (Table 1).

Among the centromere/kinetochore genes, the strongest reductions in transcription were

observed for Nnf1b, Mis12 and cid, which were transcribed at 6.1%, 6.9% and 17.5% of the con-

trol level, respectively. The genes specifying SAC functions were generally under-transcribed,

with rod and Zwilch showing particularly reduced transcription levels (below 30% the control

level), suggesting the SAC could be partially compromised in cells depleted of the NSL compo-

nents. Finally, all genes required for centriole duplication showed reduced transcription, with

Sas-6, Sas-4 and asl transcripts reduced to 9.5%, 26.3%, and 30.3% of those of controls, respec-

tively (Table 1).

These data prompted us to determine the transcription levels of cid, Ndc80, Nnf1b, Mis12
and Spc25/Mitch in cells depleted of the NSL components. RT-qPCR showed that the tran-

scripts of all these genes are substantially reduced in Rcd1, Rcd5 and MBD-R2 RNAi cells, but

only weakly reduced in wds RNAi cells. In cells depleted of Rcd1, Rcd5 or MBD-R2, the Nnf1b
and Mis12 transcripts were below

30% of the control level, while the cid transcripts were approximately 50% of the control

level; the Spc25/Mitch and Ndc80 transcripts were roughly 70% of those of controls (Table 1).

Importantly, the reductions of the transcript levels detected by RT-qPCR, although quantita-

tively lower, are absolutely proportional to those previously observed by microarray experi-

ments (Table 1 and [12]). The transcription level of Ndc80 detected by RT-qPCR does not

match the strong reduction of the protein seen by Western blotting (Fig 3A). However, it is

possible that this discrepancy is due to the downregulation of Nuf2 transcription (Table 1),

which might affect the quantity of the Ndc80 protein, as Nuf2 and Ndc80 are mutually depen-

dent for their stability [34, 39].

We also determined whether RNAi against Rcd1, Rcd5, MBD-R2 and wds affects the tran-

scription of asl, Sas-4 and Sas-6 (Table 1). Sas-6, SAK and Ana2 form a conserved core module

required for Drosophila centriole duplication [40, 41]. Consistent with the published ChIP

data (Table 1), we found that in Rcd1, Rcd5 and MBD-R2 RNAi cells the Sas-6 transcripts are

substantially reduced compared with controls, ranging from 20% to 37% of the control level

(Table 1). Reductions in the asl and Sas-4 transcripts were less pronounced, ranging from 40–

56% and 63–66% of the control levels, respectively. In wds RNAi cells the abundance of Sas-4
and Sas-6 was slightly reduced while the level of asl transcripts was not affected (Table 1).

Thus, our direct measure of the transcript abundance determined by RT-qPCR is fully consis-

tent with both the published datasets and with our hypothesis that both the centriole duplica-

tion and chromosome segregation phenotypes are caused by reduced transcription of specific

mitotic gene sets.

Discussion

The mitotic defects elicited by depletion of the NSL components are mostly

the consequence of impaired transcription of mitotic genes

The finding that Rcd1, Rcd5, MBD-R2 and Wds exhibit different localization patterns during

mitosis, and yet cause very similar phenotypes when depleted raised the hypothesis that these

proteins regulate mitosis by controlling the transcription of mitotic genes. This hypothesis is

strongly supported by previous [12, 14] and current (see Table 1) findings indicating that

Rcd1, Rcd5 or MBD-R2 depletion results in a substantial downregulation of several genes

involved in centromere/kinetochore assembly and centriole duplication. This hypothesis is

further corroborated by the observation that Wds depletion, which causes a limited reduction

in mitotic gene transcription, also results in a milder mitotic phenotype compared to those

caused by Rcd1, Rcd5 or MBD-R2 deficiency.
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It has been previously shown that the NSL complex specifically binds the promoters of

most housekeeping genes and activates a large subset of these genes. It has been further shown

that subunits of the NSL complex co-localize at promoters of the target genes, and that the

complex acts as a single functional unit [10, 14]. Consistent with these results, we found that

RNAi-mediated silencing of Rcd1, Rcd5 or MBD-R2 results in identical defects in sister chro-

matid separation. These defects lead to PMLES, which have been previously observed in cells

defective in MT-kinetochore interactions [17, 28, 32, 33]. Analysis of published datasets

revealed that transcription of both cid and several kinetochore protein-coding genes is down-

regulated in Nsl1-depleted cells (Table 1; see [12]). Moreover, we showed that in Rcd1, Rcd5
and MBD-R2 RNAi cells the transcription levels of cid, Mis12 and Nnf1b, and to lesser extent,

those of Ndc80 and Spc25/Mitch, are reduced with respect to controls. The same RNAi cells

displayed fewer Cid signals and reduced levels of the Cid and Ndc80 proteins compared to

control. Thus, these results collectively suggest that Rcd1, Rcd5 and MBD-R2 work together in

interphase to regulate proper transcription of multiple genes encoding centromere and kineto-

chore components. We propose that reduced transcription of these genes disrupts proper

kinetochore assembly, impairing kinetochore-MT interaction. There are at least two consider-

ations that support this interpretation. First, there is a clear hierarchy in recruitment of the

kinetochore proteins. Cid is required for recruitment of all kinetochore proteins; localization

of the Mis12 complex (Mis12, Nnf1a, Nnf1b and Knm1) and Spc105R/KNL1 are interdepen-

dent, while recruitment of the Ndc80 complex (Ndc80, Nuf2, Spc25R/Mitch) requires both

Spc105R/KNL1 and the Mis12 complex. Second, even components of the same complex such

as Ndc80 and Nuf2 are mutually dependent for their stability/localization [34–36, 42]. These

complex dependency relationships suggest that even relatively modest reductions in kineto-

chore proteins can generate synthetic effects leading to kinetochore dysfunction.

We have shown that Rcd1 and Rcd5 accumulate at the centrosomes while MBD-R2 locali-

zation is restricted to the chromosomes. Nonetheless, depletion of each of the three NSL com-

ponents leads to a clear defect in centrosome duplication. Thus, it is unlikely that this

centrosomal phenotype is caused by a direct effect of the NSL complex proteins on centrosome

behavior. Here again, the most likely explanation is that defective centrosome duplication is

due to reduced transcription of multiple genes required for proper centriole structure and

duplication, such as ana2, asl, SAK, Sas-4 and Sas-6 [23, 40, 41, 43, 44]. The products of these

genes also show dependencies in their recruitment at centrioles. For example, the SAK kinase

recruits the centriole cartwheel components Sas-6 and Ana2 that are required for recruitment

of Sas-4, which in turn recruits Asl [41, 44], suggesting that multiple, even modest, depletions

of these proteins can impair the centriole duplication machinery. Thus, we propose that the

centrosome duplication phenotype elicited by RNAi against Rcd1, Rcd5 or MBD-R2, is due to

reduced transcription of target genes required for centriole duplication.

Mitotic defects caused by depletion of transcription factors have been previously observed

both in flies and mammals. For example, mutations in genes encoding subunits of the Dro-
sophila TFIIH transcription complex have been previously shown to disrupt mitosis. The

TFIIH holo-complex is comprised of two subcomplexes, a 7-proteins core complex (XPB,

XPD, p62, p52, p44, p34 and p8) and the CAK (Cdk7, CycH and MAT1) complex [45, 46].

Mutations in marionette (mrn) that encodes Drosophila p52 cause defects in mitotic chromo-

some condensation and integrity in larval brains [47]. Recently it has been also shown that

embryos produced by Drosophila females depleted of p8, p52, XPB or Cdk7 often exhibit

mitotic defects; these defects include poorly condensed chromosomes, disorganized spindles,

isolated centrosomes and chromosomes not associated with the spindle. These mitotic aberra-

tions have been attributed to transcriptional downregulation of a set of critical genes.
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Specifically, embryos from p8 mutants showed reduced transcription of 104 genes that encode

factors involved in DNA replication or mitosis [48].

Another interesting example pointing to an involvement of transcription factors in mitotic

regulation is provided by studies on the human MMXD complex, which includes the MIP18,

MMS19 and XPD proteins; XPD is also a component of TFIIH complex and is responsible for

Xeroderma pigmentosum (XP). MMS19 or MIP18 knockdown moderately reduces the XPD

level but does not affect the levels of the other TFIIH subunits, suggesting that the MMXD

complex can function independently of the TFIIH complex. MIP18, MMS19 and XPD localize

to the mitotic spindle of human cells and their siRNA-mediated depletion results in monopo-

lar and multipolar spindles; similar aberrant spindles were also observed in cells from XP

patients [49]. However, the molecular mechanisms leading to this mitotic phenotype are not

fully understood, and both a direct mitotic role of the MMXD complex and possible subtle

defects in global transcription were considered [49]. Strong mitotic defects have also been

observed in human cells upon siRNA-mediated inactivation of ERG, a transcription factor of

the Erg family. However, in this case the mitotic defects have been attributed to failure to

degrade the Aurora A and B mRNAs, and to a consequent excess of these mitotic kinases [50].

Do the NSL components have direct mitotic roles?

While our data suggest that the chromosome segregation and the centrosome duplication phe-

notypes result from reduced transcription of mitotic genes during interphase, the localization

of the NSL proteins to mitotic structures raises the possibility that these proteins might also

play direct roles during cell division. A direct mitotic role of the KANSL complex components

has been suggested in several studies on human cells. In HeLa cells, MCRS1 (Rcd5), KANSL1

(Nsl1/Wah) and KANSL3 (Rcd1/Nsl3) co-localize with the centrosomes at the center of the

asters. KANSL1 and KANSL3 bind the MT minus ends, while MCRS1 does not directly bind

MTs but is recruited at the minus ends by KANSL3 [7, 8]. RNAi-mediated silencing of the

MCRS1, KANSL1 or KANSL3 resulted in very similar phenotypes consisting of misaligned

chromosomes, a prolonged arrest in a prometaphase-like state, often followed by mitotic catas-

trophe [7, 8]. It has been suggested that MCRS1, KANSL1 and KANSL3 stabilize MTs, favor

chromosome-driven MT formation, and promote correct kinetochore fiber dynamics [8].

WDR5, the human orthologue of Wds, has been also implicated in mitosis. WDR5 associates

with the mitotic spindles [9] and is particularly enriched at the midbody dark zone [51]. Most

interestingly, WDR5 depletion results in many cells that are highly reminiscent of the PMLES

observed here. In most WDR5-depleted cells, the chromosomes did not properly align in the

metaphase plate but are dispersed throughout unusually long anaphase-like spindles without

undergoing sister chromatid separation, suggesting a defect in kinetochore-MT connection

[9]. It has been also reported that RNAi-mediated knockdown of WDR5 impairs completion

of cytokinesis leading to multinucleated cells [51].

We have shown that MBD-R2 remains associated with the chromosomes throughout mito-

sis, just like some components of the TFIIH complex that localize to the chromosomes of

dividing nuclei in Drosophila embryos [48]. However, we found that Rcd1 (KANSL3) and

Rcd5 (MCRS1) are enriched at the centrosomes and at the midbodies, with Rcd5 accumulating

in the midbody dark zone and Rcd1 excluded from this region but enriched at its sides. Finally,

we showed that during mitosis Wds remains associated with a specific chromosome region

that is likely to correspond to the nucleolus organizer; in addition, it accumulates at the centro-

somes, the kinetochores and the midbody dark zone. These results raise the question of

whether the accumulations of Rcd1, Rcd5 and Wds at the centrosomes/asters and the midbody

reflect direct roles of these proteins during mitosis. It is unlikely that Rcd1, Rcd5 or Wds
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localization at the centrosomes is related to centrosome duplication, because defects in this

process have been also observed in cells depleted of MBD-R2, which fails to accumulate at the

centrosomes. It is also unlikely that these three proteins are required for aster formation, as in

Rcd1-, Rcd5- or Wds-depleted cells these structures are morphologically normal. Postulating

centrosomal functions for Rcd1, Rcd5 or Wds is extremely difficult because the centrosomes

contain hundreds of proteins that do not appear to serve canonical centrosome functions, and

it remains to be determined whether these proteins fulfill centrosome-related regulatory func-

tions [52, 53]. Postulating direct roles of Rcd1, Rcd5 and Wds at the midbody is even more dif-

ficult. Their enrichment at the midbody suggests an involvement in cytokinesis. However, we

did not notice any significant increase in the frequency of binucleated cells after Rcd1, Rcd5 or

wds RNAi, and none of these genes was detected in genome-wide RNAi-based screens aimed

at identifying Drosophila genes required for cytokinesis [54, 55]. Moreover, proteomic analyses

have shown that the midbody contains many proteins with no obvious roles in the execution

of cytokinesis, and it is currently unknown whether they regulate some aspects of the process

[56].

Studies on the human homologues of Rcd1, Rcd5 and Wds have shown that depletion of

these proteins leads to chromosome segregation defects reminiscent of those observed in Dro-
sophila cells [7, 8, 9]. These studies did not address the roles of Rcd1, Rcd5 and Wds on centro-

some duplication and did not check whether their depletion leads to a reduced transcription

of critical mitotic genes. However, it has been reported that KANSL3 (Rcd1) and MCRS1

(Rcd5) bind to MTs and physically interact with the TPX2 and MCAK spindle proteins, sug-

gesting a direct participation of both KANSL components in the mitotic process [7, 8]. It has

been also shown that WDR5 (Wds) interacts with the mitotic kinesin Kif2A and with the MLL

complex that binds to MTs and regulates spindle assembly and chromosome segregation [9].

Although these findings do not exclude that downregulation of KANSL3, MCRS1 and WDR5

lowers the expression of a number of mitotic genes, they suggest that these KANSL subunits

play direct mitotic roles. Likewise, we cannot exclude that Rcd1, Rcd5, MBD-R2 and Wds

have some minor direct roles in chromosome segregation in Drosophila S2 cells. We have

shown that Wds localizes to the kinetochores and it is possible that also small, cytologically

undetectable, amounts of Rcd1, Rcd5, and MBD-R2 localize and function at kinetochores.

The human WDR5 protein localizes to dark zone of the midbody and is required for abscis-

sion during cytokinesis [51]. It is conceivable that Rcd1, Rcd5 and Wds play some functions in

cytokinesis, and that these functions cannot be detected because they are masked by the chro-

mosome segregation phenotype leading to PMLES. Alternatively, Rcd1, Rcd5 and Wds might

play roles in cytokinesis that do not lead to a complete failure of the process; for example, they

could regulate the timing of the events underlying cytokinesis either in its early or late stages,

such as central spindle assembly and MT severing during abscission.

In conclusion, our data suggest that depletion of components of the NSL complex nega-

tively affects centriole duplication and kinetochore assembly through downregulation of genes

required for these processes. However, we have also shown that Rcd1, Rcd5 and Wds accumu-

late at the centrosomes and the midbody suggesting possible moonlighting functions for these

proteins during mitosis. It is generally accepted that protein moonlighting occurred through

the gradual transition from the original function to a novel function, an evolutionary process

that involves the coexistence of two functions in the same protein. Because these functions

should not be conflicting it has been also posited that evolution of moonlighting functions is

favored when they are exerted in different cellular compartments [57, 58]. The components of

the conserved NSL/KANSL complex are therefore in a very favorable situation to evolve sec-

ondary mitotic functions, as transcription is strongly reduced during cell division [59, 60]. In

both Drosophila and human cells, the NSL/KANSL components appear to localize to mitotic

The NSL complex is required for Drosophila mitosis

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008371 September 17, 2019 19 / 29

https://doi.org/10.1371/journal.pgen.1008371


structures. However, the localizations and functions of the NSL subunits are not identical to

those of their KANSL counterparts. We would like to speculate that the components of the

KANSL and NSL complexes are both evolving towards the acquisition of direct mitotic func-

tions. However, while in human cells the functions of these proteins are integral to the mitotic

process, in Drosophila they are not yet essential for mitosis. Although, further analyses are

required to compare the mitotic functions of the KANSL and NSL complexes, the current

results suggest their components are evolving secondary mitotic functions that are partially

different.

Materials and methods

dsRNA production

All DNA templates for synthesis of dsRNAs specific to the CS or the UTRs of the MBD-R2,

Rcd1, Rcd5 and wds genes were amplified by PCR from a pool of cDNAs obtained from ovaries

of 3-day-old wild-type females and from 0–2 hour wild-type embryos (for the primer

sequences used, see S1 Table). The PCR products were purified using spin columns (BioSilica;

http://biosilica.ru/). Synthesis of dsRNAs was done as described earlier [61], with the following

minor modifications. Heating of the synthesized dsRNAs to 65˚C and the subsequent slow

cooling to room temperature were done before treatment with DNaseI; also, the phenol/chlo-

roform extraction was omitted.

RNAi treatments

S2 cells free from mycoplasma contamination were cultured in 39.4 g/L Shields and Sang M3

Insect medium (Sigma) supplemented with 0.5 g/L KHCO3 and 20% heat-inactivated fetal

bovine serum (FBS) (Thermo Fisher Scientific) at 25˚C. S2 cells expressing GFP-tagged pro-

teins were cultured in 39.4 g/L Shields and Sang M3 Insect medium supplemented with 2.5 g/L

bacto peptone (Difco), 1 g/L yeast extract (Difco) and 5% heat-inactivated FBS at 25˚C. RNAi

treatments were carried out as follows. 1×106 cells were plated in 1 ml of serum-free medium

in a well of a six-well culture dish (TPP) and 30 μg of CS dsRNA or 40 μg of UTR dsRNA (S1

Table) was added to each well. After a 1 hour incubation, 2 ml of the medium supplemented

with 20% or 5% heat-inactivated FBS was added to each well and cells were grown for 3 days.

After that, the second dose of the same dsRNA (30 μg of CS dsRNA or 40 μg of UTR dsRNA)

was added to each sample and cells were grown for 2 additional days. In the case of the rescue

experiments shown in S2 Table, together with the second dose of dsRNA, we added CuSO4 to

the final concentration of 0.1 mM in the medium. Control S2 cell samples were prepared in

the same way, but without addition of dsRNA.

Reverse transcription and quantitative PCR

Gene-specific primers were designed by using Primer-BLAST (https://www.ncbi.nlm.nih.gov/

tools/primer-blast/) or Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/) software; primer

sequences are provided in S4 Table. For each primer pair, the efficiency was determined by

construction of a standard curve using dilutions of the cDNA prepared from S2 cells according

to [62] (S4 Table). Total RNA was isolated from control and dsRNA-treated S2 cells using

RNAzol RT reagent (MRC) according to the manufacturer’s instructions. Genomic DNA was

eliminated using the RapidOut DNA Removal Kit (Thermo Fisher Scientific). Reverse tran-

scription was performed with the RevertAid reverse transcriptase (Thermo Fisher Scientific)

using 2 μg of total RNA in the presence of 2 U/μl of RNaseOut Recombinant RNase Inhibitor

(Thermo Fisher Scientific). qPCR was carried out using BioMaster HS-qPCR SYBR Blue (2×)
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reagent kit (Biolabmix; http://biolabmix.ru/en/) and CFX96 Real-Time PCR Detection System

(Bio-Rad). We used the following thermal cycling conditions: 5 minutes at 95˚C, followed by

39 cycles of 15 seconds at 95˚C, 30 seconds at 60˚C, and 30 seconds at 72˚C. Data were col-

lected during each extension phase. Negative control templates (water and cDNA synthesized

without reverse transcriptase) were included in each run. Measurements of gene expression

were done at least in two biological replicates, each with three (or, in the case of the negative

controls, in two) technical replicates. The relative mRNA quantification was determined using

the ΔΔCq method. mRNA expression levels were normalized to those of the housekeeping

gene RpL32.

Generation of polyclonal antibody against Rcd1

A 488-aa portion of Rcd1 (corresponding to amino acids 133–620 of GenPept accession no.

NP_610927.3) was expressed as GST-fusion in E.coli and subsequently purified as described in

[63]. The purified GST-Rcd1 fusion protein was used to immunize mice. Immunization was

performed at the Center for Genetic Resources of Laboratory Animals, Institute of Cytology

and Genetics SB RAS. Polyclonal antibodies were affinity purified from serum as reported pre-

viously [63].

Western blotting

S2 cells were collected by centrifugation and pellets were lysed in either RIPA buffer (Sigma)

containing 1× Halt Protease and Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific) or

in lysis buffer (50 mM Hepes-KOH pH 7.6, 1 mM MgCl2, 1 mM EGTA, 1% Triton X-100, 45

mM NaF, 45 mM β-glycerophosphate, 0.2 mM Na3VO4) in the presence of a cocktail of prote-

ase inhibitors (Roche). Cell extracts were pelleted at 15,000g for 15 minutes at 4˚C and the

supernatants were analyzed by Western blotting. Lysates were run on an 8% or a 10%

SDS-PAGE and transferred to an Amersham Protran Supported 0.45 μm Nitrocellulose Blot-

ting Membrane (GE Healthcare) by wet or semi-dry transfer. Membranes were blocked for 30

minutes in 2% dry milk in PBT (PBS with 0.1% TritonX-100). Membranes were incubated

overnight using following primary antibodies: mouse anti-Rcd1 (1:500, this study), rabbit anti-

MBD-R2 (1:1000, Novus Biologicals 49940002), rabbit anti-Wds (1:1000, Novus Biologicals

40630002), rabbit anti-Ndc80 (1:1000; a gift of M. Goldberg, Cornell University), rabbit anti-

Cid (1:500; Active Motif 39713), mouse anti-α-tubulin (1:5000, Sigma T6199), rabbit anti-

beta-actin, (1:1000, Invitrogen PA5-16914), mouse anti-Lamin Dm0 (1:3500, Developmental

Studies Hybridoma Bank ADL67.10) and mouse anti-β-actin-HRP-conjugated (1:5000, Santa

Cruz Biotechnology sc-47778 HRP). The non-HRP-conjugated primary antibodies were

detected with HRP-conjugated anti-mouse or anti-rabbit IgGs, using either the ECL detection

kit (GE Healthcare) or the Novex ECL Chemiluminescent Substrate Reagent Kit (Thermo

Fisher Scientific) following the manufacturer’s protocols.

Generation of S2 cells expressing GFP-tagged proteins

Full-length CS of MBD-R2 (nucleotides (NTs) 123–3629, GenBank accession no.

NM_169461.3, but with 1433T>C, 1436G>C and 1893G>A NT substitutions), Rcd1 (NTs

295–3492, GenBank accession no. NM_137083.4), Rcd5 (NTs 101–1834, GenBank accession

no. NM_139595.3, but with 748C>A NT substitution), wds (NTs 300–1382, GenBank acces-

sion no. NM_080245.5, but with 698T>C and 827C>T NT substitutions) and asl (NTs 98–

3079, GenBank accession no. NM_141300.2, but with 376C>G, 2046A>G, 2872C>T and

3041A>G NT substitutions) were cloned in a piggyBac transposon-based plasmid vector

upstream of and in frame with the enhanced GFP (for simplicity, referred to as GFP) CS. The
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plasmids also contained a blasticidin-resistance cassette and the sequence encoding mCherry-

αTub84B (Cherry-tubulin) fluorescent fusion protein. The expression of all fluorescent fusion

proteins is under the control of the copper-inducible MtnA promoter. S2 cells co-transfected

with a plasmid encoding the fluorescent fusion proteins and a plasmid encoding piggyBac

transposase were cultured in 39.4 g/L Shields and Sang M3 Insect medium supplemented with

2.5 g/L bacto peptone, 1 g/L yeast extract, 5% heat-inactivated FBS and 20 μg/ml blasticidin

(Sigma) for two weeks at 25˚C. The antibiotic was then removed from the culture medium. All

cells were free from mycoplasma contamination. To induce expression of fluorescent fusion

proteins, cells were grown in the presence of different CuSO4 concentrations (0.1, 0.25, 0.4 or

0.5 mM) for 12–14 hours before in vivo analysis or fixation.

Immunofluorescence staining

All procedures were performed at room temperature. 2×106 S2 cells were centrifuged at 800g
for 5 minutes, washed in 2 ml of PBS (Sigma), and fixed for 10 minutes in 2 ml of 3.7% formal-

dehyde in PBS. Fixed cells were spun down by centrifugation, resuspended in 500 μl of PBS

and placed onto a clean slide using Cytospin 4 cytocentrifuge (Thermo Fisher Scientific) at

900 rpm for 4 minutes. The slides were immersed in liquid nitrogen, washed in PBS, incubated

in PBT (PBS with 0.1% TritonX-100) for 30 minutes and then in PBS containing 3% BSA for

30 minutes. The slides were then immunostained using the following primary antibodies, all

diluted in PBT: mouse anti-α-tubulin (1:500, Sigma T6199), rabbit anti-Spd-2 (1:4,000, [21]),

rabbit anti-Cid (1:300, Abcam ab10887), rabbit anti-CycB (1:100, [64]), and mouse anti-Rcd1

(1:50, this study). Primary antibodies were detected by incubation for 1 hour with goat FITC-

conjugated anti-mouse IgG (1: 30, Sigma F8264) or goat Alexa Fluor 568-conjugated anti-rab-

bit IgG (1: 350, Invitrogen A11077).

In the attempt to stain GFP-tagged proteins with anti-GFP antibodies, cells expressing

these proteins were collected as described above, and fixed (i) for 10 minutes in 2 ml of 3.7%

formaldehyde in PBS or (ii) for 15 minutes in 4% paraformaldehyde in PBS, or (iii) for 10 min-

utes with 8% formaldehyde (methanol-containing) in PBS (Sigma). The slides obtained as

described above were then stained with mouse anti-α-tubulin (1:500, Sigma T6199) and either

with rabbit anti-GFP (1:200, Invitrogen A11122) or chicken anti-GFP (1:200, Invitrogen PA1-

9533), which were detected by Alexa Fluor 568-conjugated goat anti-mouse IgG (1:300, Invi-

trogen A11031), Alexa Fluor 488-conjugated goat anti-rabbit IgG (1:300, Invitrogen A11034)

or Alexa Fluor 488-conjugated goat anti-chicken IgG (1:300, Invitrogen A11039), respectively.

These procedures stained the interphase nuclei but did not result in clear immunostaining of

the spindle-associated GFP-tagged proteins.

All slides were mounted in Vectashield antifade mounting medium with DAPI (Vector

Laboratories) to stain DNA and reduce fluorescence fading. Images were obtained on ZeissAx-

ioImager.M2 using an oil immersion EC Plan-Neofluar 100x/1.30 lens (Carl Zeiss) and cap-

tured by 506 mono (D) High Performance camera (Carl Zeiss).

Measurement of the spindle length

The spindle length in S2 cells was measured with the ZEN 2012 (Carl Zeiss) software, using the

“Spline curve” tool and measure function. We considered only cells that did not appear to be

polyploid with respect to the basic karyotype of S2 cells. To measure the spindle length in cells

at different mitotic stages we drew a freehand line between the two poles along the spindle

axis. The data obtained for each spindle type (prometaphase/metaphase; anaphase, telophase

and PMLES) were compared using the Wilcoxon Signed-Rank Test and plotted using the Box-

PlotR program (http://shiny.chemgrid.org/boxplotr/).
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Live cell imaging

Cells carrying a transgenic construct encoding Cherry-tubulin and either MBD-R2-GFP, Rcd1-

GFP, Rcd5-GFP or Wds-GFP were grown for 12–14 hours in the presence of different concentra-

tions of CuSO4 (0.1, 0.25, 0.4 or 0.5 mM). 500 μl aliquots of cell suspensions (5×105 cells/ml) were

then transferred to cell chambers (Invitrogen A-7816) containing coverslips treated with 0.25 mg/

ml concanavalin A (Sigma-Aldrich C0412) placed on the bottom of the chambers. Observations

were performed between 20 and 120 minutes after cell plating in the chamber at a Zeiss LSM 710

confocal microscope, using an oil immersion 100×/1.40 plan-apo lens and the ZEN 2012 software.

Analysis of previously reported ChIP and RNA profiling datasets

To estimate the promoter binding by Rcd1/Nsl3 and MBD-R2, we first calculated the genome-

wide distributions of these proteins. BAM files with Illumina sequencing reads obtained in

ChIP-seq profiling of Rcd1 and MBD-R2 (and the corresponding Input) in S2 cells aligned to

the Drosophila melanogaster genome release 5 (dm3) [14] were downloaded from ArrayEx-

press (https://www.ebi.ac.uk/arrayexpress/) (accession number: E-MTAB-1085). The data

were transformed to the BED format using convert2bed in BEDOPS toolkit (version 2.4.35)

(http://bedops.readthedocs.io/en/latest/index.html) [65] and genomic positions of aligned

reads were converted to Drosophila melanogaster genome release 6 (dm6) using UCSC Lift-

Over tool (http://genome.ucsc.edu/cgi-bin/hgLiftOver). Next, we divided the genome (only

sequences of chromosomes X, 2L, 2R, 3L, 3R and 4 were taken for the analysis) into bins of

equal size (100 bp) and counted the number of reads in each bin. Then, we converted the

counts in reads per million (RPM) values and calculated log2-transformed MBD-R2/Input and

Rcd1/Input ChIP-seq ratios. Only bins with finite values were used for the further analysis

(1,124,416 bins for log2(MBD-R2/Input) and 1,125,776 bins for log2(Rcd1/Input)).

To estimate the promoter binding by Nsl1 we first calculated the genome-wide distribution

of the protein. Scaled log2(ChIP/Input) microarray-based data for two replicates of Nsl1 in S2

cells [12] were downloaded from GEO (https://www.ncbi.nlm.nih.gov/geo/) (accession num-

ber: GSE30991). Genomic positions of ChIP microarray probes were converted from Drosoph-
ila melanogaster genome release 4 (dm2) to 6 (dm6) using FlyBase Drosophila Sequence

Coordinates Converter (http://flybase.org/convert/coordinates) and the log2(ChIP/Input)

ratios from the replicates were averaged.

We next retrieved gene annotation data from Ensembl BioMart release 91 (http://www.

ensembl.org/index.html). Promoters were arbitrary defined as gene regions spanning from

-1000 to +101 bp relative to the transcription start sites (TSS). To measure the levels of Rcd1,

MBD-R2 and Nsl1 binding to promoters, we identified all 100-bins (in the case of Rcd1 and

MBD-R2) or microarray probes (in the case of Nsl1) that overlap with each promoter by 1 bp

or more. Then, for each promoter, we averaged the log2 ChIP values of such bins or microarray

probes. If there were more than one TSS for a gene, their log2 ChIP values were averaged as

well. The exact values obtained are reported in S1 Table; in Table 1 we indicate with a “+” sym-

bol all promoters that are enriched in Rcd1, MBD-R2 or Nsl1 ChIP samples compared to the

rest of the genome (in nearly all cases, the promoter sequences analyzed are within the 5% of

the most Rcd1-, MBD-R2- or Nsl1-enriched genomic sequences).

To measure the effects of Nsl1 deficiency on gene expression, normalized log2-transformed

microarray-based data for gene expression in GST-RNAi (control; in three replicates) or nsl1
RNAi (in two replicates) S2 cells [12] were downloaded from GEO (accession number:

GSE30991) and the replicates were averaged. Next, we identified microarray probes that

belong to each gene, averaged their values, and calculated the percentage of gene expression in

Nsl1-depleted cells compared to control.
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Supporting information

S1 Fig. Examples of mitotic figures in control, Rcd1 RNAi, Rcd5 RNAi and MBD-R2 RNAi

cells. Cells were stained for DNA (DAPI, blue) and α-tubulin (green). (A) metaphases; (B)

PMLES with arched anaphase-like spindles; (C) PMLES with particularly elongated spindles;

the cell on the bottom has decondensed chromosomes; (D) PMLES with telophase-like spin-

dles. Scale bars, 5 μm.

(TIF)

S2 Fig. Western blotting analysis of the levels of CuSO4-induced Rcd1-GFP, MBD-R2 GFP

and Wds-GFP. (A) Representative Western blots showing that after induction with 0.1, 0.25

or 0.5 mM CuSO4, the ratios between the MBD-R2-GFP and endogenous MBD-R2 are 0.8, 1.7

and 2.0 (means from 3 different experiments), respectively. Ctr is a cell line that does not carry

the MBD-R2-GFP construct, and RNAi is a Ctr line treated with MBD-R2 dsRNA. Tubulin

and Lamin Dm0 are loading controls. (B) Representative Western blots showing that after

induction with 0.1, 0.25 or 0.5 mM CuSO4, the Rcd1-GFP levels are 1.4-, 2.5- and 3.9-fold

(means from 3 different experiments) higher than that of endogenous Rcd1, respectively. Ctr

is a cell line that does not carry the Rcd1-GFP construct, and RNAi is a Ctr line treated with

Rcd1 dsRNA. Tubulin is a loading control. A single asterisk designates an apparent Rcd1-GFP

degradation band; two asterisks designate an aspecific band. (C) Representative Western blots

showing that Wds-GFP expression after induction with 0.1, 0.25 or 0.5 mM CuSO4 is substan-

tially higher than that of the endogenous protein (2.7-, 3.9- and 3.9-fold, respectively; means

from 3 different experiments). Ctr is a cells line that does not carry the Wds-GFP construct,

and RNAi is a Ctr line treated with wds dsRNA. Tubulin was used as a loading control. The

asterisk designates an apparent degradation band, which is consistently observed in all experi-

ments.

(TIF)

S3 Fig. Formaldehyde-based fixation disrupts accumulation of some but not all GFP-tagged

NSL subunits on mitotic structures. Cells were stained for DNA (DAPI, blue), and with anti-

GFP (green) and anti-α-tubulin antibodies (red). (A) Localization patterns of the indicated

GFP-tagged proteins in live cells (between brackets) and fixed cells (no brackets). +, protein

accumulation;–absence of accumulation; +� enrichment limited to a specific chromosomal

region (see panel E). Nucl., nucleus; Centros., centrosomes; Chrom., chromosomes; Kinetoch.,

kinetochores. (B) Examples of fixed Rcd1-GFP-expressing cells that fail to accumulate the

tagged protein at the centrosomes and the midbody. (C) Examples of fixed Rcd5-GFP-express-

ing cells showing no centrosomal or midbody enrichments of the tagged protein. (D) Examples

of fixed MBD-R2-GFP-expressing cells showing a clear association of the tagged protein with

the chromosomes. (E) Examples of fixed Wds-GFP-expressing cells showing accumulations of

the tagged protein in a discrete chromosomal region and in the dark zone of the midbody.

(TIF)

S1 Table. dsRNAs used for RNA interference.

(DOCX)

S2 Table. Expression of GFP-tagged NSL proteins rescues the mitotic phenotypes elicited

by RNAi-mediated depletion of their endogenous untagged counterparts.

(DOCX)

S3 Table. DNA sequences of mitotic gene promoters in S2 cells are enriched in Rcd1,

MBD-R2 and Nsl1 in ChIP samples relative to other genomic DNA sequences.

(DOCX)
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S4 Table. Primers used for RT-qPCR.

(DOCX)

S1 Data. Underlying data for Fig 1G. Spd-2 fluorescence intensity of prometaphase and

metaphase centrosomes.

(XLSX)

S2 Data. Underlying data for Fig 2D and 2E. Spindle lengths of prometaphases/metaphases,

anaphases, telophases and PMLES in mock-treated, Rcd1 RNAi, Rcd5 RNAi, MBD-R2 RNAi

and wds RNAi cells. Prometa, prometaphases; Meta, metaphases; Ana, anaphases; Telo, telo-

phases. In the RNAi cells, anaphases are very rare and were not taken into account.

(XLSX)

S3 Data. Underlying data for Fig 3A. Band intensity quantification relative to the control and

normalized to the loading controls (actin or tubulin) from 3 or more independent experiments

carried out on Rcd1, Rcd5, MBD-R2 and wds RNAi cells to evaluate the Cid and Ndc80 levels.

(XLSX)

S4 Data. Underlying data for S2 Fig. Band intensity ratios between the indicated GFP-tagged

proteins and their endogenous untagged counterparts detected with specific antibodies after

induction with 0.1, 0.25, or 0.5 mM copper sulfate.

(XLSX)
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