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Sulforaphane protects intestinal epithelial cells against lipopolysaccharide- 
induced injury by activating the AMPK/SIRT1/PGC-1ɑ pathway
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ABSTRACT
The naturally occurring isothiocyanate sulforaphane, found in vegetables, shows promising anti- 
inflammatory, anti-apoptosis, and anti-oxidative effects. Whether sulforaphane protects against 
lipopolysaccharide (LPS)-induced injury in intestinal epithelial cells is unclear. The present study 
examines the ability of sulforaphane to protect Caco-2 cultures from LPS-induced injury, as well as 
the mechanism involved. Caco-2 cells were incubated for 24 h with 1 μg/mL LPS and different 
concentrations of sulforaphane (0.1–10 μM). Then, various indicators of oxidative stress, inflam-
mation, apoptosis, and intestinal permeability were assayed. Sulforaphane increased cell viability 
and reduced lactate dehydrogenase activity in LPS-treated Caco-2 cells in a concentration- 
dependent manner. Sulforaphane weakened LPS-induced increases in intestinal epithelial cell 
permeability and oxidative stress (based on assays of reactive oxygen species, DMA, and H2O2), 
and it increased levels of antioxidants (SOD, GPx, CAT and T-AOC). At the same time, sulforaphane 
weakened the ability of LPS to induce production of inflammatory cytokines (IL-1β, IL-6, IL-8 and 
TNF-α) and the pro-apoptotic caspases-3 and −9. Sulforaphane also upregulated p-AMPK, SIRT1, 
and PGC-1ɑ, whose inhibitors antagonized the compound’s protective effects. Sulforaphane can 
protect intestinal epithelial cells against LPS-induced changes in intestinal permeability, oxidative 
stress, inflammation, and apoptosis. It appears to act by activating the AMPK/SIRT1/PGC-1ɑ 
pathway. The drug therefore shows potential for preventing LPS-induced intestinal injury.
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Introduction

Intestinal epithelial cells (IECs) are an important 
component of the epithelial barrier, which helps 
prevent the passage of pathogens, toxins, and aller-
gens from the gastrointestinal lumen into the cir-
culatory system [1,2]. Destruction of the intestinal 
barrier increases intestinal permeability, destroys 
homeostasis of the immune system, and induces 
inflammatory responses and oxidative stress. This 
can lead to disorders such as inflammatory bowel 
disease [3], which is characterized by decreased 
cell proliferation but increased levels of inflamma-
tory cytokines, oxidative stress, and IEC apoptosis 
[4–6]. Thus, decreasing inflammatory cytokine 
levels, oxidative stress, and cell apoptosis may 
help preserve the intestinal epithelial barrier and 
mitigate inflammatory bowel disease.

In addition to acting as a physical barrier to 
pathogens, IECs produce mucins, cytokines, and 
chemokines that prevent harmful microorganisms 
from invading and colonizing the gut [7]. 
Pathogen-associated molecular patterns such as 
lipopolysaccharide (LPS) suppress adenosine 
monophosphate protein kinase (AMPK) signaling 
in IECs, which activates Toll-like receptors, result-
ing in the production of pro-inflammatory cyto-
kines, oxidative stress, and cell apoptosis [8,9]. The 
signaling cascade mediated by AMPK, silent infor-
mation regulator 1 (SIRT1), and peroxisome pro-
liferator-activated receptor gamma coactivator 
1-alpha (PGC-1α) can inhibit production of reac-
tive oxygen species (ROS) and inflammatory cyto-
kines. Thus, activating the cascade may be an 
effective therapy against inflammatory bowel dis-
ease [10,11].

The isothiocyanate sulforaphane can prevent 
the progression of several diseases by activating 
AMPK or SIRT1-mediated signaling transduction 
[12,13]. The compound exerts anti-inflammatory, 
anti-oxidative, and anti-apoptotic effects in many 
tissues [14–16]. Sulforaphane can also protect 
against IEC injury caused by LPS [17,18], but 
whether this protection involves the activation of 
AMPK/SIRT1/PGC-1α signaling is unclear.

The present study examines whether sulfora-
phane can mitigate LPS-induced IEC damage 
using cultures of human colonic epithelial cells 
(Caco-2) as an in vitro model. Our experiments 

also explored whether the effects of sulforaphane 
on Caco-2 cells involve AMPK/SIRT1/PGC-1α 
signaling.

Materials and methods

Reagents

Sulforaphane, the AMPK inhibitor STO-609, the 
SIRT1 inhibitor EX527, the PGC-1α inhibitor SR- 
18,292, and LPS were obtained from Sigma 
(St. Louis, MO, USA). Fluorescein isothiocyanate- 
dextran (FITC-D4), 2´,7´-dichlorofluorescein dia-
cetate (DCFH-DA), and mitoSox red mitochon-
drial superoxide indicators were obtained from 
Gibco (Grand Island, NY, USA). Enzyme-linked 
immunosorbent assays were purchased from 
Shanghai Enzyme-linked Biotechnology 
(Shanghai, China) to determine levels of malon-
dialdehyde (MDA), H2O2, superoxide dismutase 
(SOD), glutathione peroxidase (GPx), catalase 
(CAT), total antioxidative capacity (T-AOC), 
interleukin-1β (IL-1β), interleukin-6 (IL-6), inter-
leukin-8 (IL-8), and tumor necrosis factor alpha 
(TNF-α). CCK-8 kit was purchased from 
eBioscience (Bender MedSystems, Vienna, 
Austria). Antibodies against AMPK, phospho- 
AMPK (p-AMPK), SIRT1, or PGC-1α were 
obtained from Abcam (Cambridge, UK).

Cell culture and treatment

Caco-2 cells (American Type Culture Collection, 
Manassas, VA, USA) were maintained in 
Dulbecco’s modified Eagle’s medium (DMEM) 
supplemented with 10% fetal bovine serum at 
37°C in an atmosphere of 5% CO2 in saturated 
humidity. The medium was changed every 2– 
3 days. Cells were treated for 24 h with LPS 
(1 μg/mL) and sulforaphane at final concentra-
tions of 0.1–10 μM. In some experiments, the 
cells were pre-incubated for 4 h with 2 μM STO- 
609, EX527, or SR-18,292.

CCK-8 assay

Caco-2 cells were grown in 96-well culture plates 
and treated as described in the previous subsec-
tion. Then, 10 μL of CCK-8 reagent was added to 
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each well and plates were incubated for 1 h at 37°C 
under saturated humidity with 5% CO2. The opti-
cal density (OD) at 450 nm was measured using 
a microplate reader (Bio-Rad, Hercules, CA, USA). 
Relative cell viability (%) was defined as 
ODexperiment/ODcontrol × 100%.

In parallel, cell viability was assayed in terms of 
lactate dehydrogenase (LDH) activity. Caco-2 cells 
were grown in 96-well culture plates, treated as 
described in the previous subsection; then, LDH 
in the medium was assayed using LDH 
Cytotoxicity Assay Kit (Beyotime, Shanghai, 
China). The OD value at 450 nm was measured 
using a microplate reader.

Monolayer barrier function

Monolayer barrier function was assayed as 
described [19]. Caco-2 cells (2.0 × 105 cells/well) 
were seeded into a 24-well Transwell@ plate 
(Corning, NY, USA). The medium was changed 
every day, and when cultures were carried on day 
7, the transepithelial electrical resistance (TEER) 
was nearly 150 Ω•cm2. Thus, we continued to 
culture the cells for another 7 days when the 
average TEER value was more than 400 Ω•cm2. 
The cultures were then treated with LPS and sul-
foraphane for 24 h. Next, FITC-D4 was added into 
the apical chamber and the plate was incubated for 
2 h. Medium (50 μL) was recovered from the 
bottom chamber and added to a plate for fluores-
cence measurement using an excitation wave-
length of 485 nm and emission wavelength of 
530 nm.

ROS

Intracellular ROS levels were assayed using 
DCFH-DA as described [20]. Briefly, 10 μM of 
DCFH-DA in DMEM medium was added into 
each well, and the plate was incubated for 30 min 
at 37°C in an atmosphere of 5% CO2 in saturated 
humidity. Cells were rinsed three times with phos-
phate-buffered saline (PBS), then resuspended in 
PBS. For each sample, the fluorescence intensity of 
>104 cells was measured at an excitation wave-
length of 504 nm and an emission wavelength of 
529 nm using a FACSVerse flow cytometer (BD, 
NY, USA).

Mitochondrial ROS levels were determined 
using MitoSox red mitochondrial superoxide indi-
cator as described [21]. Briefly, Caco-2 cells were 
rinsed three times in PBS, then plated into wells 
containing DMEM supplemented with indicator at 
a final concentration of 4 mM, and plates were 
incubated for 20 min at 37°C in an atmosphere of 
5% CO2 in saturated humidity. Cells were again 
rinsed in PBS three times, resuspended in PBS, 
and the fluorescence intensity of >104 cells was 
measured at an excitation wavelength of 510 nm 
and emission wavelength of 580 nm using 
a FACSVerse flow cytometer.

Oxidative stress and inflammation

After the Caco-2 cells were treated as described in 
the ‘Cell culture’ subsection, cells were lysed in 
RIPA buffer (Sigma–Aldrich) on ice for 15 min, 
then centrifuged at 3.8 × 106 g for 12 min at 4°C, 
and the supernatant was recovered. Protein con-
centration in the supernatant was measured using 
a BCA Protein Assay Kit (Sigma–Aldrich). MDA, 
H2O2, SOD, GPx, CAT, and T-AOC were assayed 
using commercial enzyme-linked immunosorbent 
assay kits according to the manufacturer’s direc-
tions. Similarly, levels of the inflammatory cyto-
kines IL-1β, IL-6, IL-8 and TNF-α were assayed 
using commercial enzyme-linked immunosorbent 
assay kits according to the manufacturer’s 
directions.

Caspase activity

Supernatants prepared as described in the previous 
subsection were assayed for activity of caspases-3 
and −9 using commercial enzyme-linked immu-
nosorbent assay kits according to the manufac-
turer’s directions.

Quantitative reverse transcription-polymerase 
chain reaction (qRT-PCR)

Total RNA was extracted using Trizol reagent 
(Sigma–Aldrich). Single-step cDNA synthesis was 
carried out using the Mir-XTM miRNA First 
Strand Synthesis Kit (Sigma–Aldrich, St. Louis, 
MO, USA). Then, 2 μL of cDNA that had been 
diluted by 1:20 (v/v) was used as template in RT- 
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PCR on a Mx3000 P system (Stratagene, California, 
USA). The following primers were used:

caspase-3 forward, 5´- 
ACGCTAAGCTGGGCCCAGTGTTGTACG-3´;

caspase-3 reverse, 5´- 
GTCAAGCCGGATTTGGCTGAAGCTGAG-3´;

caspase-9 forward, 5´- 
CCTTGAGTGCATGTAGGCATAATC-3´;

caspase-9 reverse, 5´- 
CTGGAATGCGTCCTGAAAGTCGATA-3´;

β-actin forward, 5´- 
GCTTAAGTCGTCCTGATCACTGA-3´;

β-actin reverse, 5´- 
ACCTGTGTCGTAGCTAGTGCGC-3´.

Transcript levels were expressed relatively to 
those of β-actin using the 2−ΔΔCt method.

Western blotting

Caco-2 cells were lysed in RIPA buffer (Sigma– 
Aldrich) on ice for 15 min. Cell homogenates were 
centrifuged at 3.8 × 106 g for 12 min at 4°C; then, 
the supernatant was recovered and quantified for 
protein using a BCA Protein Assay Kit (Sigma– 
Aldrich). Proteins (50 g) were fractionated using 
10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis and transferred onto nitrocellulose 
membranes. Nonspecific binding sites on the 
membrane were blocked with 5% skim milk for 
1.5 h at room temperature in a thermostatic incu-
bator. Then blots were then incubated overnight at 
4°C with monoclonal antibodies (all diluted 
1:1000; Abcam, Cambridge, UK) against the fol-
lowing proteins: AMPK (ab32047), p-AMPK 
(ab133448), SIRT1 (ab189494), PGC-1ɑ 
(ab176328), and β-actin (ab8226). Subsequently, 
blots were washed three times with PBS-Tween 
20, then incubated for 2 h at room temperature 
with horseradish peroxidase-conjugated goat anti- 
rabbit antibody (diluted 1:4000). Proteins were 
detected using a luminol reagent and peroxide 
solution (Millipore, Billerica, MA, USA). 
Densitometry of images was performed using 
Image J software.

Statistical analysis

Data were reported as mean ± standard deviation, 
and inter-group differences were assessed for 

significance using an independent-samples t-test 
and one-way analysis of variance using Graphpad 
6.0 (Graphpad Prism, Chicago, IL). After perform-
ing one-way ANOVA, post hoc tests are required 
to find statistical differences between groups. 
Differences associated with P< 0.05 were consid-
ered significant.

Results

In our study, we supposed that sulforaphane could 
improve the inflammatory injury in IECs induced 
by PLS by activating AMPK/SIRT1/PGC-1ɑ path-
way. To confirm the protective effects of sulfora-
phane against inflammatory damage in LPS- 
treated cells, we explore its effects on cell prolif-
eration, apoptosis, oxidative stress, inflammatory 
response, and monolayer barrier function in LPS- 
exposed IECs. Next, the potential roles of AMPK/ 
SIRT1/PGC-1ɑ axis in IECs were observed.

Sulforaphane partially reversed LPS-induced 
death of Caco-2 cells

LPS at concentrations higher than 1 μg/mL 
reduced Caco-2 cell viability by nearly 50%, so 
1 μg/mL of LPS was chosen as the concentration 
for subsequent experiments (Figure 1(a)). No 
significant cytotoxicity was observed when 
Caco-2 cells were exposed to sulforaphane at 
0.1–10 μM for 24 h (Figure 1(b)). When cultures 
were exposed for 24 h to 1 μg/mL LPS and 
sulforaphane at concentrations ranging from 
0.1 to 10 μM, viability was significantly higher 
than in the absence of sulforaphane (Figure 1 
(c)). Sulforaphane also significantly reversed the 
LPS-induced increase in LDH activity in Caco-2 
cells (Figure 1(d)).

Sulforaphane mitigated LPS-induced injury of the 
monolayer barrier function of Caco-2 cells

To observe the potential protective effects of SFP 
on monolayer barrier function in intestinal epithe-
lial cells, we measured the TEER and FITC-D4 flux 
of Caco-2 cells after treatment with LPS and SFP. 
As expected, LPS significantly reduced the TEER 
of Caco-2 cells, indicating compromise of the 
monolayer barrier function (Figure 2(a)). 
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Figure 1. Effects of sulforaphane (SFP) on viability of Caco-2 cells exposed to LPS. (a) Cells were treated with different concentrations 
of LPS (0.01–4 μg/mL) for 24 h. (b) Cells were treated with different concentrations of sulforaphane (0.1–10 μM) for 24 h. (c) Cells 
were treated with 1 μg/mL LPS and different concentrations of sulforaphane for 24 h. (d) Cultures treated as in panel (C) were also 
assayed for LDH activity. Values are mean ± SD (n = 6). Difference between two groups was performed by an independent-samples 
t-test, *P < 0.05 vs. control group (CN); #P < 0.05 vs. LPS group. The difference between different concentrations of sulforaphane was 
performed using one-way analysis of variance.

Figure 2. Effects of sulforaphane (SFP) on the monolayer barrier function of Caco-2 cells exposed to LPS. Cells were treated for 24 h 
with LPS (1 μg/mL) and different concentrations of sulforaphane (0.5–5 μM). (a) TEER measurements. (b) FITC-D4 flux measurements. 
Values are mean ± SD (n = 6). Difference between two groups was performed by an independent-samples t-test, *P < 0.05 vs. 
control group (CN); #P < 0.05 vs. LPS group. The difference between different concentrations of sulforaphane was performed using 
one-way analysis of variance.
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Figure 3. Effects of sulforaphane (SFP) on oxidative stress in Caco-2 cells induced by LPS. Cells were exposed for 24 h to LPS (1 μg/ 
mL) and different concentrations of sulforaphane (0.5–5 μM). (a) Mitochondrial ROS levels, based on MitoSox dye oxidation. (b) Total 
intracellular ROS levels, based on H2DCF oxidation. (c) MDA levels. (d) H2O2 levels. (e) SOD activity. (f) GPx levels. (g) CAT activity. (h) 
T-AOC levels. Values are mean ± SD (n = 6). Difference between two groups was performed by an independent-samples t-test, 
*P < 0.05 vs. control group (CN); #P < 0.05 vs. LPS group. The difference between different concentrations of sulforaphane was 
performed using one-way analysis of variance.

Figure 4. Effects of sulforaphane (SFP) on inflammatory injury in Caco-2 cells induced by LPS. Cells were exposed for 24 h to LPS 
(1 μg/mL) and different concentrations of sulforaphane (0.5–5 μM). (a) IL-1β. (b) IL-6. (c) IL-8. and (d) TNF-ɑ. Values are mean ± SD 
(n = 6). Difference between two groups was performed by an independent-samples t-test, *P < 0.05 vs. control group (CN); #P < 0.05 
vs. LPS group. The difference between different concentrations of sulforaphane was performed using one-way analysis of variance.
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Conversely, LPS significantly increased the FITC- 
D4 flux of Caco-2 cells (Figure 2(b)). Sulforaphane 
partially reversed both effects.

Sulforaphane suppressed LPS-induced oxidative 
stress in Caco-2 cells

We further observe the impacts of SFP on the 
oxidative stress and antioxidative status in Caco- 
2 cells via measuring the levels of mitochondrial 
ROS, intracellular ROS, intracellular MDA, and 
intracellular H2O2, and the activities of SOD, 
GPx, CAT, and T-AOC after exposure to LPS 
and SFP. LPS's treatment markedly increased the 
levels of mitochondrial ROS, intracellular ROS, 
intracellular MDA, and intracellular H2O2 in 
Caco-2 cells, while suppressing the levels of SOD, 
GPx, CAT and T-AOC (Figure 3). These effects 
were partially reversed by sulforaphane.

Sulforaphane partially reversed LPS-induced 
production of inflammatory cytokines in Caco-2 
cells

We next investigate the effects of SFP on the 
inflammatory status of Caco-2 cells via measuring 
the levels of IL-1β, IL-6, IL-8, and TNF-α after 
exposure to LPS and SFP. LPS's treatment mark-
edly increased levels of the inflammatory cytokines 
IL-1β, IL-6, IL-8, and TNF-ɑ (Figure 4). 
Sulforaphane partially reversed these increases.

Sulforaphane inhibited LPS-induced apoptosis of 
Caco-2 cells

Additionally, we also explore the protective 
effects of SFP against the cell apoptosis in 
Caco-2 cells induced by LPS via detecting the 
mRNA expression levels and activities of cas-
pase-3 and −9 after exposure to LPS and SFP. 

Figure 5. Effects of sulforaphane (SFP) on LPS-induced apoptosis in Caco-2 cells. Cells were exposed for 24 h to LPS (1 μg/mL) and 
different concentrations of sulforaphane (0.5–5 μM). (a) Levels of caspase-3 mRNA. (b) Levels of caspase-9 mRNA. (c) Activity of 
caspase-3. (d) Activity of caspase-9. Values are mean ± SD (n = 6). Difference between two groups was performed by an 
independent-samples t-test, *P < 0.05 vs. control group (CN); #P < 0.05 vs. LPS group. The difference between different concentra-
tions of sulforaphane was performed using one-way analysis of variance.
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LPS markedly increased the levels of the mRNAs 
encoding caspases-3 and −9, which sulforaphane 
partially reversed (Figure 5(a,b)). Similar results 
were observed when cultures were assayed for 
enzymatic activity of the two caspases (Figure 5 
(c,d)). We focused on these two enzymes 
because they help drive apoptosis, such as in 
LPS-induced intestinal injury.

Sulforaphane reversed LPS-induced inhibition of 
the AMPK/SIRT1/PGC-1α pathway

To explore how sulforaphane mitigates LPS- 
induced injury to Caco-2 cells, we focused on the 
expression of members of the AMPK/SIRT1/PGC- 
1ɑ pathway. LPS significantly decreased the levels 
of p-AMPK, SIRT1, and PGC-1α, which sulfora-
phane was reversed in a dose-dependent manner 
(Figure 6). These results suggest that sulforaphane 
may alleviate LPS-induced injury in Caco-2 cells 
by activating the AMPK/SIRT1/PGC-1α pathway.

Sulforaphane activated AMPK and the 
downstream SIRT1/PGC-1α pathway to mitigate 
LPS-induced injury of Caco-2 cells

We exposed the cells to LPS in the presence of 
sulforaphane and an AMPK inhibitor (STO-609); 
then, we measured the levels of SIRT1, PGC-1α, 
ROS, and IL-1β, as well as cell viability. STO-609 
partially antagonized the ability of sulforaphane to 
increase the levels of SIRT1 and PGC-1ɑ (Figure 7 
(a-c)) and to protect against LPS-induced injury: 
levels of ROS and IL-1β were significantly higher, 
and cell viability significantly lower, when AMPK 
was inhibited (Figure 7(d-f)). These results are 
consistent with the idea that sulforaphane protects 
IECs against LPS-induced injury by activating the 
AMPK cascade.

As an additional test of whether sulforaphane 
exerts its effects by activating the SIRT1/PGC- 
1α cascade, we exposed cells to LPS and sulfor-
aphane in the presence or absence of a SIRT1 

Figure 6. Effects of sulforaphane (SFP) on levels of p-AMPK, SIRT1, and PGC-1ɑ in LPS-treated Caco-2 cells. Cells were exposed for 
24 h to LPS (1 μg/mL) and different concentrations of sulforaphane (0.5–5 μM). (a) Representative Western blot. (b-d) Quantitation of 
Western blots against p-AMPK, SIRT1 and PGC-1ɑ. Values are mean ± SD (n = 3). Difference between two groups was performed by 
an independent-samples t-test, *P < 0.05 vs. control group (CN); #P < 0.05 vs. LPS group. The difference between different 
concentrations of sulforaphane was performed using one-way analysis of variance.
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inhibitor (EX527) or PGC-1α inhibitor (SR- 
18,292), then assayed cell viability and levels 
of ROS and IL-1β. Either inhibitor antagonized 
the ability of sulforaphane to promote cell via-
bility (Figure 8(a)) as well as reduce oxidative 
stress and inflammatory responses (Figure 8(b, 
c)). These results are consistent with the idea 
that sulforaphane protects IECs against LPS- 
induced injury by activating the AMPK/SIRT1/ 
PGC-1ɑ pathway.

Discussion

Here, we provide evidence that the natural com-
pound sulforaphane can protect against damage to 
IECs, and that it does so at least partly by activat-
ing the AMPK/SIRT1/PGC-1ɑ pathway. We 
demonstrate that the compound can mitigate the 
high levels of inflammatory cytokines, oxidative 
stress, and epithelial permeability induced by 
LPS, which disrupts the intestinal barrier and 
thereby contributes to inflammatory bowel disease 

Figure 7. Sulforaphane (SFP) protects Caco-2 cells against LPS-induced injury by activating AMPK. Cells were exposed for 24 h to LPS 
(1 μg/mL) and SFP (1 μM). (a) Representative Western blot. (b-c) Relative levels of SIRT1 and PGC-1ɑ. (d) Cell viability. (e) 
Mitochondrial ROS levels, based on MitoSox dye oxidation. (f) IL-1β levels. Values are mean ± SD (n = 3). *P < 0.05 vs. control 
group (CN); #P < 0.05 vs. LPS group; $P < 0.05 vs. LPS+SFP group.

Figure 8. Sulforaphane (SFP) protects Caco-2 cells against LPS-induced injury by activating the AMPK/SIRT1/PGC-1ɑ pathway. Cells 
were exposed for 24 h to LPS (1 μg/mL) and SFP (1 μM) in the presence or absence of a SIRT1 inhibitor (EX527) or PGC-1ɑ inhibitor 
(SR-18,292). (a) Cell viability. (b) Mitochondrial ROS levels, based on MitoSox dye oxidation. (c) IL-1β levels. Values are mean ± SD 
(n = 3). *P < 0.05 vs. control group (CN); #P < 0.05 vs. LPS group; $P < 0.05 vs. LPS+SFP group.
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(IBD) [22,23]. Although the etiology of IBD is still 
unclear, the interaction between the genetic, envir-
onmental or microbial factors, and the immune 
responses may contribute to its occurrence [5]. 
Cell apoptosis, necrosis, and autophagy in IECs 
have been verified to be significantly correlated 
with the progression of IBD [24]. Additionally, 
high levels of inflammatory cytokines, oxidative 
status, and cell permeability have been explored 
in the patients with IBD [25]. It is well known that 
the intestine is the most important organ to be 
involved in metabolism, and its selective perme-
ability maintains that nutrients are absorbed and 
harmful substances are prevented from entering 
the body [26]. Symbiotic microorganisms partici-
pants in the host metabolize nutrients and protect 
human health. Nevertheless, harmful microorgan-
isms disrupt host cells via multiple mechanisms, 
further leading to intestinal and systemic diseases 
[27]. Gram-negative bacteria, the intestinal micro-
flora, release LPS into the intestinal lumen and 
further result in dysfunction of IECs [28]. In 
order to improve IECs functions, we are finding 
an effective natural compound to treat LPS- 
induced injury in the intestinal tract. 
Sulforaphane can also help restore the IEC barrier 
function [29], as we demonstrated using TEER 
measurements.

Sulforaphane exerts anti-inflammatory, anti- 
oxidative, and anti-apoptotic effects, and our assays 
of inflammatory cytokines, ROS, and caspases suggest 
that all these effects contribute to the compound’s 
ability to prevent LPS-induced injury of IECs. These 
epithelial cells are sensitive to inflammatory processes 
and to ROS levels that exceed the total antioxidant 
capacity [30,31]. LPS-induced injury to the intestinal 
tissue is also associated with increased apoptosis [32]. 
Consistent with our results, sulforaphane has been 
shown to protect the gastrointestinal mucosa from 
oxidative injury and inflammation induced by 
H. pylori and non-steroidal anti-inflammatory drugs 
[33]. Further experiments should continue to flesh 
out the details of how sulforaphane protects IECs 
from injury by reducing inflammation, oxidative 
stress, and apoptosis.

TEER is a nonspecific marker of the IECs barrier 
function [34]. Co-cultured with SFP for 24 h, the 
TEER of Caco-2 monolayer increased strongly, sug-
gesting that SFP could increase the tightness of 

epithelial cells monolayer. In addition, the results of 
FITC-D4 test also verify this finding. To explore the 
underlying mechanism by which SFP decreases 
intestinal permeability, we also assessed the biologi-
cal indicators associated with cell viability and apop-
tosis. Apoptosis is the orderly death of cells 
controlled by genes (such as caspase-3 and −9) to 
maintain homeostasis [35]. Early investigation has 
reported that LPS-induced tissue injury, including 
intestinal damage, is significantly associated with the 
increased apoptotic cells. Consistent with this obser-
vation, our results also demonstrated that LPS 
strongly promoted gene expression and enzyme 
activities of pro-apoptotic molecules (caspase-3 and 
−9) in Caco-2 cells, whereas SFP reversed these LPS- 
induced effects. Additionally, the similar results were 
found in cell viability assay.

There are interconnections in each cellular net-
work to maintain the homeostasis, including 
AMPK, SIRT1, and PGC-1α. AMPK is a highly 
conserved serine/threonine protein kinase that 
helps regulate the levels of ROS in mitochondria 
[36], and it acts together with its downstream 
target SIRT1 to upregulate PGC-1α [37] and 
thereby help control mitochondrial biosynthesis, 
energy metabolism, and oxidative stress as 
a homeostasis-sensing network [38]. At the same 
time, it regulates the activity of SIRT1 and induces 
the intracellular NAD+ which can activate the 
NAD+-dependent SIRT1 to show biological effects. 
Our results suggest that sulforaphane exerts its 
effects, at least in part, by activating the AMPK/ 
SIRT1/PGC-1α signaling cascade. This is consis-
tent with reports that sulforaphane alters cellular 
processes by activating the AMPK signaling 
[39,40].

Conclusion

Our experiments suggest that sulforaphane can 
alleviate LPS-induced IEC damage in the form of 
increased intestinal permeability, inflammation, 
oxidative stress, and apoptosis. Furthermore, we 
showed that the compound exerts these effects by 
activating the AMPK/SIRT1/PGC-1α cascade. Our 
data may help guide future studies to develop 
sulforaphane or suitable derivatives into an effec-
tive therapy against inflammatory bowel disease.
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