
1.  Introduction
Physical processes in the ocean are fundamentally related to the biogeochemical and light environments and thus 
impact the growth of phytoplankton, which requires both light and nutrients. In order to get a complete grasp of 
the complex interaction of physics and biogeochemistry, it is essential to include also numerical models with a 
physically accurate representation of optics. This in turn enables to quantify with greater precision the impacts of 
changes in biogeochemical processes (such as primary productivity), circulation patterns (through heat transfer), 
or the sole nature of absorbing and scattering matter in the examined water body.

Despite this knowledge on the importance of optics, most biogeochemical models, notwithstanding their increas-
ing spatial resolutions, shorter computational times, and improved complexity, still employ an oversimplified 
methodology for optical calculations, usually to predict photosynthetically available radiation without consider-
ing its spectral dependency. One of the few attempts to overcome these limitations have been achieved in Fujii 
et al. (2007), Dutkiewicz et al. (2015), Mobley et al. (2015), and Gregg and Rousseaux (2016, 2017). In order to 
improve prediction capabilities on marine biogeochemical features, the implementation of multi- or hyperspectral 
optical modeling solutions remains therefore essential, also in order to follow up with the pace of such approaches 
already adopted in remote sensing and in situ platforms used to successfully observe aquatic biogeochemical 
phenomena.

Abstract  A radiative transfer model was parameterized and validated using Biogeochemical Argo float 
data acquired between 2012 and 2017 across the Mediterranean Sea. Fluorescence-derived chlorophyll E a 
concentration, particulate optical backscattering at 700 nm, and fluorescence of chromophoric dissolved 
organic matter (CDOM) were used to parametrize the light absorption and scattering coefficients of the 
optically significant water constituents (such as pure water, non-algal particles, CDOM, and phytoplankton). 
The model was validated with in situ downwelling irradiance profiles and apparent optical properties derived 
both from irradiance profiles and satellite data, such as the diffuse attenuation coefficients and remote sensing 
reflectance. Results showed that by using regional parameterizations that are not only related to chlorophyll 
concentration and vertical distribution, the model was able to capture a more accurate spectral response in the 
examined wavelength range compared to chlorophyll-related (or Case 1) optical models. When using alternative 
models that incorporated also measurements of CDOM fluorescence or particulate optical backscattering, 
the model skill increased at all examined wavelengths. Finally, using a multi-spectral optical configuration 
also enabled the estimation of the relative contribution of separate water constituents in the examined spectral 
range. Simulations including non-algal particles and CDOM performed up to 61% and 79% better than when 
considering the optical properties of pure seawater alone. Moreover, a simulation including phytoplankton light 
absorption resulted in an error reduction of up to 42%, especially at 412 nm and with a more uniform response 
at the wavelengths considered.

Plain Language Summary  This study integrates numerical simulations (using a multi-spectral 
optical model) with in situ measurements of floats and remotely sensed observations from satellites. It aims at 
improving our current understanding of the impact that different constituents (such as pure water, chromophoric 
dissolved organic matter, detritus, and phytoplankton) have on the in-water light propagation.
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With the development of satellites and in situ autonomous platforms, models tend to integrate measurements, 
either through data assimilation to correct for the numerical drift, or for the validation of the model itself. Com-
bining numerical approaches with experimental data, both from in situ sensors, as well as from satellites, com-
pensates for the shortcomings of each of the separate methods. While model simulations have no spatio-temporal 
limitations, they are after all numerical representations of natural phenomena that need to be validated accord-
ingly. Satellite remote sensing in the visible range of the spectrum discards more than 90% of the total signal as 
atmospheric noise, and it is limited to a certain spatial resolution and temporal frequency, reaching only surface 
layers under clear skies. The emergence of autonomous platforms, such as floats and gliders, can, on the other 
hand, provide more information also at greater depths, regardless of the sky conditions, and thus surpass the 
greatest limitations of satellites. Furthermore, they can provide measurements of additional variables that at 
present cannot be retrieved by satellites. Such sensors are, however, still spatio-temporally heterogeneously dis-
tributed and cannot fully replace the synoptic coverage that satellites have.

In order to resolve the distribution of light in the water, information on absorption and scattering properties of the 
optically significant matter is needed. As such measurements are difficult to obtain, unless field measurements 
are carried out, semi-empirical relationships between biogeochemical quantities and inherent optical properties 
(i.e., absorption and scattering spectra) are widely used to facilitate calculations of in-water light propagation. 
Measurements of biogeochemical quantities, especially phytoplankton chlorophyll a, are most widely available, 
hence the advantage in using them for parameterization purposes.

The Mediterranean Sea has been defined as a bio-optically anomalous region (Bricaud et  al.,  2002; Corsini 
et al., 2002; D’Ortenzio et al., 2002; Gitelson et al., 1996; Lee & Hu, 2006; Loisel et al., 2011; Morel, Claustre, 
et al., 2007; Morel & Gentili, 2009; Organelli, Claustre, et al., 2017; Volpe et al., 2007), so that such global 
empirical algorithms, both for satellite remote sensing as well as in situ applications, are less accurate. With the 
adoption of global relationships, Mediterranean waters appeared greener for a given chlorophyll a level than 
waters in other regions (Claustre et al., 2002; Morel & Gentili, 2009).

Among the possible causes for such phenomena could be:

1.	 �Specific phytoplankton community structure (cell size, pigment packaging, pigment composition, and photo-
physiology), which can affect phytoplankton absorption ( E a  ) and particle backscattering signals ( bpE b  ).

2.	 �Excess of non-algal (mineral) particles (NAP), such as Saharan dust (influencing NAPE a  and bpE b  ).
3.	 �Excess of chromophoric dissolved organic matter (CDOM), influencing CDOME a  ;

either separately, or as a combination of several factors (all absorption and scattering coefficients are in units  
of 1E m  ).

In the past decade, the development of new technologies for the acquisition and analysis of bio-optical variables 
has brought new insights on CDOM dynamics, size and composition of algal communities, absorption by phy-
toplankton ( E a  ) and non-algal particles ( NAPE a  ), as well as on particulate backscattering ( bpE b  ). Since 2012, a large 
array of autonomous Biogeochemical Argo (BGC-Argo) floats has been deployed, measuring a whole set of 
bio-optical and biogeochemical variables (IOCCG, 2011), which could fill the gap between sample acquisitions 
and remote sensing measurements. With their high vertical resolution profiles, BGC-Argo floats can serve as an 
additional tool for tackling the bio-optically anomalous nature of the Mediterranean Sea, also due to their high 
horizontal and vertical spatial coverage (Organelli, Claustre, et al., 2017).

For this reason, an analysis was hereby carried out to show the possibility of using a large array of BGC-Ar-
go float measurements both for a radiative transfer model set-up, as well as for validation purposes. More 
specifically, profiles of bio-optical and biogeochemical parameters (i.e., fluorescence-derived chlorophyll a 
concentration (Chl), particulate backscattering at 700 nm ( (700)bpE b  ) and CDOM fluorescence (fDOM)) were 
used for inherent optical properties (IOP) parameterizations, testing several regionally adopted algorithms for 
E a  , CDOME a  , and NAPE a  , and particle scattering pE b  . Radiometric measurements were, on the other hand, used for 

model validation.
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The aim of this work is to:

1.	 �Test different IOP configurations, especially Chl-versus non-Chl-related bio-optical models.
2.	 �Verify the model performance comparing computation results with BGC-Argo radiometric profiles and ap-

parent optical properties (i.e., diffuse attenuation coefficients for downwelling irradiance and remote sensing 
reflectances), the latter derived from radiometric profiles and obtained from satellite remote sensing.

3.	 �Check the model sensitivity to different absorption spectra within each group of optically significant constit-
uents (pure water, NAP, CDOM, and phytoplankton)

2.  Methods
2.1.  BGC-Argo Data Set

The BGC-Argo data set used in this work was obtained from 39 floats operating between 2012 and 2017. The 
total number of profiles containing Chl measurements was 5,092, however for the sake of the analysis complete-
ness, a few requirements needed to be met. First, only profiles containing the whole suite of following variables 
were considered: temperature (T, E C ), salinity (S, PSU), chlorophyll E a (Chl, 3E mgm  ), particle backscattering at 
700 mm ( (700)bpE b  , 1E m  ), fluorescent component of chromophoric dissolved organic matter (fDOM, ppb of qui-
nine sulfate), and downwelling plane irradiance at 380, 412, and 490 nm ( ( )dE E  ,   2 1E Wcm nm  ). Profiles lacking 
at least one of the required variables were excluded from further calculations (2,112). Then, only profiles acquired 
between 10:00 am and 2:00 pm local time were considered in order to obtain radiometric measurements at low 
solar zenith angles, thus removing additional 396 profiles. The total number of profiles left for the analysis was 
2,584. The quality control (QC) procedure of radiometric data follows the steps described in Organelli, Claustre, 
et al. (2016), whereas the Chl and (700)bpE b  QC protocols are found in Schmechtig et al. (2014, 2018). Profiles of 
all variables were uniformly interpolated on a 1 m grid, starting at 0.5 m. As light is one of the key mechanisms 
controlling the deep chlorophyll maximum (DCM) depth (Cullen, 2015; Mignot et al., 2014), the choice of the 
maximum depth range corresponds to the maximum DCM values in the Eastern Mediterranean, which is up to 
120 m (Christaki et al., 2001). Therefore, additional 370 profiles were discarded that had depths shallower than 
150 m. For a successful calculation of the depth derivative of radiometric profiles the diffuse attenuation coeffi-
cients of downwelling irradiance ( dE K  , 1E m  ) with a non-linear fit of an exponential function with the least squares 
method, further conditions needed to be met: the first depth measurement of dE E  had to be shallower than 1 m 
(thus discarding 130 profiles) and the number of dE E  measurements within the first 10 m had to be at least 5, which 
discarded another 757 profiles. Moreover, a condition of less than 30% difference between modeled and synthetic 

dE E  (obtained from the dE K  at the first optical depth) values was thus added as the existent quality-control procedure 
for radiometric quantities still retains noisy behavior, which resulted in 147 profiles less. After having applied all 
the QC procedures, the final number of useful profiles for this work resulted in 1,126, spatially distributed as in 
Figure 1. In order to remove spikes and negative values, all variables except T and S were further corrected by 
applying a 5-point median filter, followed by a 7-point running mean. Negative values were assigned to zero. The 
fact that the applied smoothing procedure might remove some spikes which could be actually indicators of larger 
aggregates (Briggs et al., 2011), goes beyond the scope of the present study.

2.2.  In-Water Radiative Transfer Model

The irradiance distribution along the water column was parameterized into three streams as described in Dutk-
iewicz et al. (2015) and Gregg and Rousseaux (2016): the direct ( dir

dE E  ) and diffuse ( sE E  ) downwelling irradiance 
components and the upwelling diffuse irradiance ( uE E  ). The downwelling plane irradiance is equivalent to the sum 
of the two downward streams (  dir

d d sE E E E  ). The light spectrum was discretized into 25 nm bands covering 
the range between 350 and 700 nm. For each band, ( , )dir

dE E z  , ( , )sE E z  and ( , )uE E z  were solved as a system of 
three differential equations:

   
( , ) ( , ) ( , ),

dir
dird

d d
dE z C z E z

dz
� (1)
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         
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),dirs

s s u u d d
dE z C z E z B z E z F z E z

dz
� (2)

         
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ),diru

u u s s d d
dE z C z E z B z E z B z E z

dz� (3)

where E z is the depth, iE C  are the attenuation factors, and iE B  and dE F  the backward and forward scattering factors, 
respectively. The attenuation factors iE C  were calculated as the sum of absorption (E a ), scattering (E b ), and backscat-
tering ( bE b  ) coefficients normalized over cosines:

 







( , ) ( , )
( , ) ,d

d

a z b z
C z� (4)

 







( , ) ( , )
( , ) ,s b

s
s

a z r b z
C z� (5)

 







( , ) ( , )
( , ) ,u b

u
u

a z r b z
C z

� (6)

In the three-stream approach, the shape factors were considered constant  1.5sE r  ,  3.0uE r  , as well as the average 
cosines   0.83sE  and   0.4uE  (Aas, 1987), while   cos( )w

d dE  where  w
dE  denotes the solar zenith angle cor-

rected with water refraction index. Absorption, scattering and backscattering coefficients were defined as a linear 
combination of separate water constituents:

       ( , ) ( , ) ( , ) ( , ) ( , ),w NAP CDOMa z a z a z a z a z� (7)

   ( , ) ( , ) ( , )w pb z b z b z� (8)

Different IOP models to determine E a , E b , and bE b  are further presented in Section 2.3.

Scattering factors were similarly defined:

Figure 1.  Spatial distribution of the complete data set, after the additional criteria applied to remove profiles which do not meet computation requirements.
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



( , )( , ) ,b

d
d

b zB z� (9)





( , )( , ) ,s b

s
s

r b zB z� (10)





( , )( , ) ,u b

u
u

r b zB z� (11)

 





(1 ) ( , )( , ) ,b
d

d

b b zF z� (12)

where bE b  is the ratio of backscattering ( bE b  ) to total scattering (E b ).

Solving the in-water radiative transfer model requires three boundary conditions, one for each stream.  ( ,0 )dir
dE E  

and  ( ,0 )sE E  were derived from the multi-spectral atmospheric radiative transfer model OASIM (Gregg & 
Casey,  2009), specifically validated with the surface irradiance values from the same BGC-Argo data set in 
the Mediterranean Sea (Lazzari et al., 2021). The boundary conditions for the upward component were set as 

  ( , ) 0uE E  . The equations were discretized along depth using the same resolution of the BGC-Argo data and 
integrated numerically following the methodology described in Dutkiewicz et al. (2015).

2.3.  IOP Models

The in-water radiative transfer analysis comprised of six bigger clusters of IOP simulations, as reported below. 
The aim of these tests was to show that the model does accurately take into consideration the spectral response 
based on the selection of appropriate IOPs (both absorption and scattering) and thus correctly resolves the radi-
ative transfer equations. By considering one IOP at the time, it was possible to quantify how much does the IOP 
for a given optically significant constituent contribute to the relative improvement compared to the base. Further-
more, within each constituent, it was possible to assess the impact that each of the model range has at the output at 
separate wavelengths. In the following subsections, separate groups of IOP models are described in more detail, 
along with the upgrades that were tested.

1.	 �Pure water absorption and scattering ( wE a  , wE b  ).
2.	 �1. + NAP absorption ( NAPE a  ).
3.	 �1. + CDOM absorption ( CDOME a  ).
4.	 �1. + phytoplankton absorption ( E a  ).
5.	 �1. + particle scattering ( pE b  ).
6.	 �1. +  NAPE a   +  CDOME a   +  E a   +  pE b  .

Most models that link biogeochemical quantities with IOPs are assessed for Case 1 water optical types that can 
be defined as water bodies for which the inherent optical properties (of CDOM and NAP) co-vary with phyto-
plankton and hence with Chl concentration (Morel & Prieur, 1977). Even though such empirical relationships 
can be quite useful for parameter estimations, there exists the tendency to oversimplify the optical response of a 
generally complex biogeochemical environment, as thoroughly discussed in Mobley et al. (2004). Hence, one of 
the goals of this paper was to try to compare Case 1 water types with alternative parameterizations that considered 
additional biogeochemical variables and are described in the following subsections.

Simulation results were verified in two different ways. First, modeled irradiance profiles were matched-up with 
measured dE E  profiles at all 3 available wavelengths within the upper 150 m of depth. Second, diffuse attenuation 
coefficients of downwelling plane irradiances ( dE K  ) for the first optical depth (i.e., the depth range for which the 
light at a specific wavelength attenuates e-fold) were calculated for both modeled and measured profiles. dE K  as 
an apparent optical property (AOP) does have the advantage of conveying more information on IOPs and to a 
certain extent remove the impact of the external environment's variability (change in sun location, cloud cover, 
or surface waves, Mobley et al., 2010). The influence of the external factors is however still present, despite the 
quality-control procedure introduced by Organelli, Claustre, et al. (2016), resulting in noisy or oddly-shaped pro-
files which were discarded by including additional conditions described in Section 2.1. Moreover, at 490 nm it is 
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possible to make a three-platform comparison including model, float and remote sensing data, which is further 
elucidated in Section 2.4.

2.3.1.  Pure Water Absorption and Scattering

The original in-water modeling configuration, described in Gregg and Rousseaux (2016), resolves a pure wa-
ter absorption spectrum based on data from various sources, as reported therein. However, the UV and blue 
part of the visible spectrum (from 250 to 550  nm) was improved also with more recent spectrophotometric 
measurements by Mason et al. (2016), which introduced lower values compared to the findings of Smith and 
Baker (1981), Morel, Gentili, et al. (2007), Pope and Fry (1997), and Lee et al. (2015). Moreover, pure water 
absorption was accounted also for the influence on seawater optical properties of T and S according to Sullivan 
et al. (2006). The original values for pure water scattering from Smith and Baker (1981) and Morel, Claustre, 
et al. (2007) were further upgraded by calculating values based on the method described by Zhang et al. (2009), 
thereby accounting for the contribution of T and S. The backscattering-to-total scattering ratio for water is kept as 
0.5 as in Gregg and Rousseaux (2016), assuming an isotropic scattering regime.

2.3.2.  Non-Algal Particles (NAP) Absorption

The non-algal particles are defined as a composite of living organic particles, such as bacteria, zooplankton, de-
trital organic matter, and suspended inorganic particles (Mobley et al., 2010). The absorption spectrum, despite 
its heterogeneous biogeochemical composition, is described with an exponentially decreasing shape from UV to 
the red part of the spectrum:

     ( )( ) ( ) SNAP ref
NAP NAP refa a e� (13)

The absorption at the reference wavelength, ( )NAP refE a  , can be estimated in two ways: either as a function of Chl 
(a Case 1 optical water type—see Equation 4 in Bricaud et al., 2010), or by considering the range of values meas-
ured in the Mediterranean Sea, that is, between 0.0087 and 0.8 1E m  (Babin et al., 2003), with the higher values 
corresponding to highly turbid waters. The slope NAPE S  varies from 0.0178 and 0.0104 1E nm  , with a mean value 
of 0.0129 1E nm  (Babin et al., 2003). It should be noted, however, that the data collected in the work were from 
coastal regions, therefore the minimum values could also overestimate the contribution of NAPE a  compared to the 
open ocean. To better reproduce the vertical distribution of NAP, different profile shapes are considered when es-
timating model IOPs: Case 1 optical types assume a co-variability with Chl, and additional tests were performed 
by considering (700)bpE b  as a better proxy for non-algal particle vertical distribution.

The bpE b  signal is comprised both of organic and inorganic particles, however, the separation of the two fractions is 
at present still not possible to achieve. As it has already been demonstrated that the contribution of detrital non-al-
gal particles to the total bpE b  signal can be very high in Mediterranean waters (Bellacicco et al., 2019), a hypothesis 
was placed to consider (700)bpE b  as a better parameter than Chl from the BGC-Argo set of measurements in terms 
of NAP depth variability. The summary of NAPE a  models is shown in Table 1.

2.3.3.  CDOM Absorption

Similarly to NAPE a  , the spectral response of CDOME a  is also parameterized with a decreasing exponential function:

     ( )( ) ( ) SCDOM ref
CDOM CDOM refa a e� (14)

( )CDOM refE a  can be also estimated as a function of Chl from a regional Case 1 model presented in Morel and 
Gentili (2009) which is based on spectral coefficients of pure water as measured by Pope and Fry (1997). How-
ever, given the substantial modification of the wE a  absorption spectra in the UV/blue range when following Mason 
et al. (2016) compared to originally adopted values from Pope and Fry (1997), a set of simulations was tested 
by subtracting the former ( )ORIGE a  with the updated one, wE a  , as shown in Equation 15. With previous values, 

( )ORIG
wE a  amounted to a higher water absorption, which would have led to a significant underestimation of CDOME a  .

     ( ) ( ) ( ) ( )corr ORIG
CDOM CDOM w wa a a a� (15)
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The remaining parameter to estimate was the slope CDOME S  , which can be taken from Babin et al.  (2003) and 
Organelli et al. (2014), that is, ranging between 0.015 and 0.02 1E nm  , with a mean value of 0.017 1E nm  . As with 
NAP, the Case 1 model for CDOME a  was upgraded by considering the fDOM profile shape instead of a vertical 
parameterization depending only on Chl. Following Organelli and Claustre (2019), (380)CDOME a  was approximat-
ed with (380)bioE K  , which was in turn calculated from the diffuse attenuation coefficient (380)dE K  . The latter was 
derived from the BGC-Argo irradiance profiles at 380 nm, both for the mixed layer as for the first optical depth. 
The former was obtained from a potential density threshold value criterion (de Boyer Montégut et al., 2004), 
whereas the latter corresponds to the e-folding depth at the specific wavelength. (380)dE K  was then estimated from 
a non-linear fit with the least squares minimization of an exponential function for both depth ranges, and can be 
separated into pure water and biogenic components (Morel & Maritorena, 2001):

   ( ) ( ) ( ),d w bioK K K� (16)

where:

   ( ) ( ) 0.5 ( )w w wK a b� (17)

After having subtracted the pure water contribution (380)wE K  as estimated in Morel and Maritorena (2001) 
(i.e., 0.0151 1E m  ), the remaining item, (380)bioE K  , serves as a proxy for (380)CDOME a  . As discussed in Organelli 
and Claustre  (2019), there are several previous studies in the clearest oligotrophic world oceans that have 
shown that CDOM dominates the light absorption budget at 380 nm (see references therein). NAPE a  at 380 nm 
contributes less than 20% to total non-water absorption in clear oligotrophic waters (Bricaud et al., 2010). 

NAPE a

Name Model Equation Profile shape NAPE S  range (443)NAPE a  range

_ 1_NAPE a Case Chl
_ 1_NAP bpE a Case b

Bricaud et al. (2010)  ( 440)0.6150.013 SNAPE Chl e Chl
(700)bpE b

0.0104–0.0178 -

_ _NAPE a Babin Chl
_ _NAP bpE a Babin b

Babin et al. (2003)  ( 443)(443) SNAP
NAPE a e Chl

(700)bpE b
0.0104–0.0178 0.0087–0.8

Final Babin et al. (2003)  ( 443)(443) SNAP
NAPE a e (700)bpE b 0.0129 0.0087

CDOME a
Name Model Equation Profile Shape CDOME S  range

_ 1_CDOME a Case Chl
_ 1_CDOME a Case fDOM

Morel and Gentili (2009)  ( 443)0.630.0316 SCDOME Chl e Chl
fDOM

0.015–0.02

_ _CDOM bioE a K Morel
_ _CDOM bioE a K Mason
_ _ _ _CDOM bio wE a K Mason a corr

(380) (380)CDOM bioE a K  ( 380)(380) SCDOM
CDOME a e fDOM 0.015–0.02

Final (380) (380)CDOM bioE a K  ( 380)(380) SCDOM
CDOME a e fDOM 0.017

pE b

Name Model ( )pE b ( )bpE b Profile Shape 
bpE b  range E  range

_ 1_pE b Case Chl
_ 1_p bpE b Case b

Morel et al. (2002) 0.7660.416 ( )
550

E Chl z
 ( )bp pE b b Chl

(700)bpE b
0.002–0.015 0–4

_ _p bpE b from b Antoine et al. (2011)

( )bp

bp

b
E

b





 
 
 

(700)
700bpE b

(700)bpE b 0.002–0.015 0–4

Final Antoine et al. (2011)

( )bp

bp

b
E

b





 
 
 

(700)
700bpE b

(700)bpE b 0.015 3

Note. Either Case 1 from Bricaud et al. (2010) for NAPE a  , Morel & Gentili (2009) for CDOME a  and Morel et al. (2002) for pE b  or the non-Case 1 from Babin et al. (2003) for 
NAPE a  , Organelli & Claustre (2019) for CDOME a  where (380) (380)CDOM bioE a K  and Antoine et al. (2011) for pE b  . The profile shape follows either Chl, (700)bpE b  or fDOM, 

with different ranges of the model parameters for each IOP: NAPE S  , (443)NAPE a  , CDOME S  , bpE b  and E  .

Table 1 
List of All the Models Used in This Study
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In the absence of coincident light absorption data to prove that these conclusions hold true also in the pres-
ent case, other possible sources that affect light attenuation in the UVs, such as light absorption by my-
cosporine-like amino acids and NAP, might be excluded or considered negligible. Instead, an additional set of 
simulations was performed by changing the relative contribution of (380)bioE K  by assigning a factor E f  ranging 
between 0.5 and 1. In this way, different relative contributions of other constituents could be assessed while 
leaving some uncertainty in the method to use (380)bioE K  as a proxy for CDOME a  only.

Given the fact that the IOP models used here for pure water absorption are the new measurements of Mason 
et al. (2016), and a T-S correction is applied (Sullivan et al., 2006; Zhang et al., 2009), different tests were tried in 
order to calculate (380)wE K  as a function of (380)wE a  and (380)wE b  rather than adopting a constant value. The entire 

CDOME a  spectrum is then estimated with the slope range of values as described above, with the depth variability 
analogous to the fDOM shape. The summary of CDOME a  models is shown in Table 1.

2.3.4.  Phytoplankton Absorption

For phytoplankton Chl-specific absorption spectra, data for seven different algal species of varying size were 
used, with organisms adequate for surface applications, and several strains suitable for both surface and mixed 
layer (more details in Organelli, Nuccio, et al., 2017). Absorption spectra were obtained for species cultured at 
the light regime of 100 E mol photons  2 1E m s  .

The total phytoplankton absorption is computed as the sum of separate phytoplankton functional types (PFT) 
spectra  ( )iE a  as shown in Equation 18:

   


 
6

1
( , ) ( ) ( ),i i

i
a z a f Chl z� (18)

The relative contribution of each PFT to the total Chl concentration,  ( )iE f z  , followed the regional empirical algo-
rithm introduced by Di Cicco et al. (2017, Table 4). For that purpose, seven algal species were merged into six 
PFTs: Diatoms, Dinoflagellates, Cryptophytes, Green Algae and Prochlorococcus, Prochlorococcus and Syne-
chococcus, Coccolithophores. The relative contribution of Prochlorococcus was divided into 0.5 for the 2 PFTs 
containing the same species. Original spectra with a 1 nm frequency were converted to 25 nm bins, corresponding 
to the model spectral resolution.

The regional algorithm of Di Cicco et al. (2017) was validated with in situ data for first 50 m, with the majority of 
samples in the Western Mediterranean. Apart from the spatio-temporal bias inherent to ship-borne measurements 
with which the relationship was obtained, it is suitable for Chl values in the range between 0.02 and 5.52 3E mgm  . 
Therefore, Chl values higher than 5.52 3E mgm  or lower than 0.02 3E mgm  have been limited to Chl = 5.52 and 0.02 

3E mgm  , respectively. The lower limit was placed in order to avoid numerical instabilities, whereas the higher limit 
was reached in only 5 profiles out of 1,126, all of them present in the North-Western Mediterranean during spring 
blooms (i.e., 5.71, 5.77, 5.82, 5.96, 5.53 3E mgm  ). No special features were observed in any of the limiting cases.

2.3.5.  Particle Scattering

Unlike the model set-up in Gregg and Rousseaux (2016), the particle scattering pE b  is resolved as a total sum, and 
not partitioned into the relative scattering contributions of separate PFTs plus NAP. Following Equation 14 in 
Morel et al. (2002), pE b  is expressed as a function of Chl:




 
  

 
0.766( , ) 0.416[ ( )] ,

550pb z Chl z� (19)

where   100.5[ ( ) 0.3]E log Chl  if   30.02 2E Chl mgm  and   0E  if  32E Chl mgm  . E  values are between −1 and 
0. Commonly used in earlier models, the value of   1E  is derived from Mie theory and is known to be valid only 
for non-absorbing particles with a Junge particle size distribution slope of −4 (Van de Hulst, 1981) with a particle 
size range between minE D   = 0 and maxE D   = E  (Boss et al., 2001). Similarly to the PFT regional algorithm modification, 
E  is calculated as if Chl were equal to 0.02 3E mgm  for values lower than the minimum concentration. Both Chl and 

(700)bpE b  vertical profiles were taken into consideration to account for the depth variability. Alternatively, (700)bpE b  
from BGC-Argo floats can be also used to estimate pE b  . A spectrum of ( )bpE b  can be obtained from Equation 20:


 



 

   
 

( ) ( ) ,bp bp o
o

b b�
(20)
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where E  describes the backscattering spectral slope and can be related to particle size distributions, assuming that the 
particles are non-absorbing. Lower slope values (around 0–1) indicate the presence of larger particles and vice-versa. 
The range of tested values was between 0 and 4, where the highest slope value agrees with measurements at the BOUS-
SOLE buoy (Antoine et al., 2011), and a mean value of 2 was found according to Organelli, Bricaud, et al. (2016). 
The relative contribution of back-to total particle scattering can be quantified with a known backscattering ratio bpE b  :

 



( )

,
( )

bp
bp

p

b
b

b
� (21)

in the present set of simulations ranging between 0.002 and 0.015 and spectrally constant (Antoine et al., 2011). 
The depth variability follows (700)bpE b  profiles.

2.4.  Remote Sensing Data

Both AOPs, that is, remote sensing reflectance and dE K  , can be described as functions of absorption and (back)
scattering coefficients (Gordon, 1989; Morel & Gentili, 1993).

In order to compare model data with satellite measurements, the calculation of in-water remote sensing reflec-
tance  ( )rsE R  from the model was carried out by following:

 
  

 
( ) 1( , , ) ,
( ) ( , , )rs o

o

EuR Chl
Ed Q Chl

� (22)

where the calculation of Q, a function of wavelength E  , Chl, and solar zenith angle oE  , follows the procedure 
introduced by Morel et al. (2002):

       ( , , ) ( , , ) ( , )[1 ( )]o o o Qn oQ Chl Q Chl S Chl cos� (23)

Values of (0, , )oE Q Chl  and (0, , )QnE S Chl  are interpolated from the look-up Table 2 in the Case 1 model from Mo-
rel et al. (2002). Surface Chl values were taken from float measurements at the shallowest depth. In case of Chl 
concentrations below 0.03 3E mgm  , (0, , )oE Q Chl  and (0, , )QnE S Chl  were taken from the minimum value.

The conversion from in-water to above-water remote sensing reflectance 
rsE R  (hereafter rsE R  ) follows the relation-

ship from Lee et al. (2002):







0.52
1 1.7

rs
rs

rs

RR
R

� (24)

Satellite data were obtained from Copernicus Marine Environment Monitoring Service the Ocean Color Level 3 
products (OCEANCOLOUR MED OPTICS L3 REP OBSERVATIONS 009 095), comprising of ( )rsE R  data at 6 
wavelengths: 412, 443, 490, 510, 555, 670 nm, as well as of the diffuse attenuation of downwelling irradiance at 
490 nm, (490)dE K  . Given the fact that no upwelling component of irradiance measurements uE E  is available from 
BGC-Argo floats, a more in-depth study of most appropriate scattering regimes is left for similar tests with data 
from multi-spectral platforms as ProVal (Leymarie et al., 2018)

Locations of floats were matched-up with daily satellite data of a 1 km grid space resolution. A total of 445 points 
were left for the period corresponding to the simulations considered. Due to a reduced number of matched-up 
quantities, the values of ( )rsE R  and (490)dE K  were spatially averaged to Western and Eastern Mediterranean ba-
sins, and temporally in the form of monthly climatological values.

3.  Results and Discussion
3.1.  IOP Model Validation

In order to verify the improvement of various modeling configurations, simulations were clustered into groups of 
separate IOPs, each with its own selection of tests and modifications. The model skill was quantified with three 
statistical parameters (root mean square error or RMSE, bias, and Pearson correlation coefficient E r ), resulting 
from a point-by-point match-up of modeled and measured downwelling irradiance values for the first 150 m at 
three wavelengths.
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Starting with a pure water IOP model, the updated absorption spectrum in the UV/blue range ( _wE a Mason , Mason 
et al., 2016) reveals a skill deterioration due to a much lower water absorption in the tested range of the spectrum. 
Most noticeably at shorter wavelengths, RMSE increases by 0.13, 0.09, and 0.01  2 1E W m nm  (40.6%, 22%, and 
 1%E  ) at 380, 412, and 490 nm, respectively, compared to the “reference” simulation ( _wE a Gregg , with the pure 
water absorption spectrum used in Gregg & Rousseaux, 2016). Similarly, bias increases by 0.12, 0.08, and 0.01 

 2 1E W m nm  (40%, 22.2%, and 6.7%) compared to the reference configuration. The correlation coefficient E r de-
creases by 0.26, 0.10, and 0.001 (41%, 15%, and  1%E  ), respectively, Figure 2a and Table 2. wE a  values from Mason 

Name Model
Profile 
shape

Metrics

380 nm 412 nm 490 nm

Δ [%]E RMSE Δ [%]E bias Δ [%]E r Δ [%]E RMSE Δ [%]E bias Δ [%]E r Δ [%]E RMSE Δ [%]E bias Δ [%]E r

Pure water

_wE a Gregg Gregg and  
Rousseaux (2016)

– – – – – – – – – –

_wE a Mason Mason et al. (2016) – 40.6 40.0 −41.0 22.0 22.2 −15.0 – 6.7 –

_ _wE a Mason TS Mason et al. (2016) 
T-S corrected

– −5.0 −5.0 11.4 −14.0 −14.0 15.8 −5.0 – –

Final relative to the initial 
configuration

– 34.4 33.0 −32.4 5.0 6.0 −2.5 −5.0 6.7 –

Pure water IOPs and NAPE a
_ 1_NAPE a Case Chl Bricaud et al. (2010) Chl - - - - - - - - -

_ 1_NAP bpE a Case b Bricaud et al. (2010) (700)bpE b −12.5 −11.2 11.2 −10.0 −7.5 4.0 - −7.2 -

_ _NAPE a Babin Chl Babin et al. (2003) Chl - −4.2 −2.9 −3.4 −8.0 −1.3 - - −1.1

_ _NAP bpE a Babin b Babin et al. (2003) (700)bpE b −40.0 −39.2 22.4 −31.0 −34.8 9.1 −10.6 −15.4 1.10

Final relative to the initial 
configuration

(700)bpE b −47.0 −49.2 32.2 −39.4 −44.5 12.0 −10.6 −21.5 -

Pure water IOPs plus CDOME a
_ 1_CDOME a Case Chl Morel and  

Gentili (2009)
Chl – – – – – – – – –

_ 1_CDOME a Case fDOM Morel and  
Gentili (2009)

fDOM −26.9 −38.9 13.2 −26.9 −44.4 6.3 −11.0 −25.0 1.1

_ _CDOM bioE a K Morel Organelli and  
Claustre (2019)

fDOM −26.3 −18.2 9.1 −15.8 – 3.6 6.3 – –

_ _CDOM bioE a K Mason Organelli and  
Claustre (2019)

fDOM −21.4 −33.3 3.5 −30.0 −18.8 2.3 – 10.0 –

_ _ _ _CDOM bio wE a K Mason a corr Organelli and  
Claustre (2019)

fDOM −18.2 −16.7 2.3 −7.7 −14.3 1.1 −6.7 −11.1 1.1

Final relative to the initial 
configuration

fDOM −57.7 −66.7 27.9 −50.0 −61.1 12.7 −16.7 −25.0 1.1

Pure water IOPs plus separate IOPs: NAPE a  , CDOME a  , E a  and pE b
_ _wE a Mason TS Mason et al. (2016) – – – – – – – – – –

_ _NAP bpE a Babin b Babin et al. (2003) (700)bpE b −60.5 −65.0 86.4 −53.5 −60.5 27.3 −19.0 −31.2 2.2

_ _ _ _CDOM bio wE a K Mason a corr Organelli and  
Claustre (2019)

fDOM −79.1 −87.5 102.0 −72.1 −84.2 36.4 −33.3 −50.0 4.5

E a Di Cicco et al. (2017) Chl −32.6 −37.5 52.3 −41.9 −50.0 22.7 −28.6 −43.8 4.5

pE b Antoine et al. (2011) (700)bpE b −4.7 −5.0 11.4 −11.6 −13.2 9.1 −19.0 −31.3 2.2

Table 2 
Summary of the Skill of Simulations (Only Pure Water IOPs, Pure Water IOPs and NAPE a  , Pure Water IOPs and CDOME a  , and Pure Water IOPs Plus Separate IOPs) 
Quantified in Terms of Relative Changes in Root Mean Square Error (ΔE RMSE ), Bias (ΔE bias ), and Pearson Correlation Coefficient (ΔE r ) With Respect to the Previous 
Model Configuration (i.e., One Line Above in the Table)
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Figure 2.  Bar plots resulting from a point-by-point match-up with modeled and measured dE E  values. The three figures (from 
left to right) show bias, root mean square error, and Pearson correlation coefficient, respectively. Each simulation type has 
three bar plots, representing different wavelengths (purple: 380 nm, cyan: 412 nm, and orange: 490 nm): (a) Pure water IOPs. 
(b) Pure water IOPs and NAPE a  . (c) Pure water IOPs and CDOME a  . (d) Pure water plus separate IOPs: NAPE a  , CDOME a  , E a  , and pE b  .
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et al. (2016) are chosen as reference in subsequent simulations, assuming that the latest technology development 
enabled more accurate spectral measurements.

The inclusion of T and S data both for absorption (Sullivan et al., 2006) and scattering spectra (Zhang et al., 2009) 
displays a smaller, however notable improvement in the model’s skill. Compared to the simulation with absorp-
tion values from Mason et al. (2016), RMSE decreases by 0.02, 0.07, and 0.01  2 1E W m nm  (5%, 14%, and 5%) 
and the bias by 0.02, 0.06, and   2 10.01E W m nm  (5%, 14%, and  1%E  ). The last configuration ( _ _wE a Mason TS ), 
with the modification from Mason et al. (2016) and T-S corrected models of wE a  and wE b  , was therefore chosen for 
subsequent tests.

A series of tests were performed for NAPE a  parameterizations, Figure 2b and Table 2. Starting with a Case 1 model 
that follows the Chl profile shape _ 1_NAPE a Case Chl ), the consecutive improvements incorporated the inclusion 
of (700)bpE b  depth variability ( _ 1_NAP bpE a Case b  ). Moreover, the range of (443)NAPE a  and NAPE S  values from Babin 
et al. (2003) were tested with both Chl and (700)bpE b  shapes ( _ _NAPE a Babin Chl and _ _NAP bpE a Babin b  ). Among the 
tests with a varying range of values ( NAPE S  between 0.0104 and 0.0178, and (443)NAPE a  between 0.0087 and 0.08 

1E m  , the latter corresponding to highly turbid waters), the minimum value for (443)NAPE a  was chosen, assuming 
that floats are located in open waters with a low or negligible contribution of sediments. The slope NAPE S  is select-
ed from a mean value of 0.0129 from Babin et al., 2003.

Considering (700)bpE b  vertical profile ( _ 1_NAP bpE a Case b  ) instead of Chl ( _ 1_NAPE a Case Chl ) in the Case 1 configura-
tion from Bricaud et al. (2010) significantly increases the skill, especially toward the UV, as the RMSE decreases 
by 0.04, 0.03, and 0.001  2 1E W m nm  (12.5%, 10%, and less than 1%). The bias, on the other hand, decreases by 
0.03, 0.02, and 0.01  2 1E W m nm  (11.2%, 7.5%, and 7.2%). Shifting toward non-Case-1 representations, with the 
inclusion of the range of values observed in in situ measurements, gives an overall better match-up statistics, 
which especially improves when considering the (700)bpE b  vertical profile ( _ _NAP bpE a Babin b  ), Figure 2b. Compar-
ing the (700)bpE b  -shaped model with values from Babin et al. (2003) ( _ _NAP bpE a Babin b  ) and the analogous Case 
1 model ( _ 1_NAP bpE a Case b  ), RMSE decreases by 0.11, 0.11, 0.02  2 1E W m nm  (40%, 33%, and 10.6%—values not 
directly shown in Table 2), and the bias by 0.1, 0.1, and 0.02  2 1E W m nm  (42%, 40%, and 15%) for the three meas-
ured wavelengths, respectively. E r increases by 0.13 (19%), 0.07 (7.6%), and at 490 remains the same. Therefore, 
according to the present data, the best agreement is achieved using the (700)bpE b  vertical profile with the NAPE a  
model suggested by Babin et al. (2003), that is, the _ _NAP bpE a Babin b  model.

Similarly to NAP simulations, CDOM absorption models were also compared considering three aspects: 
the Case 1 versus alternative parameterizations, Chl ( _ 1_CDOME a Case Chl ) versus fDOM IOP depth variabili-
ty ( _ 1_CDOME a Case fDOM ), and additional spectral corrections due to modifications in the pure water spectrum 
shown in Equation 15. As in NAPE a  , considering shapes alternative to Chl, such as profiles of fDOM, reveals 
a drastic improvement in the match-up statistics. fDOM-shaped Case 1 model from Morel and Gentili (2009) 
( _ 1_CDOME a Case fDOM ) introduces a RMSE decrease 0.07, 0.07, and 0.02  2 1E W m nm  (26.9%, 26.9%, and 11.0%) 
and a reduction of bias amounting to 0.07, 0.08, and 0.03  2 1E W m nm  (38.9%, 44.4%, and 25%). E r increases by 
0.09, 0.05, and 0.01 (13.2%, 6.3%, and 1.1%), Figure 2c and Table 2. As in Figure 2b, the significant impact on 
the lowering of bias and RMSE values was also due to a deviation from Case 1 models. This was achieved by 
adopting the approach presented in Organelli and Claustre (2019), described in Section 2.3.3, with the difference 
that the first optical depth range was rather considered as it resulted in a better performance compared to the 
MLD (not shown). Relative to the fDOM-shaped Case 1 model ( _ 1_CDOME a Case fDOM ), in _ _CDOM bioE a K Morel 
the RMSE decreases by 0.05 and 0.03 (26.3% and 15.8%)  2 1E W m nm  at 380 and 412 nm and increases by 0.01 

 2 1E W m nm  (6.3%) at 490 nm, respectively. Subsequent simulations result in an upgrade in the calculation of wE K  : 
from the original value of 0.0151 1E m  (Morel & Maritorena, 2001), wE K  was calculated by taking into consider-
ation the T-S corrections for both absorption and scattering values ( _ _CDOM bioE a K Mason ). Moreover, the CDOME a  
was modified for the spectral correction of wE a  ( _ _ _ _CDOM bio wE a K Mason a corr ). Compared to the constant wE K  value 
simulation ( _ _CDOM bioE a K Morel ), the final configuration resulted in a decrease in RMSE by 0.05, 0.04, and 0.03 

 2 1E W m nm  (35.7%, 25.0%, and 6.7%) and in a bias decrease by 0.04, 0.04, and 0.02  2 1E W m nm  (44%, 40%, and 
20.0%) at 380, 412, and 490 nm, respectively (not directly shown in Table 2).

The contribution of remaining IOPs, phytoplankton absorption E a  and scattering by particles pE b  , are shown along-
side the skill of the chosen models for separate IOP groups described above, Figure 2d and Table 2. The PFT 
modeling configuration described in Section 2.3.4, compared to the pure water simulation results, resulted in a 
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RMSE decrease by 0.14, 0.18, and 0.06  2 1E W m nm  (32.6%, 41.9%, and 28.6%) and in a bias decrease by 0.15, 
0.19, and 0.07  2 1E W m nm  (37.5%, 50%, and 43.8%). The correlation increased by 0.23, 0.15, and 0.04 (52.3%, 
22.7%, and 4.5%). Based on the phytoplankton absorption curves adopted in the model, the highest decrease in 
RMSE and bias at 412 nm can be explained by the proximity to the chlorophyll E a absorption peak in the blue, 
which can also explain a more uniform spectral change of skill. Moreover, the absorption values of most PFTs 
(except Cryptophytes and Synechococcus) are similar at 380 and 490 nm, with slightly higher values at 380 nm.

Even though several pE b  configurations were tested, their impact on the dE E  match-up was negligible, leading to 
small differences between simulation results. The chosen scattering model was a non-Case 1 type derived from 

(700)bpE b  measurements following Equations 20 and 21, with a maximum backscattering ratio bpE b  of 0.015 and 
a spectral slope E  of 3. The selection of these values is motivated by examining dE K  and rsE R  climatologies as dis-
cussed in Section 3.2.

The final modeling configuration, including all optically significant constituents considered in this study, that is

    _ _ _ _ _ _ _ _ _ ,w w NAP bp CDOM bio w p bpa Mason b a Babin b a K Mason a corr a b from b�

results in a RMSE ranging from 0.05 to 0.09  2 1E W m nm  , a negative bias of −0.02  2 1E W m nm  at 412 nm and pos-
itive values of 0.01  2 1E W m nm  at 380 and 490 nm, while E r is 0.93 at 380 nm, 0.94 at 412 nm, and 0.95 at 490 nm. 
Figure 3. The slope is closest to 1 at 490 nm, with the highest value observed at 380 nm (1.03), signifying a model 
overestimation, and lowest slope at 412 nm (0.78), with model values lower than float measurements.

Examples of the model results for west and east are displayed in Figures 4a and 4b, respectively. The top row 
shows model forcings that were used for IOP parameterization and their depth variability (Chl, (700)bpE b  and 
fDOM), whereas the bottom row displays both the model output and radiometric measurements ( dE E  ). Modeled 
and measured irradiance values are quite in agreement, both in terms of vertical shapes and the first optical 
(e-folding) depth ranges at all three wavelengths considered. As the model is configured in such way that it takes 
the IOP depth variability based on the local float biogeochemical measurements, no regional bias was observed 
in the results. This is quite encouraging given the fact that two different bio-optical regimes are clearly at play 
in the Western and Eastern Mediterranean. More specifically, the Western Mediterranean subsurface Chl maxi-
mum overlaps with the shape of (700)bpE b  , which might suggest that the modifications in Chl are related to actual 
changes in phytoplankton biomass and community structure, Figure 4a (Barbieux et al., 2018). On the contrary, 
no such co-variance is observed for the Eastern Mediterranean, and values of (700)bpE b  are much higher, which 
might be explained more due to physiology and photoadaptation than to changes in the actual biomass, Figure 4b 
(Barbieux et al., 2018). Moreover, in the Eastern Mediterranean the particles might be also of more mineral origin 
due to episodic dust deposition events (Claustre et al., 2002). Such findings clearly demonstrate the importance of 
having synoptic biogeochemical, bio-optical and radiometric measurements in order to validate the IOP metrics  

Figure 3.  Match-up ( )dE E  with the final modeling configuration including all IOPs in the first 150 m, displaying the root mean square error (RMSE), bias, Pearson 
correlation coefficient (r), slope, intercept (Y-int), and number of points (N) for each of the three wavelengths considered.
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with available irradiance profiles. Furthermore, simulations show that the 
inclusion of additional parameters (i.e., fDOM and (700)bpE b  ) in the IOP pa-
rameterizations results in a significant improvement of the match-up statistics 
compared to Chl-shaped (Case 1) IOP models.

3.2.  Comparison With In Situ and Remote Sensing Apparent Optical 
Properties

Results were further assessed also in terms of diffuse attenuation coefficients 
for downwelling irradiance ( )dE K  and remote sensing reflectance ( )rsE R  . 
Both AOPs were calculated for the first optical (i.e., e-folding) depth range, 
following methods described in Sections 2.3 and 2.4. Additionally, for the 
wavelength 490  nm, a three-platform comparison was possible with mod-
el- and float-derived (490)dE K  versus satellite data. The match-up of satel-
lite and float observations amounted to 445 co-located measurements which 
were spatio-temporally aggregated into climatological months and grouped 
according to western and eastern basins. More information on the number of 
profiles per month per region is shown in Table 3.

Seasonal Taylor diagrams of ( )dE K  , divided in west (darker points) and east 
(lighter points), for RMSE and E r values are shown in Figure 5. The aim was 
to assess the impact of changing the relative contribution of CDOME a  within 
the bioE K  term as described in Section 2.3.3. The bioE K  factor was plotted for 
the extreme ranges of tested values:  0.5E f  (opaque) and  1E f  (transpar-
ent). In terms of the scattering modeling configurations, there was no dif-
ference in the skill between the two ranges of backscattering ratio, hence 
only   0.015bpE b  is shown in Figure  5. Different values of slopes are dis-
played with different markers. Results convey two distinct clusters for the 
western and eastern basins, which could imply regionally different bio-opti-
cal regimes, with RMSE values always lower for the Eastern Mediterranean. 
Such findings are in line with Terzić et al. (2019), which also shows zonal 
gradients in modeled and float-derived ( )dE K  values. Moreover, changing E  
values does not seem to have a strong impact on the skill in terms of ( )dE K  
statistics, as points are in most cases concentrated. bioE K  factor proves to have 
the largest impact on the model skill (f = 0.5), especially at shorter wave-
lengths during winter, when RMSE is reduced for more than a factor of 5 
at 380 nm. Even though  0.5E f  worsens the model match-up in terms of 

dE E  ( _0.5 _ _ _CDOM bio wE a K Mason a corr ), as shown in Figure  2c and Table  2, 
this might suggest that optically active constituents absorbing in the UV/blue 
(such as CDOM) are more important at greater depths, as ( )dE K  is assessed 
only at the first optical depth. This might in turn explain why  1E f  works 
better at greater depths, where fDOM most likely has a larger impact.

Modeled ( )dE K  coefficients replicated the monthly dynamics computed from 
float measurements, Figure 6. At 380 nm, maximum discrepancy is seen in 
winter and spring months for western basins, with a largest difference in the 
month of April, with mean values of 0.125 and 0.11 1E m  for model and data, 
respectively (top figure in Figure 6). At longer wavelengths the difference di-
minishes, with good consistency achieved also between the three comparing 

platforms at 490 nm. However, satellites do not seem to capture highest values in spring for the Western Medi-
terranean, which is shown from BGC-Argo floats and model results. Overall, ( )dE K  values are larger for western 
than eastern basins, as shown in Terzić et al. (2019). Modeling IOPs as functions of available biogeochemical 
and bio-optical measurements therefore provides a significant reproduction of the zonal gradients. The similar 
magnitude of error bars from all platforms demonstrates also that the model and data variabilities are close.

Figure 4.  Example of a BGC-Argo profile with modeled and measured 
radiometric values. Pale dots are values prior to the QC additionally applied to 
this study. (a) Western Mediterranean. (b) Eastern Mediterranean.
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Considering another AOP, however, a different result is obtained. ( )rsE R  is 
related to IOPs in such way that is directly proportional to backscattering and 
inversely proportional to the sum of absorption and backscattering (Morel & 
Gentili, 1993; Morel & Prieur, 1977). Raman scattering was accounted for 
by correcting ( )rsE R  values according to Lee et al. (2013), and its inclusion 
amounts to 3.5%, 4%, and 8.5% difference in terms of ( )rsE R  at 412, 443, and 
490, respectively (not shown).

Seasonal Taylor diagrams of ( )rsE R  , divided in west (darker points) and 
east (lighter points), for RMSE and E r values are shown in Figure 7. Un-
like in Figure 5, no zonal gradients are observed, instead, points seem to 
be quite dispersed. E r is generally less than 0.6 during most seasons, with 
exceptions seen in autumn (at 443 nm) and winter (at 490 nm), up to a 
maximum of around 0.8 and 0.7, respectively. In terms of the bioE K  factor 
(  0.5E f  displayed as opaque and  1E f  as transparent), the greatest im-
pact is seen at higher slope values (η = 4), for which RMSE decreases at 
all seasons and wavelengths, however still having highest values among 
all E  . As in Figure 5, changing the bioE K  factor has a greater impact than 
changing the backscattering ratio, as the range of tested values is quite 
small (between 0.2% and 1.5%), and thus only values of   0.015bpE b  are 
shown in Figure 7.

Given the lack of in situ upwelling radiometric measurements, as well as the uncertainty of remote sensing in the 
blue part of the spectrum, no definite conclusions can be placed on the most adequate scattering model parame-
ters. However, using Case 1 from Equation 19 leads to an underestimation of modeled ( )rsE R  for both west and 
east, resulting in up to a 60% discrepancy with satellite values, even when using the (700)bpE b  shape, and especially 
during summer months (not shown). By rather focusing on the (700)bpE b  -derived scattering models while looking 
at monthly climatological ( )rsE R  data shown in Figures 8a and 8b, certain range of slope values can be preferred 
for certain seasons and regions. Lower values (  1E  ) seemed to work best during winter/early spring in the 
Western Mediterranean (seen from Figure 7), with   2E  for the spring in the Eastern Mediterranean, as well as 
for late spring and summer at west, Figure 8a.   3E  resulted in a better agreement with remote-sensing data for 
summer and autumn in the Eastern Mediterranean, Figure 8b. Slopes of 2 and 3 are also consistent with the range 
of values from Antoine et al. (2011). This finding might suggest that there are different scattering regimes at play 
in the two basins, most likely stemming from a different particle size distribution (Antoine et al., 2011), which can 
provide information also on the dominant phytoplankton (Kostadinov et al., 2009; Organelli et al., 2020). Lower 
slope values thus imply larger particles, which is consistent with the results in the west during usual spring bloom 
events with larger, microphytoplankton assemblages (20–200 E m ). On the other hand, higher slope values could 
suggest smaller particles, consistent with the pico- or nanophytoplankton (0.2–2 and 2–20 E m , respectively) 
assemblages usually predominant at the basin level, with the former prevailing especially during spring/summer 
and the latter during winter. Such conclusions are in line with the previously detected patterns of phytoplankton 
distribution in Siokou-Frangou et al. (2010) and Uitz et al. (2012), which were confirmed also by Sammartino 
et al. (2015), Di Cicco et al. (2017), and Navarro et al. (2017).

4.  Conclusions
BGC-Argo floats prove to be an essential observing system to further explore the possibility of integrating data in 
numerical modeling of physical, as well as biogeochemical and optical properties. Due to the high number of pro-
files with synoptic measurements of physical and bio-optical parameters, it is possible to use the almost complete 
suite of measured variables (T, S, Chl, fDOM, (700)bpE b  , and ( )dE E  ) to test various state-of-the-art parameteriza-
tions of absorption and scattering properties of sea water constituents. The current wavelength selection of ( )dE E  
measurements constitutes an ideal tool to explore the part of the spectrum that is least understood, mostly for the 
contributions from CDOM and NAP. This is particularly true in the Mediterranean Sea, where the blue-to-green 
reflectance ratio-based algorithms are known to have low performances (Morel & Gentili, 2009) because of the 
higher-than-expected contribution of CDOM for a given Chl concentration. The major findings of this work can 

month West East

1 58 42

2 49 48

3 86 69

4 58 70

5 75 110

6 43 48

7 32 38

8 19 26

9 22 16

10 17 22

11 31 25

12 70 42

Table 3 
Number of Matched-Up Profiles per Month per Region (i.e., Western and 
Eastern Mediterranean)
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be summarized as follows: the inclusion of T and S data is recommended to account for the small, but significant 
spectral modulation of seawater compared to pure water, which also improves the model skill. Furthermore, the 
tests performed on Case 1 IOP models reveal that the inclusion of additional biogeochemical measurements in 
the IOP parameterizations results in improved match-up statistics, both when comparing with irradiance profiles, 
as well as with in situ and remote-sensing derived AOPs. The shape of (700)bpE b  for NAPE a  variability increases the 
skill compared to Chl-shaped models by up to 40% in the case of RMSE. Moreover, it was demonstrated that the 
use of fDOM shape and the estimation of (380)CDOME a  for CDOM absorption from (380)dE K  , as well as the spectral 
correction of the updated wE a  spectrum, all contribute to an upgrade in CDOM modeling of up to 57.7% in terms 
of RMSE. Different relative contributions of (380)bioE K  as an indicator of (380)CDOME a  were shown for different 
metrics, matching up dE E  values at a 150 m depth range versus dE K  at the first optical depth. Results implied a lower 
relative contribution of (380)bioE K  to (380)CDOME a  (  0.5E f  ) at shallower depths, and a higher one (  1E f  ) at greater 
depths, suggesting a major importance of CDOM dynamics also at depths which cannot be captured by satellites. 
Therefore, partitioning the contributions of NAP and CDOM to the total absorption with additional experiments 
would be also advantageous, as well as the assessment of relative contributions of different constituents to the 
total (700)bpE b  signal, thus separating the organic and inorganic parts.

Figure 5.  Taylor diagrams of seasonally divided (rows) values of RMSE of ( )dE K  at 380, 412, and 490 nm (columns). Dark colors represent the Western 
Mediterranean, while lighter colors depict the Eastern Mediterranean. Transparent points indicate values of bioE K  multiplied by a factor E f  of 1 and the opaque ones stand 
for a factor of 0.5. The symbols show different values of the slope E  .
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The inclusion of PFTs has demonstrated the importance of accounting also for phytoplankton, resulting in a more 
uniform spectral response in the blue, decreasing the RMSE up to 41.9% compared to the pure water simulations. 
Observations of other biogeochemical parameters, such as oxygen, nitrate, and pH, can be possibly integrated 
with a coupled biogeochemical model. All of these variables are already available on the BGC-Argo float stand-
ard configuration (Claustre et al., 2020). This could offer the opportunity, with an existing validation data set, to 
consider also the phytoplankton ecology and dynamics of separate functional groups. Such work demonstrates 
the advantages of combining data with numerical models, which can pave way to a better understanding of bio-
geochemical processes in the examined regions.

Figure 6.  Monthly climatology of ( )dE K  values with (380) (380)CDOM bioE a f K  , where  0.5E f  . The top two figures display model (purple points) and float (orange 
points) values for western (darker color) and eastern (lighter color) basins. At 490 nm, additional green scatter points from satellite data are included (bottom figure).



Journal of Geophysical Research: Oceans

TERZIĆ ET AL.

10.1029/2021JC017690

18 of 22

The focus of this study is also more on the absorption models rather than scattering due to the lack of uE E  measure-
ments and the uncertainty of remote sensing in the blue part of the spectrum. However, despite these limitations, 
the model is still able to capture the spatio-temporal variability of slope values, indicating different phytoplankton 
and particle size distributions. With the integration of multi-spectral data from platforms like ProVal (Leymarie 
et al., 2018), it will be possible to further examine this issue in more detail. This will enable also the calculation 
of in situ E R and remote-sensing reflectance estimations rsE R  , thus surpassing the current limitation of quantifying 
the skill between rsE R  satellite data with model values due to the scarcity of satellite observations spatio-temporally 
co-located with BGC-Argo float profiles, supporting further the three-platform comparisons.

To conclude, the key point raised in this study is that the inclusion of multi-spectral measurements is essential 
to tackle the proper biogeochemical response, surpassing the most-commonly PAR-related parameterizations of 
phytoplankton growth. With the advancement of satellite sensors and their algorithms it would be necessary to 
make a comparison of radiative transfer models of different degrees of complexity, and perform similar tests with 
hyperspectral models which are able to solve a full radiative transfer equation resulting in a complete radiance 
distribution (Hedley et al., 2020).

Figure 7.  Taylor diagrams of seasonally divided (rows) values of RMSE of ( )rsE R  at 412, 443, and 490 nm (columns). Dark colors represent the Western 
Mediterranean, while lighter colors depict the Eastern Mediterranean. Transparent points indicate values of bioE K  multiplied by a factor E f  of 1 and the opaque ones stand 
for a factor of 0.5. The symbols show different values of the slope E  .
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Figure 8.  Monthly climatology of ( )rsE R  values with (380) (380)CDOM bioE a f K  . All three figures display model (purple 
points) and satellite (orange points) values for western (darker color) and eastern (lighter color) basins at 412, 443, and 
490 nm, respectively. (a) Where  0.5E f  and   2E  . (b) Where  0.5E f  and   3E  .
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Data Availability Statement
Data supporting the conclusions are freely available at https://doi.org/10.17882/42182 without the additional 
quality control procedures.
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Erratum
In the originally published version of this article, the third group of simulations in Table 2 (Pure water IOPs plus 
aCDOM) inadvertently repeated the same numbers and simulation names as the fourth group of simulations (Pure 
water IOPs plus aCDOM, aϕ and aNAP). This has been corrected, and this may be considered the official version of 
record.
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