
Citation: Hu, L.; Dong, Q.; Li, Z.; Ma,

Y.; Aslam, M.Z.; Liu, Y. Modelling the

Adhesion and Biofilm Formation

Boundary of Listeria monocytogenes

ST9. Foods 2022, 11, 1940. https://

doi.org/10.3390/foods11131940

Academic Editors: Filomena Nazzaro,

Qian Chen and Baohua Kong

Received: 17 May 2022

Accepted: 27 June 2022

Published: 29 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

foods

Article

Modelling the Adhesion and Biofilm Formation Boundary of
Listeria monocytogenes ST9
Lili Hu, Qingli Dong , Zhuosi Li , Yue Ma, Muhammad Zohaib Aslam and Yangtai Liu *

School of Health Science and Engineering, University of Shanghai for Science and Technology,
Shanghai 200093, China; usst_hll@163.com (L.H.); qdong@usst.edu.cn (Q.D.); lizhuosi@usst.edu.cn (Z.L.);
yuema@usst.edu.cn (Y.M.); zohaib.aslam.000@gmail.com (M.Z.A.)
* Correspondence: lyt@usst.edu.cn

Abstract: Listeria monocytogenes is a major foodborne pathogen that can adhere to or form a biofilm
on food contact surfaces, depending on the environmental conditions. The purpose of this work
is to determine the adhesion and biofilm formation boundaries for L. monocytogenes ST9 under the
combination environments of temperature (5, 15, and 25 ◦C), NaCl concentration (0%, 3%, 6%, and
9% (w/v)) and pH (5.0, 6.0, 7.0, and 8.0). The probability models of adhesion and biofilm formation
were built using the logistic regression. For adhesion, only the terms of linear T and NaCl are
significant for L. monocytogenes ST9 (p < 0.05), whereas the terms of linear T, NaCl, and pH, and the
interaction between T and pH were significant for biofilm formation (p < 0.05). By analyzing contour
maps and their surface plots for two different states, we discovered that high temperature promoted
adhesion and biofilm formation, whereas excessive NaCl concentration inhibited both of them. With
a stringent threshold of 0.1667, the accuracy rate for identifying both adhesion/no-adhesion and
biofilm formation/no-biofilm formation events were 0.929, indicating that the probability models are
reasonably accurate in predicting the adhesion and biofilm formation boundary of L. monocytogenes
ST9. The boundary model may provide a useful way for determining and further controlling
L. monocytogenes adhesion and biofilm formation in various food processing environments.

Keywords: Listeria monocytogenes; adhesion; biofilm formation; boundary model

1. Introduction

Listeria monocytogenes is a concerning pathogen widely distributed in foods and asso-
ciated environments, resulting in severe illnesses and deaths [1,2]. Between 2011 and 2017,
136 relevant outbreaks were reported and 562 patients were diagnosed with listeriosis in
mainland China [3]. The meat production and consumption chain was widely regarded
as one of the primary routes for the spread of L. monocytogenes [4,5]. According to the Chi-
nese national microbiological food safety surveillance network, between 2008 and 2016, the
prevalence of L. monocytogenes in poultry-meat products was up to 8.91%, which was the
highest food among 14 categories [6]. Several investigations revealed that the predominant
sequence types (STs) of L. monocytogenes in meats or their processing plants is ST9 [6–9].
L. monocytogenes ST9 may persist in the form of planktonic or biofilm in foods or on food
contact surfaces, constituting a continuous source of contamination during meat production.

Biofilm is an aggregation of microorganisms attached to a surface and embedded in a
matrix of extracellular polymeric substances (EPS), which is a common pattern of microbial
persistence [10,11]. Once the adhered bacterial population develops into a matured biofilm,
it can be more resistant to various stresses and more difficult to eradicate, compared with
the planktonic form [12,13]. In particular, biofilms have been observed to be 10 to 1000 times
more resistant to various antibiotics [11,14]. A biofilm lifecycle is divided into four stages:
adhesion; microcolony formation; maturation; and dispersion. Such a dynamic process
is affected by various factors, including strain characteristics, temperature, pH, nutrition,
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osmotic pressure, etc. [15]. Previous studies have discovered that L. monocytogenes biofilm
shows a variety of structures: mono-layers of adhered cells; flat unstructured multilayers;
honeycomb structures; or clusters with EPS [16]. The components of EPS, containing
proteins, extracellular polysaccharides, DNA, and teichoic acid, can provide nutrients and
allow cell-to-cell communication for the bacteria [17]. Due to its strong antibiotic resistance,
virulence, and persistence, biofilm has become a significant threat to food safety. It is
meaningful to build a model to describe how the environmental factors affect bacterial
adhesion and biofilm formation.

Recently, the growth/no growth interfaces were extensively modeled for planktonic
spoilages and bacteria as a function of food-related environments, such as temperature, pH,
and NaCl concentration [18,19]. Such boundary models can estimate the growth limitations
of microorganisms under specific environmental conditions, which might provide a realistic
evaluation of food safety. Several models with diverse factors of L. monocytogenes were
developed in a liquid laboratory broth, or even in a real food matrix [20,21]. For instance,
Schvartzman et al. demonstrated that the growth/no growth interfaces in broth, milk,
and cheese were different, and that the cheesemaking conditions could promote a lower
growth of L. monocytogenes than the broth and milk [22]. These studies provided useful
information for microbial kinetic analysis and further quantitative risk assessment in foods.
However, there are limited studies on developing the biofilm formation boundary for
L. monocytogenes, especially considering the environmental factors in the meat chain [23,24].

Therefore, our research intends to determine the adhesion and biofilm formation
boundary of L. monocytogenes ST9 under the conditions of temperature, pH, and NaCl. The
observations and established models are expected to contribute to a better understanding
of the persistent contamination of L. monocytogenes during meat processing.

2. Materials and Methods
2.1. Preparation of L. monocytogenes Suspension

A strain of L. monocytogenes ST9 (lineage II), isolated from Chinese meat products,
was employed in this study. This strain was formerly reported by Tian et al. (Strain no.
13) and showed a relative short lag phase and strong biofilm-forming ability, compared to
others [25]. The strain was frozen in glycerol stock culture and inoculated into Tryptone Soy
Broth with 0.6% Yeast Extract (TSB-YE; Hopebio Technology Co. Ltd., Qingdao, China). The
working stocks were stored at 4 ◦C on Tryptone Soy Agar with 0.6% Yeast Extract (TSA-YE;
Hopebio) for four weeks. Prior to each experiment, a single colony was inoculated into the
TSB-YE at 37 ◦C overnight to yield late stationary phase cells. The cells were harvested by
centrifugation at 8000× g for 10 min at 4 ◦C (Thermo Fisher Scientific Co. Ltd., Shanghai,
China). The harvested cells were washed three times and re-suspended with 1 mL of
0.85% sterile saline solution. Each suspension was diluted with 0.85% saline solution to a
concentration of 106 CFU/mL for the following tests.

2.2. Incubation of L. monocytogenes

To simulate the major environments in meat processing plants, three primary factors
of pH values (5.0, 6.0, 7.0, and 8.0), NaCl concentration (0%, 3%, 6%, and 9% (w/v)),
and temperature (5, 15, and 25 ◦C) were used as the control factors. The above factors
were combined into 48 conditions, following the full factorial design for obtaining the
adhesion and biofilm formation characteristics of L. monocytogenes. The observed data under
48 conditions were randomly assigned in a 7:3 ratio into a modeling group (containing
34 conditions) and a validation group (containing 14 conditions). The salt concentration
and pH value of sterile TSB-YE was adjusted by adding NaCl and using HCl or NaOH
(2 mol/L), respectively [26]. Then, each 180 µL of the developed medium was transferred
into each well of 96-well polystyrene microplates, with 20 µL prepared suspension [27,28].
The microplates were incubated at 5, 15, and 25 ◦C for 48 h, prior to biofilm testing.
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2.3. Enumeration and Evaluation of L. monocytogenes

Following the incubation, the TSB-YE from each well was discarded and rinsed three
times with 0.85% saline solution to remove the no-adhered cells. Then, each well was
thoroughly scraped with sterile cotton swabs. The swabs were immersed in 5 mL of saline
solution and vortexed for about 2 min with beads [28]. Subsequently, the decimal dilutions
were prepared and plated, and the plates were incubated at 37 ◦C for 24 h. The results were
reported as log10 CFU/mL. The L. monocytogenes population was considered as adhesion
when the counts of each well were 3.00 to 5.00 log10 CFU/mL, otherwise it was considered
as biofilm formation when greater than 5.00 log10 CFU/mL [29,30]. Each combination of
pH, temperature, and NaCl was performed in six replicates to calculate the probability of
adhesion or biofilm formation under a specific condition.

2.4. Adhesion and Biofilm Formation Boundaries Modelling of L. monocytogenes

A logistic regression model, to describe the boundary of L. monocytogenes adhesion or
biofilm formation, was applied and listed as follows:

Logit(P) = ln
(

P
1−P

)
= a0 + a1 × T + a2 × NaCl + a3 × pH + a4 × T × NaCl

+a5 × T × pH + a6 × NaCl × pH + a7 × T2 + a8 × NaCl2

+a9 × pH2

(1)

where P is the probability of adhesion and biofilm formation; ai is the parameters to be
estimated; pH is the pH value of the medium; T (◦C) is temperature; and NaCl (% (w/v))
is the NaCl concentration, respectively. When the L. monocytogenes counts of 3.00 and
5.00 log10 CFU/mL, or more than 5.00 log10 CFU/mL, are found, P is assigned the value of
1 at a specific combination of three factors. Meanwhile, a value of 0 was assigned when the
counts of L. monocytogenes were 0 to 3.00 log10 CFU/mL, which indicates the absence of
adhesion or biofilm formation.

The Minitab 19.0 software (Minitab Inc., State College, PA, USA) was used to analyze
the data. A stepwise selection procedure was used to determine the significant parameters
(p < 0.05). The adhesion/no-adhesion or biofilm formation/no-biofilm formation interfaces
were constructed when the logistic regression models were fitted. The performance of
the obtained models was evaluated with the adjusted R2 and the Bayesian information
criterion (BIC). The equations were listed as follows, respectively [31]:

Adjusted R2 = 1 −
(

n − 1
n − p

)(
SSE
SST

)
(2)

BIC = n ln
(

SSE
n

)
+ p ln(n) (3)

where n is the number of observed values; p is the number of parameters of the model; SSE
is the sum of squares of errors; SST is the total sum of squares.

2.5. Experimental Validation of the Probability Models

According to the assignment rule (7:3 ratio), 14 randomly selected environmental
combinations were performed for model validation. The adhesion or biofilm formation
was determined to occur when one positive result was observed in the six replications.
Thus, the threshold of adhesion or biofilm formation was set as 0.1667 (=1/6) [32]. Then,
the predicted probabilities were compared to the observations using the indicators of
accuracy rate, precision rate, and root-mean-square error (RMSE). The equations for the
above indicators were listed as follows, respectively:

Accuracy rate =
TPR + TNR

TPR + TNR + FPR + FNR
(4)
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Precision rate =
TPR

TPR + FPR
(5)

where TPR is the true positive rate; TNR is the true negative rate; FPR is the false positive
rate; and FNR is the false negative rate, respectively:

RMSE =

√
1
n

n

∑
i=1

(Po − Pp)
2 (6)

where n is the number of observed values; Po is the observed probability of adhesion or biofilm
formation; and Pp is the predicted probability of adhesion or biofilm formation, respectively.

3. Results and Discussion
3.1. Development of Adhesion and Biofilm Formation Boundary Models

Among the 204 combinations of the conditions assayed, adhesion was observed in
52.5% (=107/204), biofilm formation was observed in 31.9% (=65/204). The terms that
were not significant (p ≥ 0.05) were excluded from the logistic regression models, using
a stepwise selection procedure. For adhesion, only the terms of linear T and NaCl are
significant for L. monocytogenes ST9 strain (p < 0.05). The adhesion boundary model was
listed as follows:

Logit(Padhesion) = −1.418 + 0.366 × T − 0.721 × NaCl (7)

The estimated parameters and the standard error are shown in Table 1. According to
the Wald test, the χ2 of T and NaCl were 51.650 and 28.490, indicating that the temperature
had the most essential effect for the adhesion of L. monocytogenes ST9, followed by the
NaCl concentration. Within the investigated pH values, the influence of pH on adhesion
appeared to be insignificant. Adhesion is an important early stage of the biofilm formation
process, and is driven by cell motility or Brownian motion. The sessile cells can initiate
the next stage, microcolony formation, by utilizing pili, flagella, or exopolysaccharides’
production [33].

Table 1. Logistic regression of combined effect of T, pH, and NaCl on adhesion probability of
L. monocytogenes ST9.

Estimated Coefficient Standard Error Wald χ2 p-Value

Constant −1.418 0.721 52.500 0.000
T 0.366 0.051 51.650 0.000

NaCl −0.721 0.135 28.490 0.000
Adjusted R2 0.640

BIC 115.510

As regards the biofilm formation, the terms of linear T, NaCl, and pH, the interaction
between T and pH was significant (p < 0.05). The biofilm formation boundary model was
listed as follows, and the estimated parameters were shown in Table 2:

Logit(Pbiofilm) = 8.260 − 0.795T − 0.754 × NaCl − 2.860 × pH + 0.235 × T × pH (8)

The χ2 of T, pH, NaCl and the interaction between T and pH were 2.570, 4.090,
23.050, and 7.440, based on the Wald test. The values of χ2 demonstrated that the NaCl
concentration was the most significant factor, followed by the interaction between T and
pH. Although the regression coefficient of T was not significant (p > 0.05), the regression
model was acceptable, according to the BIC.
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Table 2. Logistic regression of combined effect of T, pH, and NaCl on biofilm formation probability
of L. monocytogenes ST9.

Estimated Coefficient Standard Error Wald χ2 p-Value

Constant 8.260 8.510 28.680 0.000
T −0.795 0.496 2.570 0.109

NaCl −0.754 0.157 23.050 0.000
pH −2.860 1.410 4.090 0.043

T × pH 0.235 0.086 7.440 0.001
Adjusted R2 0.679

BIC 104.450

The probability of adhesion of the L. monocytogenes ST9, as affected by T and NaCl, is
shown in Figure 1. From the contour map, the darker green in the area represented a higher
adhesion probability. The surface plot can directly reflect the trend of adhesion probability
with three environmental factors. High temperatures could promote adhesion, whereas
excessive NaCl concentration inhibited it. For instance, the probability of adhesion was less
than 0.1 when the NaCl concentration reached up to 6% at 5 ◦C. While at the same NaCl
concentration, it could be observed that the probability increased to 0.9 at 25 ◦C. Despite the
fact that NaCl concentration was 6% higher, the probability of adhesion was higher than
0.9. Previous studies have proved that high temperatures could increase the metabolism of
L. monocytogenes cells, which was directly associated with an increase in the cell division
rates [34]. Additionally, the temperature can influence the cell surface structures, including
the flagella, curli, surface proteins, and cell hydrophobicity, all of which are relevant for
initial adhesion during the biofilm formation process [33]. The effect of salt on bacteria
is responsible for increasing osmotic pressure, which requires more metabolic energy
to prevent water loss via the accumulation of osmoprotectants [35]. Iliadis et al. also
found that increasing the NaCl concentration could suppress the growth of Salmonella
Enteritidis and S. Typhimurium sessile cells in low nutrient food-related conditions [26].
Additionally, it has been demonstrated that extremely high salt concentrations repressed
flagella expression; thus, reducing the adhesion capability of L. monocytogenes to stainless
steel and polystyrene [36].
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Figure 2 illustrates the probability of biofilm formation of L. monocytogenes ST9, as
affected by T and NaCl at different pH levels. Compared with adhesion, the effect of
temperature and NaCl concentration exhibited a similar effect on the biofilm formation, in
which a higher temperature and lower NaCl concentration could facilitate the formation
of the biofilm. Bezek et al. found that the biofouling of L. monocytogenes grown at 37 ◦C
was higher than that at 22 ◦C, regardless of the glucose concentration and abiotic surface
materials [37]. These results demonstrated that the temperature is a critical factor for biofilm
formation. Biofilm formation is different from adhesion, so the probability significantly
increased as the pH level rose at a constant temperature and NaCl concentration. For
instance, when the temperature was 25 ◦C and the NaCl concentration was less than
3%, the biofilm formation probability was greater than 0.9 at pH 5.0. While the same
probability could be reached when the temperature exceeded 15 ◦C, at pH 7.0. At pH 8.0,
the boundary of the biofilm formation was slightly wider than at pH 7.0. This indicated
that the weakly alkaline environments could enhance biofilm formation, compared with
neutral environments. Nilsson et al. found that biofilm production significantly increased
under alkaline (pH 8.5) culture conditions after 48 h incubation (p < 0.05) [38]. It could
be reasonably hypothesized that biofilm is a bacterial survival strategy to slight stresses.
Previous studies found that sub-lethal stress conditions can enhance the biofilm formation
in specific S. enterica strains [39]. In this study, the probability of biofilm formation could
reach 0.9 at 25 ◦C, with pH 5.0. These results suggested that L. monocytogenes may able
to form biofilms on the equipment surfaces under acidic conditions. Due to the strong
ability of L. monocytogenes to form biofilms, more stringent sanitization procedures should
be considered in food processing environments. In addition, other foodborne pathogens,
such as Salmonella and Escherichia coli, have been deployed in the biofilm boundary models,
with other environmental factors. Moraes et al. developed models to predict the adhesion
and biofilm formation for Salmonella enterica as a function of temperature, NaCl, and
pH [30]. The models showed adequate performance in predicting the boundary of adhesion
and biofilm formation. This study also emphasized the strain variability of boundary
models among the five different serovars. Compared to the limitations for adhesion and
biofilm formation, it appears that L. monocytogenes can adhere and form biofilm more
readily than Salmonella at refrigerated temperatures. Perhaps the psychrophilic nature
of L. monocytogenes permits it to adhere to, or form biofilm on, contact surfaces at low
temperatures. Mendonça et al. established the boundary models for biofilm formation
of E. coli O157:H7 by contact time and temperature, under different types of materials.
The results showed that the material type, temperature, and contact time jointly affect the
biofilm formation [40]. Additionally, Dimakopoulou et al. developed the probabilistic
models to describe the biofilm formation boundary of Salmonella Newport under different
combinations of pH and water activity at 37 ◦C [41]. However, the boundaries of S. Newport
observed in this study are significantly wider in comparison with the growth boundaries of
Salmonella reported in previous studies [42]. It demonstrated that bacteria can form biofilm
under slightly stressful environments, which may not favor planktonic bacterial growth.

3.2. Model Validation

When probability models are used to determine whether L. monocytogenes may adhere
to or form biofilm with different combinations of control factors, it is critical to use a
criterion with high accuracy rate, low false positive rate, and low false negative rate.
The models were used to judge adhesion/no-adhesion and biofilm formation/no-biofilm
formation using the threshold (0.1667). The values predicted by the models developed for
the prediction of adhesion and biofilm formation boundaries shows a high agreement with
the values in the assays of the experimental validation (Tables 3 and 4). The column of “Po”
represents the observed adhesion or biofilm formation probability, Po ≥ 0.1667 indicates
that the adhesion or biofilm formation of L. monocytogenes had occurred in the experiments.
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Table 3. Validation of logistic regression model and classification of adhesion and no-adhesion
according to threshold (0.1667).

ID T (◦C) NaCl (%) pH Po
1 Pp

2 Po ≥ 0.1667 3 Pp ≥ 0.1667 4 False
Positive

False
Negative

35 25 3 6.0 1.0000 0.9962 Y Y N N
36 15 9 8.0 0.0000 0.0819 N N N N
37 25 0 7.0 1.0000 0.9996 Y Y N N
38 5 0 7.0 0.3333 0.6018 Y Y N N
39 25 9 8.0 1.0000 0.7767 Y Y N N
40 5 0 6.0 0.0000 0.6018 N Y Y N
41 25 3 5.0 1.0000 0.9962 Y Y N N
42 5 0 5.0 0.0000 0.6018 N Y Y N
43 25 0 8.0 1.0000 0.9996 Y Y N N
44 5 0 8.0 0.1667 0.6018 Y Y N N
45 5 3 6.0 0.0000 0.1479 N N N N
46 25 3 8.0 1.0000 0.9962 Y Y N N
47 15 3 6.0 1.0000 0.8712 Y Y N N
48 15 6 5.0 0.6667 0.4373 Y Y N N

1 Po: observed adhesion ratio = number of wells showing adhesion/14; 2 Pp: probability of adhesion calculated by
Equation (7); 3 Po ≥ 0.1677: adhesion is considered to have occurred if observed adhesion ratio (Po) is ≥ 0.1677,
designated as “Y”, otherwise “N”; 4 Pp ≥ 0.1677: adhesion is considered to have occurred if calculated Pp is
≥0.1677, designated as “Y”, otherwise “N”.

Table 4. Validation of logistic regression model and classification of biofilm formation and no-biofilm
formation according to threshold (0.1667).

ID T (◦C) NaCl (%) pH Po
1 Pp

2 Po ≥ 0.1667 3 Pp ≥ 0.1667 4 False
Positive

False
Negative

35 25 3 6.0 1.0000 0.9858 Y Y N N
36 15 9 8.0 0.0000 0.0060 N N N N
37 25 0 7.0 1.0000 0.9999 Y Y N N
38 5 0 7.0 0.0000 0.0005 N N N N
39 25 9 8.0 0.0000 0.9968 N Y Y N
40 5 0 6.0 0.0000 0.0030 N N N N
41 25 3 5.0 1.0000 0.7719 Y Y N N
42 5 0 5.0 0.0000 0.0157 N N N N
43 25 0 8.0 1.0000 1.0000 Y Y N N
44 5 0 8.0 0.0000 0.0001 N N N N
45 5 3 6.0 0.0000 0.0003 N N N N
46 25 3 8.0 1.0000 1.0000 Y Y N N
47 15 3 6.0 0.5000 0.1275 Y N N Y
48 15 6 5.0 0.0000 0.0077 N N N N

1 Po: observed biofilm formation ratio = number of wells showing biofilm formation/14; 2 Pp: probability of
biofilm formation calculated by Equation (8); 3 Po ≥ 0.1677: biofilm formation is considered to have occurred
if observed biofilm formation ratio (Po) is ≥0.1677, designated as “Y”, otherwise “N”; 4 Pp ≥ 0.1677: biofilm
formation is considered to have occurred if calculated Pp is ≥ 0.1677, designated as “Y”, otherwise “N”.

In Table 3, ten tests were accurately classified as adhesion events, while test 40 and 42
were false positives. Besides, both test 36 and 45 were no-adhesion, from observation and
prediction. According to the confusion matrix (Table 5), the overall accuracy rate is 0.929 in
predicting adhesion. The TPR reaches to 1.000, the TNR is 0.857, and the precision rate is
0.875. Moreover, the RMSE between the observation value and the prediction value is 0.285.
In Table 4, five tests had biofilm formation events and seven tests had no biofilm formation.
Meanwhile, test 39 was false positive and test 47 was false negative. The accuracy rate of
predicting biofilm formation is 0.929. The TPR and TNR values are 0.929, and the precision
is 0.482. The RMSE is 0.291, indicating that biofilm formation was well predicted. In many
cases, the disagreements between prediction and observation were false positives, which
may be due to unknown factors related to adhesion and biofilm formation. Nevertheless,
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the results are relatively accurate (above 90%) to classify adhesion/no-adhesion and biofilm
formation/no-biofilm formation. Then, the obtained models can be considered adequate
for evaluating the adhesion and biofilm formation boundaries of L. monocytogenes. Further-
more, this also indirectly reflects the importance and effectiveness of hurdle technology in
controlling biofilm formation of microorganisms in the meat processing.

Table 5. Confusion matrices for validation of adhesion/no-adhesion or biofilm formation/no-biofilm
formation of L. monocytogenes ST9, based on thresholds (0.1667).

Adhesion/
No-Adhesion

Biofilm Formation/
No-Biofilm Formation

Accuracy rate 0.929 0.929
Precision rate 0.875 0.482

True positive rate (TPR) 1.000 0.929
True negative rate (TNR) 0.857 0.929

RMSE 0.285 0.291

4. Conclusions
This study evaluated the effect of temperature, pH, and NaCl concentration on the

adhesion and biofilm formation interfaces of L. monocytogenes ST9. The logistic regres-
sion models showed adequate performance to predict the probability of the two statuses.
The obtained results demonstrated that adhesion was affected by temperature and NaCl
concentration, while biofilm formation was associated with temperature, pH, and NaCl
concentration. The accuracy rate for classifying both the adhesion/no-adhesion and biofilm
formation/no-biofilm formation events was 0.929, suggesting that the probability models
are reasonably accurate in predicting the adhesion and biofilm formation boundaries of
L. monocytogenes ST9. Overall, the developed boundary models can quantitatively describe the
impact of temperature, NaCl concentration, and pH on the adhesion and biofilm formation of
L. monocytogenes, thereby guiding the control measures to eliminate the sessile cells in meat
processing and reducing the risk of foodborne listeriosis. Further research objectives should
consider the influence of more environmental factors on the adhesion and biofilm formation
boundary. Author Contributions: Conceptualization, L.H.; methodology, L.H. and Y.L.; formal

analysis, L.H.; investigation, Z.L.; resources, Y.M.; data curation, L.H. and Z.L.; writing—original
draft preparation, L.H.; writing—review and editing, Q.D.; visualization, Q.D., M.Z.A. and Y.L.;
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