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Chronic stress is a critical factor in the aetiology of anxiety disorders; however, in the clinic, enduring and preventive measures are
not available, and therapeutic drugs are associated with inevitable side effects. Our study established an anxiety rat model using
chronic restraint stress (CRS) and assessed these animals using the open-field test, elevated plus-maze test, and light-dark box
test. Jie-Yu-He-Huan capsule (JYHH), a Chinese medicine formula, was used as a preventative drug. The HPA axis-mediated
release of corticotropin-releasing hormone, adrenocorticotropic hormone, and corticosterone from the hypothalamus was
tested. In the hippocampus and prefrontal cortex, concentrations of 5-HT and its metabolite 5-hydroxyindoleacetic acid, as
well as monoamine oxidase A, glucocorticoid receptor, and 5-HT1A receptor expression levels, were measured. Furthermore,
we examined protein and mRNA expression of cAMP-PKA-CREB-BDNF pathway components. The results showed that
JYHH had a significant preventative effect on the anxiety-like behaviour induced by CRS and prevented abnormal changes in
the HPA axis and 5-HT system. Furthermore, CRS inhibited the cAMP-PKA-CREB-BDNF pathway, which returned to normal
levels following JYHH treatment. This might be the underlying molecular mechanism of the antianxiety effect of JYHH, which
could provide a new clinical target for preventative anxiolytic drugs for chronic stress.

1. Introduction

Stress is considered a normal physical and psychological
reaction to positive or negative situations. Chronic stress is
a critical factor in the aetiology of psychiatric diseases, such
as anxiety disorders [1], and impacts behavioural, endocrine,
and brain functions. A chronic restraint stress (CRS) animal
model is commonly used to mimic the pathogenesis and
pathophysiology of chronic stress-induced anxiety [2].
Recently, with the continuous acceleration of the pace of life,
the incidence of anxiety disorders is increasing. Currently,
the first-line treatment of anxiety is benzodiazepines, but

their long-term use can cause drug dependence and memory
and cognitive impairment, increasing the risk of motor
function damage and affecting its clinical application [3].
Traditional Chinese medicine has fewer side effects and
strong individualization with high clinical research value
[4]. Therefore, it has attracted increasing attention for the
treatment of anxiety.

The hypothalamic–pituitary–adrenal (HPA) axis and its
response to chronic stress are key endocrine adaptors to
stressors [5]. Moreover, overactivated HPA functions are
associated with anxiety disorders [6]. In the central nervous
system, chronic stress can alter its architecture, molecular
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profile, and neurochemistry. Stress-induced dysregulation
of the HPA axis (especially increased CORT, the final out-
put of the HPA axis) downregulates glucocorticoid receptor
(GR) expression in the hippocampus and prefrontal cortex
(PFC) as a feedback control mechanism [5, 7].

Dysfunction of the 5-hydroxytryptamine (5-HT) system
and neurotransmitter receptor-mediated signal transduction
pathways in the brain are strongly correlated with stress-
induced emotional and behavioural disorders such as
anxiety and depression [8, 9]. Indeed, 5-HT1A receptor
(5HT1AR) knockout mice are more anxious than wild-type
mice [10]. In the disease pathogenesis, the interaction
between the HPA axis and the central 5-HT system is crucial
[11]. The therapeutic effects of selective serotonin reuptake
inhibitors involve significant changes in the HPA axis [12].
Moreover, antianxiety agents act by regulating some mole-
cules (e.g., GR, CRH, and CORT) [13, 14].

To understand the molecular mechanisms involved in
stress-induced anxiety and drug treatments, various studies
have explored different components of the HPA axis, includ-
ing the cyclic adenosine monophosphate- (cAMP-) medi-
ated second messenger cascade. Upregulation of the 5-HT
system and stimulation of G-protein coupled receptors, such
as 5-HT1AR, might involve cAMP-protein kinase A (PKA)
activation [15]. Therefore, cAMP-PKA cascade activation
could be translated to the cAMP response element-binding
protein (CREB) with a subsequent increase in brain-
derived neurotrophic factor (BDNF) expression [16]. More
importantly, BDNF participates in HPA axis regulation in
CRS-induced emotional disorder [17].

Traditional Chinese medicine can treat anxiety [18–20].
The mechanism is intricate and reportedly involves HPA
axis regulation or BDNF [21, 22]. Thus, a rat model with
CRS-induced anxiety-like behaviour was established, and
behavioural tests were performed. Jie-Yu-He-Huan capsule
(JYHH), a Chinese medicine formula, was used as a preven-
tative drug.We hypothesised that JYHH can prevent anxiety-
like behaviour by regulating the cAMP-PKA-CREB-BDNF
pathway through the HPA axis and 5-HT system. Therefore,
concentration or expression of relevant components of the
HPA axis, 5-HT system, and cAMP-PKA-CREB-BDNF
pathway was examined.

2. Methods

2.1. Animals, Groups, and Experimental Design. In this
study, 6 to 8-week-old male Wistar rats (weighing 140–
160 g) were purchased from Vital River Laboratories (Beijing,
China) [Laboratory animal production license number:
SCXK (Jing)2016-0006]. Animals were acclimated for 1 week
and housed at 21 ± 1°C with 55% relative humidity and a
12/12 h light/dark cycle [Laboratory animal use license num-
ber: SYXK(Lu)2017-0022]. Food and water were provided ad
libitum. The experiments were performed in accordance with
Guide for The Care and Use of Laboratory Animals approved
by the Governing Board of the National Research Council
and were approved by the Ethics Review Board of Shandong
University of Traditional Chinese Medicine (no. DWSY2019
08006) [23]. All behavioural experiments were conducted

during the dark cycle (09:00 a.m. to 05:00 p.m.) under dim
red light conditions [24]. Rats were divided into the following
six groups using a randomised-block design according to
their weight and the total distance in the OFT: control,
model, model+low-dose JYHH (low), model+middle-dose
JYHH (middle), model+high-dose JYHH (high), and model
+diazepam (diazepam). The overall experimental design
and flow chart are demonstrated in Figure 1.

2.2. Chronic Restraint Stress. As a noninvasive stimulus, CRS
is widely used to study anxiety-related behaviours. According
to the daily restraint time and total restraint days, different
CRS schemes are used to prepare the models of stress-
induced anxiety; they also cause changes in the structure
and related molecules of different brain regions of the ner-
vous system. To prepare the stress-induced anxiety model,
rats in the low, middle, high, and diazepam groups were sub-
jected to CRS for 21 days. A transparent plastic tube (height,
5 cm; inner diameter, 5.5 cm; and length, 22 cm) was used for
restraint stress; the length was adjusted according to the body
weight of the rats. In the restraint state, rats were allowed to
breathe freely through the evenly distributed vent holes on
the plastic tube but not move. The rats were restrained in
the tube in their usual home cages, keeping a supine position
every day for 6 h (from 9:00 to 15:00) [25–28]. Rats in the
control group were transferred to the same room at the same
time every day without other treatments.

2.3. Extract Preparation and Analysis. The Chinese medicine
formula JYHH consists of extracts from Paeoniae Radix
Alba, Fructus Gardeniae, Albiziae Flos, and Moutan Cortex
in the following respective proportions: 52.1%, 27.0%,
18.7%, and 2.2%. The extract of each component was pre-
pared as follows. Paeoniae Radix Alba was added to an 8-
fold volume of 70% ethanol and heated for 2 h using the
reflux extraction method. After filtration, a 6-fold volume
of deionised water was added to the sediment, and heating
reflux extraction was performed twice for 1 h each time.
The ethanol and water extracts were mixed and concen-
trated to a thick paste using a rotary evaporator (DLSB-
6/10, Shanghai YaRong). After drying at 60°C under reduced
pressure (DZF-6050, Shanghai YiHeng), the extract from
Paeoniae Radix Alba was pulverised (GLG-2777, Shanghai
Ezaki Glico Foods) and passed through an 80-mesh sieve.
Fructus Gardeniae was crushed preliminarily and extracted
by heating reflux three times (2 h each time) with 6-fold, 5-
fold, and 4-fold volumes of 70% ethanol, respectively. After
filtration, the extracts were concentrated and dried at 60°C
under reduced pressure, pulverised, and passed through an
80-mesh sieve. Albiziae Flos was crushed preliminarily and
extracted by heating reflux twice (2 h each time) with an 8-
fold volume of 70% ethanol. After filtration, the extract
was concentrated, dried at 60°C under reduced pressure,
pulverised, and sieved as with the other extracts. Moutan
Cortex was crushed preliminarily and added to a 14-fold
volume of pure water. After letting stand for 24 h, a 9-fold
volume of the component was extracted by heating. Then,
the final extract was obtained by crystallisation, filtration,
and drying after letting stand at 4°C for 24 h.
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Analyses of the extracts were performed using high-
performance liquid chromatography (HPLC, Agilent Tech-
nologies 1260 Infinity). JYHH (0.5 g) was suspended in
25mL of methanol and ultrasonicated for 30min at 20°C.
After passing through a 0.45μm Millipore filter, the sample
was transferred to an autosampler, and 10μL was injected
for analysis. Analyte separation was performed with a C18
column (4:6 × 250mm, 5μm, Agilent 5 TC) at 30°C. Mobile
phase A was 100% acetonitrile, and mobile phase B was a
0.1% aqueous potassium phosphate solution. The gradient
program was set as follows: 5% A, 0–15min; 14% A, 15–
30min; 15% A, 30–35min; 20% A, 35–50min; 35% A, 50–
70min; 95% A, 70–81min; and 5%, 81–90min. The flow rate
was 1mL/min, and the detection wavelength was 300nm.

2.4. Drug Treatment. Drug treatment was carried out daily
before CRS for 21 days. Rats in the diazepam group received
1.38mg/kg diazepam (batch no. 20180402, Beijing Yimin
Pharmaceutical, Beijing, China) dissolved in 10mL 0.9%
saline, intragastrically [29]. Rats in the low, middle, and high
dose groups were administered JYHH dissolved in 10mL
0.9% saline, intragastrically, at doses of 70.35, 140.7, and
281.4mg/kg, respectively. The dosage of JYHH in rats was
converted based on the equivalent dose coefficient of human
clinical dosage according to the “Pharmacological Experi-
ment Methodology Third Edition” [30]. Rats in the control
group received the same volume of 0.9% saline at the same
times.

2.5. Open Field Test. On the day after the final drug
treatment and CRS (day 22 of the experiment schedule),
the OFT was carried out with a square apparatus
(100 × 100 cm) in which the arena was divided into nine
equal squares. Each rat was placed in the centre square and
allowed to roam freely for 6min. The trajectory was
recorded by a camera, and the total distance, centre area dis-
tance, and time in the centre area were recorded using the
XR-Super Maze tracking system (Shanghai Xinsoft Informa-

tion Technology, Shanghai, China) [24]. After each trial, the
apparatus was carefully cleaned with 70% ethanol.

2.6. Elevated plus Maze Test. On day 23 of the experiment,
the EPM test was performed with a polypropylene plastic cru-
ciform apparatus consisting of two open arms (10 × 50 cm),
two closed arms (10 × 50 cm), and a centre platform
(10 × 10 cm). The apparatus was elevated 76 cm above the
floor, and rats were placed on the centre platform with their
head towards the open arm. Rat behaviour was recorded for
5min using the XR-Super Maze tracking system, and the
open-arm entry times (OEs), closed arm entry times
(CEs), time in the open arm (OT), and time in the closed
arm (CT) were analysed. The OE percentage was calculated
as OE/ðOE + CEÞ × 100, and the OT percentage was calcu-
lated as OT/ðOT + CTÞ × 100 [31].

2.7. Light-Dark Box Test. On day 24 of the experiment
schedule, the LDB test was performed with a box consisting
of dark and light chambers (25 × 25 × 30 cm) separated by a
6:5 × 6:5 cm door. The test started with the placement of the
rats at the centre of the light chamber and lasted for 5min.
The XR-Super Maze tracking system was used to record
the behaviour and analyse the total distance, light area dis-
tance, time in the light area, and light area entries [32].

2.8. Analysis of HPA Axis Hormones in Serum. After the
behavioural tests, rats were sacrificed with an overdose of
2% pentobarbital sodium and 5mL of peripheral blood were
collected. After centrifugation at 3000 × g at 4°C for 15min,
the plasma was separated for analyses of CRH, ACTH, and
CORT using enzyme-linked immunosorbent assay (ELISA)
kits (CSB-E08038r, CSB-06875r, CSB-E07014r, respectively;
Cusabio, Wuhan, China). The optical density at 450nm
was measured using a microplate reader. Each sample was
subjected to three duplicate tests to avoid any errors.

2.9. Analysis of 5-HT and 5-HIAA. Rat brains were removed
rapidly, and the hippocampus and PFC were isolated on ice

–7d 0d 7d 14d 21d 25d

Control:0.9% NS i.g.

Model:0.9% saline i.g.+CRS

Model+diazepam:diazepam 1.38 mg/kg/d i.g.+CRS

Model +low-dose JYHH : JYHH 70.35 mg/kg/d i.g. +CRS

Model+middle-dose JYHH: JYHH140.7 mg/kg/d i.g.+CRS

Model+high-dose JYHH: JYHH 281.4 mg/kg/d i.g.+CRS

EPM
LDB

Sacrifice and harvest

Aclimadation
Weighing

OFT

Figure 1: Representation of the overall experimental design and flow chart. i.g.: intragastrically; CRS: chronic restraint stress; JYHH: Jie-Yu-
He-Huan capsule; OFT: open field test; EPM: elevated plus maze; LDB: light dark box.
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and frozen at −80°C. Concentrations of 5-HT and 5-HIAA
in each group were quantified using HPLC-tandem mass
spectrometry (Shimadzu LC20AD-API 3200MD TRAP).
The brain tissue was homogenised in precooled pure water
and centrifuged at 4°C for 1min at 13,200 × g. Then, the
supernatant was added to a 3-fold volume of precipitant
(methanol/acetonitrile = 1 : 1) and centrifuged at 4°C for
4min at 13,200 rpm. The MSLab C18 column (100 × 4:6 ×
3μm) was used at 50°C. A 3μL sample was injected with
water phase A (pure water containing 0.1% formic acid)
and organic phase B (methanol containing 0.1% formic
acid). To identify 5-HT, the gradient program was set as
follows: 98% A, 0.0–0.5min; 80% A, 0.5–2.5min; 30% A,
2.5–4.5min; 0% A, 4.5–6.5min; and 98% A, 6.5–8.0min.
The flow rate was 0.6mL/min. To identify 5-HIAA, the
gradient program was set as follows: 85% A, 0.0–1.0min;
30% A, 1.0–3.5min; 0% A, 3.5–5.0min; and 85% A, 5.0–
7.5min. The flow rate was 0.8mL/min.

2.10. Measurements of cAMP and PKA. Brain tissue was
homogenised in precooled 0.01M phosphate-buffered saline
(pH = 7:4) and centrifuged at 13,000 × g at 4°C for 10min,
and the supernatant was collected. The concentrations of
cAMP and PKA were measured using ELISA kits (JL20768
and JL13535, respectively; JiangLai Bio, Shanghai, China).
The optical density at 450nm was measured using a micro-
plate reader. Each sample was subjected to three duplicate
tests to avoid any errors.

2.11. Western Blots. The hippocampus and PFC tissues were
homogenised in extraction buffer (R0010; Solarbio Science &
Technology, Beijing, China) and ultrasonicated for 10min.
After centrifugation at 12,000 rpm (4°C) for 30min, the
supernatant was collected and the protein concentration
was determined with a bicinchoninic acid protein assay kit
(PC0020; Solarbio Science & Technology). Samples (20μL)
were loaded onto a 10% sodium dodecyl sulphate–polyacryl-
amide gel and separated by electrophoresis. Proteins were
then transferred electrophoretically to a polyvinylidene
difluoride membrane and blocked in 5% nonfat milk for
1 h. The membranes were incubated with the following pri-
mary antibodies from ABclonal Biotechnology (Wuhan,
China): 1 : 1000, rabbit anti-CREB, A10826; 1 : 1000 rabbit
anti-phosphorylated- (p-) CREB, AP0019; 1 : 1000 rabbit
anti-BDNF, A4873; 1 : 10,000 mouse anti-GAPDH, AC002;
1 : 2000 rabbit anti-β-tubulin, AC008; 1 : 1000 rabbit anti-
MAO-A, A4105; 1 : 1000 rabbit anti-GR, A19583; and
1 : 1000 rabbit anti-5-HT1AR, A2801. The secondary anti-
bodies were 1 : 5000 horseradish peroxidase-conjugated goat
anti-rabbit IgG (H+L) (ABclonal, AS014) or goat anti-
mouse IgG (H+L) (ABclonal, AS003). Protein bands were
visualised using an enhanced chemiluminescence reagent
(PE0010, Solarbio Science & Technology). The optical den-
sity value was calculated using the ImageJ software.

2.12. Reverse Transcription Real-Time Quantitative Polymerase
Chain Reaction (RT-qPCR). Total RNA was extracted from
the hippocampus and PFC tissues using TRIzol reagent
(RC101; Vazyme, Nanjing, China) and then reverse tran-

scribed to cDNA using the PrimeScript RT reagent kit
(TaKaRa Bio, Shiga, Japan). RT-qPCR was performed using
the Roche LightCycler 480 Real-Time PCR System with the
SYBR Green qPCR Master Mix (Excell Biotech, Clearwater,
FL, USA). The RT-qPCR experiments for each sample were
repeated thrice to eliminate errors. The 2−ΔΔCt method was
used for data analysis. β-Actin was used as the internal
reference. Primers were synthesised by Sangon Biotech
(Shanghai, China), and the sequences were as follows:

(i) BDNF forward: 5′-TGGAACTCGCAATGCCGAA
CTAC-3′; BDNF reverse: 5′-TCCTTATGAACCG
CCAGCCAATTC-3′

(ii) CREB forward: 5′-GGAGCAGACAACCAGCAGA
GTG-3′; CREB reverse: 5′-GGCATGGATACCTG
GGCTAATGTG-3′

(iii) MAO-A forward: 5′-GACACGCTCAGGAATG
GGACAAG-3′; MAO-A reverse: 5′-ACAGGAAC
CACAGGGCAGATACC-3′

(iv) 5-HT1AR forward: 5′-AGGACCACGGCTACAC
CATCTAC-3′; 5-HT1AR reverse: 5′-CTGACAG
TCTTGCGGATTCGGAAG-3′

(v) GR forward: 5′-AAGGCGATACCAGGCTTCAGA
AAC-3′; GR reverse: 5′-ATGATCTCCAACCCAG
GGCAAATG-3′

(vi) β-Actin forward: 5′-CTGAGAGGGAAATCGTGC
GTGAC-3′; β-actin reverse: 5′-AGGAAGAGGAT
GCGGCAGTGG-3′

2.13. Statistical Analyses. Data analyses were performed
using the Prism version 8.0.2 software (GraphPad, La Jolla,
CA, USA). The mean ± standard error of themean was used
to express data. The data were tested for normality (Kolmo-
gorov–Smirnov test) and homoscedasticity (Levene's test)
before being analysed using parametric test. Exceptional
data exceeding the mean ± 2 × standard deviation were
removed using the modified Layida method [33]. Differences
between two groups were compared using an unpaired t-test
[34]. The significance level was set at p < 0:05.

3. Results

3.1. Extract Analyses. According to the analytical results in
Figure 2, the highest contents of Paeoniae Radix Alba, Fruc-
tus Gardeniae, Albiziae Flos, and Moutan Cortex extracts
were paeoniflorin (22.7%), geniposide (16.7%), quercitrin
(5.2%), and paeonol (100%), respectively. The Chinese med-
icine formula, JYHH, used as the treatment drug, consisted
of extracts from these four herbs. The contents of the four
dominating constituents in JYHH were paeoniflorin (12.2%,
retention time = 29:8 min), geniposide (4.7%, retention time
= 22:8 min), quercitrin (1.1%, retention time = 48:3 min),
and paeonol (2.4%, retention time = 64:9 min).
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Figure 2: Continued.
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3.2. Behavioural Tests. In the OFT results (Figure 3(a)), CRS
induced a significant decrease in the centre area distance
compared to that in the control group (p = 0:0448). This
was prevented by the low (p = 0:0202), middle (p = 0:0061),
and high (p = 0:0104) doses of JYHH and diazepam
(p = 0:0025). Compared to that in the model group, the mid-
dle and high doses of JYHH and diazepam increased the
total distance (p = 0:0419, p = 0:0319, and p = 0:0088,
respectively) and time in the centre area (p < 0:0001, p =
0:0325, and p = 0:0140, respectively). In the EPM results
(Figure 3(b)), rats in the CRS model group showed lower
OE (p = 0:0015) and OT (p = 0:0069) percentages compared
to those in the control group, which was prevented by JYHH
(low-dose p = 0:0049 and 0.0253; middle-dose p = 0:0091
and 0.0031; and high-dose p = 0:0086 and 0.0065) and diaz-
epam (p = 0:0108 and 0.0011).

In the LDB test (Figure 3(c)), CRS induced a decrease in
total distance (p = 0:0004), light area distance (p = 0:0007),
time spent in the light area (p = 0:0005), and light area
entries (p = 0:0112). Following treatment with low and high
doses of JYHH and diazepam, these alterations were reverted
to normal levels (low-dose p = 0:0184, 0.0163, 0.0480, and
0.0014; high-dose p = 0:0033, 0.0056, 0.0178, and 0.0270;
and diazepam p = 0:0014, <0.0001, 0.0004, and 0.0313,
respectively). Although the middle dose of JYHH did not
show any effect on total distance, it increased the light area
distance (p = 0:0008), time in the light area (p = 0:0037),
and light area entries (p = 0:0128). These behavioural results
showing anxiety-like behaviour indicated that we established
a successful and reliable anxiety model using CRS, and
JYHH treatment showed an anxiolytic effect similar to that
of diazepam.

3.3. HPA Axis Hormones in Serum. HPA axis hormones in
serum (CRH, ACTH, and CORT) were detected in rats of
the different groups. As shown in Figure 4, the concentra-
tions of ACTH (p = 0:0427) and CORT (p = 0:0450) were
significantly higher in the CRS model group than in the
control group. Compared to that in the model group, the
low dose of JYHH decreased the CORT concentration in
the serum (p = 0:0093). Rats in the middle- and high-dose
groups and the diazepam group had lower CRH (middle-
dose p = 0:0274, high-dose p = 0:0007, and diazepam p =

0:0053, respectively), ACTH (middle-dose p = 0:0227, high-
dose p = 0:0139, and diazepam p = 0:0011), and CORT
(middle-dose p = 0:0146, high-dose p = 0:0036, and diaze-
pam p = 0:0021) concentrations. These results indicate that
JYHH treatment could prevent the altered HPA axis hor-
mone concentrations in serum caused by CRS, similar to
the effect of diazepam.

3.4. Levels of 5-HT and 5-HIAA. An analysis of the PFC and
hippocampus tissues (Figure 5) showed that CRS decreased
the 5-HT (p = 0:0326) and 5-HIAA (p = 0:0069) concentra-
tions in the PFC and that high-dose JYHH treatment
blocked the effect of CRS on 5-HT (p = 0:0358). In the
hippocampus, there were no significant alterations in 5-HT
and 5-HIAA levels among the different groups.

3.5. Expression of GR, 5-HT1AR, and MAO-A. In the PFC
and hippocampus, CRS induced a significant decrease in
GR protein (PFC, p = 0:0087; hippocampus, p = 0:0300)
and mRNA (PFC, p = 0:0141; hippocampus, p = 0:0306)
expression (Figures 6(a)–6(e)). The high dose of JYHH
prevented all GR alterations (PFC mRNA, p = 0:0118; PFC
protein, p = 0:0193; hippocampus mRNA, p = 0:0202; and
hippocampus protein, p = 0:0333). The middle dose of
JYHH increased GR protein expression in the hippocampus
(p = 0:0333). In addition, diazepam treatment prevented the
GR mRNA (p = 0:0297) and protein (p = 0:0141) expression
changes in the PFC and protein expression changes in the
hippocampus (p = 0:0462).

Decreased expression of 5-HT1AR was observed in
the model compared to that in the control group
(Figures 6(f)–6(j): PFC mRNA, p = 0:0040; PFC protein,
p = 0:0145; hippocampus mRNA, p = 0:0010; and hippocam-
pus protein, p = 0:0168), which were all prevented by high-
dose JYHH treatment (PFC mRNA, p = 0:0052; PFC protein,
p = 0:0116; hippocampus mRNA, p = 0:0183; and hippocam-
pus protein, p = 0:0018) or diazepam (PFC mRNA, p =
0:0025; PFC protein, p = 0:0116; hippocampus mRNA, p =
0:0007; and hippocampus protein, p = 0:0181). In addition,
the middle dose of JYHH also increased 5-HT1AR protein
expression in the PFC (p = 0:0428) and hippocampus
(p = 0:0112).
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Figure 2: Analyses of the Jie-Yu-He-Huan capsule, Paeoniae Radix Alba, Fructus Gardeniae, Albiziae Flos, and Moutan Cortex extracts.
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In the CRS model group, MAO-A mRNA (PFC, p =
0:0167; hippocampus, p = 0:0081) and protein (PFC, p =
0:0402; hippocampus, p = 0:0289) expression was higher
than that in the control group (Figures 6(k) and 6(l)). The
high dose of JYHH maintained normal levels after CRS
(PFC mRNA, p = 0:0362; PFC protein, p = 0:0281; hippo-
campus mRNA, p = 0:0088; and hippocampus protein, p =
0:0122). In the diazepam group, MAO-A protein (p =
0:0067) and mRNA (p = 0:0125) in the PFC and protein
(p = 0:0030) in the hippocampus were lower than levels in
the model animals. The middle dose of JYHH prevented
changes in the MAO-A mRNA (p = 0:0163) and protein
(p = 0:0480) levels in the hippocampus. These results
indicate that high-dose JYHH treatment has a significant
protective effect on the decreases in GR and 5-HT1AR and
increases in MAO-A expression associated with CRS-
induced anxiety. Importantly, JYHH showed a significant
therapeutic advantage over the first-line anxiolytic drug
diazepam, as it reversed some alterations that diazepam
failed to restore.

3.6. Effects on the cAMP-PKA-CREB-BDNF Pathway. Based
on the aforementioned observations, we analysed expression

levels of components of the cAMP-PKA-CREB-BDNF path-
way to explore the molecular mechanism underlying the
anxiolytic effect of JYHH. As shown in Figure 7, decreased
concentrations of cAMP and PKA were observed in the
PFC (cAMP, p = 0:0112; PKA, p = 0:0017) and hippocampus
(cAMP, p = 0:0005; PKA, p = 0:0437) in CRS-model rats.
JYHH or diazepam significantly blocked these alterations
(cAMP in the PFC: low-dose JYHH, p = 0:0014; middle-
dose, p = 0:0128; high-dose, p = 0:0270; diazepam, p =
0:0313; PKA in the PFC: low-dose, JYHH p = 0:0071; mid-
dle-dose, p = 0:0091; high-dose, p = 0:0012; diazepam, p =
0:0333; cAMP in the hippocampus: low-dose, JYHH p =
0:0001; middle-dose, p < 0:0001; high-dose, p < 0:0001; diaz-
epam, p < 0:0001; PKA in the hippocampus: low-dose,
JYHH p = 0:0142; middle-dose, p = 0:0103; high-dose, p =
0:0245; diazepam, p = 0:0021). In the PFC and hippocampus
of CRS-induced anxiety-model rats, there was an obvious
decrease in p-CREB (PFC, p = 0:0081; hippocampus, p =
0:0432) and BDNF (mRNA expression: PFC, p = 0:0003
and hippocampus, p = 0:0234; protein expression: PFC, p =
0:0145 and hippocampus, p = 0:0338) (Figure 8). In the
PFC, the CREB mRNA level was also lower in the model
group than in the control group (p = 0:0014). This change
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Figure 3: (a) Treatment with Jie-Yu-He-Huan capsule prevents altered behaviour in the open field test caused by chronic restraint stress.
∗p < 0:05 compared to the control group, #p < 0:05 compared to the model group, ##p < 0:01 compared to the model group, and
####p < 0:0001 compared to the model group (unpaired t-test). (b) Treatment with Jie-Yu-He-Huan capsule prevents altered behaviour in
the elevated plus maze test caused by chronic restraint stress. ∗∗p < 0:01 compared to the control group, #p < 0:05 compared to the
model group, and ##p < 0:01 compared to the model group (unpaired t-test). (c) Treatment with Jie-Yu-He-Huan capsule prevents
altered behaviour in the light-dark box test caused by chronic restraint stress. ∗p < 0:05 compared to the control group, ∗∗∗p < 0:001
compared to the control group, #p < 0:05 compared to the model group, ##p < 0:01 compared to the model group, ###p < 0:001 compared
to the model group, and ####p < 0:0001 compared to the model group (unpaired t-test).
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was prevented by JYHH (low-dose, p = 0:0110; middle-dose,
p = 0:0153; high-dose, p = 0:0010) or diazepam (p = 0:0084)
treatment. However, there were no detected differences in
CREB protein expression among the groups in the PFC or
hippocampus. Regarding the altered p-CREB in the PFC,
JYHH (low-dose, p = 0:0296; middle-dose, p = 0:0075;
high-dose, p = 0:0139) or diazepam (p = 0:0206) treatment
maintained normal levels. However, in the hippocampus,
only the high dose of JYHH (p = 0:0318) or diazepam
(p = 0:0312) prevented the decrease in p-CREB. Rats in the
diazepam treatment group exhibited higher mRNA (PFC,
p = 0:0195; hippocampus, p = 0:0246) and protein (PFC,
p = 0:0116; hippocampus, p = 0:0206) expression levels of
BDNF than the model group. In addition, a low dose of
JYHH prevented the decrease in BDNF mRNA expression
in the hippocampus (p = 0:0278). Changes in BDNF mRNA
(middle-dose, p = 0:0104; high-dose, p = 0:0049) and protein
(middle-dose, p = 0:0428; high-dose, p = 0:0016) expression

in the PFC, as well as protein (middle-dose, p = 0:0392;
high-dose, p = 0:0167) expression in the hippocampus, could
be prevented by the middle and high doses of JYHH.

4. Discussion

JYHH is derived from a well-known Chinese medicine clas-
sic “Yi Chun Sheng Yi” written by Fei Boxiong (1800-1879).
It is mainly used for the treatment of liver-qi stagnation and
stagnation fire caused by long-term liver-qi depression. It is
clinically used to treat generalized anxiety disorder. The total
effective rate of the self-developed symptom scale treatment
group is better than that of the control group, showing its
advantages, which include fast onset, safe, effective, fewer
side effects, and high compliance. The current study demon-
strated a significant anxiolytic effect of JYHH. This formula
contains extracts from Paeoniae Radix Alba, Fructus
Gardeniae, Albiziae Flos, and Moutan Cortex, in which the
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Figure 4: Treatment with Jie-Yu-He-Huan capsule prevents alterations in the hypothalamic–pituitary–adrenal axis hormone
concentrations in serum caused by chronic restraint stress. (a) Corticotropin-releasing hormone (CRH) levels. (b) Adrenocorticotropic
(ACTH) hormone levels. (c) Corticosterone (CORT) levels. ∗p < 0:05 compared to the control group, #p < 0:05 compared to the model
group, ##p < 0:01 compared to the model group, and ###p < 0:001 compared to the model group (unpaired t-test). The bars show min to
max of data, and the small circles represent individual data points.
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highest contents were paeoniflorin, geniposide, quercitrin,
and paeonol, respectively (Figure 2). There have been reports
of the anxiolytic effects of these four herbal medicines from

other research teams, which are consistent with our conclu-
sion. The well-known traditional Chinese formula Xiao Yao
San, which is composed of eight herbs including Paeoniae
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Figure 5: Treatment with Jie-Yu-He-Huan capsule prevents alterations in the 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic
acid (5-HIAA) concentrations caused by chronic restraint stress. (a) 5-HT level in the prefrontal cortex (PFC). (b) 5-HIAA level in the
PFC. (c) 5-HT/5-HIAA ratio in the PFC. (d) 5-HT level in the hippocampus. (e) 5-HIAA level in the hippocampus. (f) 5-HT/5-HIAA
ratio in the hippocampus. ∗p < 0:05 compared to the control group, ∗∗p < 0:01 compared to the control group, and #p < 0:05 compared
to the model group (unpaired t-test). Data are expressed as the means ± SEs. The small circles represent individual data points.
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Figure 6: Continued.
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Figure 6: High-dose Jie-Yu-He-Huan capsule treatment has a therapeutic effect on altered glucocorticoid receptor (GR), 5-
hydroxytryptamine 1A receptor (5-HT1AR), and monoamine oxidase A (MAO-A) expression caused by chronic restraint stress. (a) GR
mRNA expression in the prefrontal cortex (PFC). (b) GR protein expression in the PFC. (c) GR mRNA expression in the hippocampus.
(d) GR protein expression in the hippocampus. (e) Representative western blot protein bands of GR expression exhibiting the differences
among groups. (f) 5-HT1AR mRNA expression in the PFC. (g) 5-HT1AR protein expression in the PFC. (h) 5-HT1AR mRNA
expression in the hippocampus. (i) 5-HT1AR protein expression in the hippocampus. (j) Representative western blot protein bands
of 5-HT1AR expression showing the differences among groups. (k) MAO-A mRNA expression in the PFC. (l) MAO-A protein
expression in the PFC. (m) MAO-A mRNA expression in the hippocampus. (n) MAO-A protein expression in the hippocampus.
(o) Representative western blot protein bands of MAO-A expression showing the differences among groups. ∗p < 0:05 compared to
the control group, ∗∗p < 0:01 compared to the control group, #p < 0:05 compared to the model group, ##p < 0:01 compared to the model
group, and ###p < 0:001 compared to the model group (n = 3 in each group, unpaired t-test). Data are expressed as the means ± SEs. The
small circles represent individual data points.
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Radix Alba, has exhibited therapeutic efficacy for mood
disorders. Paeoniflorin extracted from this formula also
exhibited anxiolytic-like effects against posttraumatic stress
disorder [35]. In addition, the active components of Albiziae
Flos have been experimentally shown to have an antidepres-
sant effect, mainly via the regulation of monoaminergic neu-
rotransmitters and cAMP signalling [36].

Our research used the CRS method to mimic the patho-
genesis and pathophysiology of chronic stress-induced anx-
iety. We assessed this model from the perspective of the
HPA axis and 5-HT system disorders. Stress-induced exces-
sive activation of the HPA axis and downregulation of GR
expression in the central nervous system are the key physio-
logical features associated with long-term stress [6]. Our
findings also confirm this conclusion. Specifically, JYHH
treatment prevented this dysregulation by downregulating
CRH, ACTH, and CORT and upregulating GR (Figure 4).

Because many components of herbal medicines have hor-
mone replacement effects, we speculate that this might be
one of the possible mechanisms underlying this anxiety relief
phenomenon [18]. Previous reports [37] have shown a close
relationship between the HPA axis and anxiety, which is
again consistent with our findings. For example, stress in
rodents leads to an overactivated HPA axis characterised
by increased CORT in plasma and higher CRH levels in
the cortex [38]. The underexpression of GR in neural struc-
tures has a negative effect on behavioural changes and
anxiolytic responsiveness in patients with chronic anxiety
disorders [39].

Abnormal functioning of the HPA axis can cause serious
physiological alterations in the central nervous system. In
the hippocampus and PFC, dendritic shrinkage and spine
loss were observed as a consequence of stress and CORT
[40, 41]. Furthermore, CORT directly stimulates the release
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Figure 7: Treatment with Jie-Yu-He-Huan capsule prevents alterations in the cyclic adenosine monophosphate (cAMP) and cAMP-protein
kinase A (PKA) concentrations caused by chronic restraint stress. (a) cAMP concentrations in the prefrontal cortex (PFC). (b) PKA
concentrations in the PFC. (c) cAMP concentrations in the hippocampus (Hippo). (d) PKA concentrations in the Hippo. ∗p < 0:05
compared to the control group, ∗∗p < 0:01 compared to the control group, ∗∗∗p < 0:001 compared to the control group, #p < 0:05
compared to the model group, ##p < 0:01 compared to the model group, and ####p < 0:0001 compared to the model group (unpaired
t-test). The bars show min to max of data, and the small circles represent individual data points.
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Figure 8: Continued.
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of excitatory amino acids and indirectly regulates both gluta-
mate and γ-aminobutyric acid release [42]. In the current
study, decreased concentrations of 5-HT and its metabolite
(5-HIAA) were detected in the PFC of CRS-model rats, in
which the high dose of JYHH prevented the 5-HT alteration
(Figure 5). However, significant alterations were observed in
5-HT1AR and MAO-A mRNA and protein levels in both
the PFC and hippocampus, and JYHH, especially at the high
dose, and diazepam treatment exhibited satisfactory preven-
tative effects (Figure 6). This indicates that CRS disturbs the
5-HT system mainly by modulating 5-HT1AR and MAO-A.
Several therapeutic drugs for anxiety, such as selective
monoamine neurotransmitter reuptake inhibitors, directly
target 5-HT system dysfunctions [43]. Anxiolytic-like effects
of 5-HT1AR agonists have been suggested [9]. A recent
study indicated that acute CORT administration results in

flattened hippocampal 5-HT responses, including a decrease
in extracellular 5-HT levels and an increase in 5-HT reup-
take efficiency [44]. Moreover, animals with 5-HT1AR defi-
ciency show higher levels of anxiety, supporting this finding
[9]. In addition, a Japanese team [16] reported that the
herbal compound kamishoyosan could increase 5-HT1AR
expression, which is similar to the effect of the Chinese
herbal compound used in this study.

Because of the obvious differences in 5-HT1AR expres-
sion among the groups, we examined its downstream signal-
ling pathway. 5-HT1AR is a typical G-protein coupled
receptor that participates in the cAMP-PKA-CREB-BDNF
pathway. Using ELISAs, western blotting, and RT-qPCR,
the expression of relevant elements in this pathway was
determined, and obvious differences were found in cAMP,
PKA, p-CREB, and BDNF (Figures 7 and 8). Thus, the
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herbal compound was shown to have efficacy, especially in
the high-dose group. BDNF is a growth factor that promotes
neuronal proliferation and survival, neurodevelopment, and
regeneration in the central nervous system [45]. BDNF is
associated with the aetiopathology of mood disorders such
as anxiety, depression, and stress-related disorders [46]. It
can influence various cellular processes, including synaptic
plasticity ranging from short- to long-lasting processes, on
excitatory or inhibitory synapses and neuronal survival,
and is regulated by glucocorticoids [46, 47]. Several anxio-
lytic and antidepressant drugs, including some herbs, were
found to exhibit their efficacy through the regulation of
BDNF [16, 22, 48]. Stress can induce abundant remodelling
events in the brain that partially involve BDNF actions [49].
For example, consistent with our conclusion, decreased
BDNF expression is associated with stress [50]. More
importantly, chronic CORT exposure results in a decrease
in BDNF expression, implicating the specific control of glu-
cocorticoids on BDNF in the stress state [51]. CREB is initi-
ated by the stimulation of several neurotransmitter receptors
and is regulated by phosphorylation via cAMP-PKA [52]. A
recent report showed that alterations in p-CREB/CREB and
BDNF expression in stress-induced anxiety-like behaviours
could be regulated by dammarane sapogenin treatment
[53]. Another report indicated that resveratrol treatment
ameliorates chronic unpredictable mild stress-induced
depressive-like behaviour and cognitive deficits by upregu-
lating CREB and brain BDNF [54].

In this study, based on the behavioural anxiolytic drug
effect of JYHH, we innovatively identified the underlying

mechanism that can prevent abnormal alterations in
cAMP-PKA-CREB-BDNF signalling. We offer a preliminary
explanation of the possible mechanism underlying the
effect of this compound from the perspectives of HPA axis
function and the 5-HT system, as well as their close inter-
relationship. This provides relatively complete evidence to
interpret the underlying mechanism as illustrated in
Figure 9. Specifically, the Chinese medicine formula JYHH
can ameliorate anxiety-like behaviours in rats exposed to
CRS by normalising the overactivated HPA axis functions
(downregulating the related hormones and upregulating
GR), then regulating the 5-HT system (concentrations of
5-HT and 5-HIAA, and the expression of MAO-A and
5-HT1AR), and finally targeting the cAMP-PKA-CREB-
BDNF signalling pathway (protein and mRNA expression
of related factors).

To some extent, our study indicates that JYHH, which
contains extracts from Paeoniae Radix Alba, Fructus Gar-
deniae, Albiziae Flos, and Moutan Cortex, is a potential ther-
apeutic compound for stress-induced anxiety, which might
provide a supplementary or preventive option for new anxi-
olytic drugs in the clinic. The main active components of
JYHH are clear through HPLC analysis, which is of great sci-
entific significance in revealing the mechanism. The results
show the underlying target of JYHH might be related to
the BDNF pathway, which plays a crucial role in neuroplas-
ticity, neurodevelopment, and nerve regeneration [55], but
this was rarely considered in previous research. A recent
study showed stress gates the astrocytic energy reservoir,
which could impair synaptic plasticity [56]. This might
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Figure 9: Schematic of the possible mechanism underlying the anxiolytic effect of the Jie-Yu-He-Huan capsule. The Chinese medicine
formula Jie-Yu-He-Huan can ameliorate anxiety-like behaviours in rats exposed to chronic restraint stress by normalising the
overactivated HPA axis function, ultimately regulating the 5-HT system, and finally targeting the cAMP-PKA-CREB-BDNF signalling
pathway. HPA: hypothalamic–pituitary–adrenal; JYHH: Jie-Yu-He-Huan capsule; CRS: chronic restraint stress; CRH: corticotropin-
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cAMP response element-binding protein; BDNF: brain-derived neurotrophic factor.
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provide another perspective to help understand this process,
which should be further explored in the future.

It is necessary to explore possible signal pathways in
depth from the perspective of genetics. In our current study,
signal pathway verification was only achieved on the whole
animal level, and no cell experiment was carried out. The
main consideration for not designing cell experiments is that
the intervention drugs we use are traditional Chinese medi-
cine compositions, and the ingredients are not all monomers.
They cannot be directly added to the cell culture medium and
can only be administered based on serum pharmacology
[57]. However, this method is very limited and there are
many controversies. In the next stage of our research, we plan
to select the monomer components of the traditional Chinese
medicine composition to verify the efficacy and design a
series of cell experiments. Moreover, this study was limited
to a specific signalling pathway and failed to explore other
possible mechanisms related to stress-induced anxiety. We
found that treating CRS with JYHH could influence the
cAMP-PKA-CREB-BDNF pathway, which might be regu-
lated by several factors. For example, dopamine and its recep-
tor (another important G-protein coupled receptor) can also
activate this signalling pathway [58]. Whether this and other
possible systems are involved in stress-induced anxiety and
drug efficacy remains to be studied. Moreover, JYHH showed
dose-dependent characteristics, and the possible reasons
were not explored. This suggests that we should perform
more in-depth and detailed studies on this herbal compound
and reveal the mechanisms from multiple perspectives. A
more comprehensive chain of evidence from several aspects
will help us to systematically understand drug activities.
Furthermore, as anxiety and depression share a similar
pathogenesis, whether this herbal compound is effective in
improving depression-like symptoms remains to be further
explored.

5. Conclusion

This study verified the anxiolytic drug efficacy of JYHH, a
Chinese medicine formula, in a rat model of CRS-induced
anxiety through several behavioural evaluations. We also
provide evidence that the HPA axis, 5-HT system, and down-
stream cAMP-PKA-CREB-BDNF pathway could explain the
underlying mechanism. Although additional investigation is
still needed, our study provides initial support for a new sup-
plementary or preventive option for anxiolytic drugs in the
clinic and preliminarily illustrates the possible mechanism.
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