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Abstract: This paper proposes a simple yet effective method for improving the efficiency of
sparse coding dictionary learning (DL) with an implication of enhancing the ultimate usefulness of
compressive sensing (CS) technology for practical applications, such as in hyperspectral imaging (HSI)
scene reconstruction. CS is the technique which allows sparse signals to be decomposed into a sparse
representation “a” of a dictionary Du. The goodness of the learnt dictionary has direct impacts on the
quality of the end results, e.g., in the HSI scene reconstructions. This paper proposes the construction
of a concise and comprehensive dictionary by using the cluster centres of the input dataset, and then
a greedy approach is adopted to learn all elements within this dictionary. The proposed method
consists of an unsupervised clustering algorithm (K-Means), and it is then coupled with an advanced
sparse coding dictionary (SCD) method such as the basis pursuit algorithm (orthogonal matching
pursuit, OMP) for the dictionary learning. The effectiveness of the proposed K-Means Sparse Coding
Dictionary (KMSCD) is illustrated through the reconstructions of several publicly available HSI
scenes. The results have shown that the proposed KMSCD achieves ~40% greater accuracy, 5 times
faster convergence and is twice as robust as that of the classic Spare Coding Dictionary (C-SCD)
method that adopts random sampling of data for the dictionary learning. Over the five data sets that
have been employed in this study, it is seen that the proposed KMSCD is capable of reconstructing
these scenes with mean accuracies of approximately 20–500% better than all competing algorithms
adopted in this work. Furthermore, the reconstruction efficiency of trace materials in the scene
has been assessed: it is shown that the KMSCD is capable of recovering ~12% better than that of
the C-SCD. These results suggest that the proposed DL using a simple clustering method for the
construction of the dictionary has been shown to enhance the scene reconstruction substantially.
When the proposed KMSCD is incorporated with the Fast non-negative orthogonal matching pursuit
(FNNOMP) to constrain the maximum number of materials to coexist in a pixel to four, experiments
have shown that it achieves approximately ten times better than that constrained by using the widely
employed TMM algorithm. This may suggest that the proposed DL method using KMSCD and
together with the FNNOMP will be more suitable to be the material allocation module of HSI scene
simulators like the CameoSim package.

Keywords: sparse coding; dictionary learning; unmixing; hyperspectral scene reconstruction;
hyperspectral; multispectral; k-means

1. Introduction

Hyperspectral imagery (HSI) contains detailed spatial and spectral information of a natural
scene. HSI has been traditionally deployed widely for surveillance and reconnaissance in agricultural,
earth observations and defence/military applications [1]. In the latter case, particularly in
counter-countermeasures applications, there are high demands on the knowledge about the
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detectability of targets when they are embedded in certain environments, for example, the assessment
of the detectability of diseased plants in a field or the development of sophisticated camouflage
materials for specific terrain and environment. In principle, this can be achieved through repeated
costly and labour intensive experimental trials until the desire result is obtained. Alternatively, this can
be accomplished through effective hyperspectral scene simulation technique, which is capable to
reconstruct the scene and at the same time to “inject” foreign materials into the environment [2,3].
The ultimate usefulness of a scene simulator is its ability to simulate the scene faithfully, such that
the spectral and spatial content of the simulation is as realistic as possible. This, in turn, will require
knowledge of the material property in the scene, such as the types of plants and their optical
characteristics, to be known precisely as the input of HSI simulator. In many cases, the detailed material
properties of the scene are not known and typically only the broadband RGB, or the multispectral
image (MSI) of the scene, is available [4,5]. One approach to solving the problem is to reconstruct the
materials of the scene through a learned dictionary to deduce the endmember (EM) characteristics of
the scene through an unmixing algorithm [6,7], Equation (1).

y = Dua + ε (1)

where “y” is the pixel in the scene, ε is the noise and Du is the EM dictionary. The learned EM is then
applied to the MSI of the input image to allow the reconstruction of the HSI data [8,9]. This dictionary
learning approach is commonly conceptualised through the convex optimisation of the linear inverse
problem (LIP) with typical cost function “J” is shown in Equation (2).

J = min||y− Dua||22+γ||a||1 (2)

The dictionary set Du learns from the scene, and the abundance set “a” over the dictionary
exhibits characteristic high sparsity over the Du; γ is the parameter to adjust the balance between
the two terms in Equation (2). To learn the Du for a specific data set, the normal approach is the
selection of spectra from a comprehensive dictionary (also known as completed or overcompleted
dictionary) [10], which consists of vast number of spectral database, then each of it is tested as according
to Equation (2) to justify if it fits into the criteria. The process is repeated over the comprehensive
dictionary until all the elements of Du is found or until all spectral database in the dictionary is
exhausted. Previously, the comprehensive dictionary has been constructed from the pixel in the scene
(called self-dictionary) [11], randomly selected from the scene [8], which sometimes in combination
with spectral library data [9,12,13]. The quality of the scene reconstruction using the learned Du and
“a” is critically dependent on how the Du is learned. Furthermore, most, if not all, of the existing
dictionary learning algorithms are computationally not efficient and also lack of robustness, which
imposes direct impacts on the quality of the HSI reconstruction negatively.

The focus of this paper is twofold: (i) To enhance the quality of HSI scene reconstruction through
a robust dictionary learning method. (ii) To reduce the computational complexity of dictionary
learning process. The paper reports a strategic dictionary learning through an unsupervised clustering
method (K-Means [14,15]) as a preprocessing step in addition to an advanced basis pursuit algorithm
(orthogonal matching pursuit (OMP)) for HSI scene reconstructions. The scene reconstruction
capability of the proposed method is validated by using several publicly available data sets, which
are then compared with that of other spectral unmixing techniques. The paper is structured as
follows. Section 1 highlights the problem statement and outlines the main objective of the present
work. In Section 2, we outline the background and shortcomings of previous work. Section 3 includes
a description of the proposed algorithm. Section 4 outlines the data sets that have been utilised
in this work and the scene reconstruction assessment metrics. Section 5 contains the experimental
results obtained by the proposed method together with that of the competing algorithms and
Section 6 contains the discussion and conclusions.



J. Imaging 2019, 5, 85 3 of 20

2. Prior Work in Dictionary Learning (DL)

There are two main approaches towards the solution of Equations (1) and (2): one is to find the
purest element in the scene through searching for the convex cone of the spectral data (see [6,7] for an
overview), and the other is through the optimisation of the sparsity of the abundance “a” [16] or using
greedy algorithm for learning the dictionary Du. Classical search methods that exploit the convex
distribution property of data such as the vertex component analysis (VCA) [17], more recent algorithms
like the minimum volume simplex analysis (MVSA) [18] and the Collaborative Nonnegative Matrix
Factorization (CoNMF) [19] etc., have provided good solutions especially when relatively pure pixels
are present in the scene. The VCA, MVSA and the CoNMF algorithms have been employed here as
competing HSI reconstruction methods to compare with the proposed algorithm (see Section 3 below).

Sparse Coding Dictionary (SCD) is a well-established method that decomposes the HSI to a linear
collection of a few bases and a sparse matrix. The bases are called atoms, which have unity `p norm
(generally `2), and the sparse matrix is called representation. The group of atoms for a given scene is
collectively called learned dictionary. SCD has an advantage when compared with the search method
in that it is capable of finding Du even when pure pixels do not exist in the scene. SCD has a wide
range of applications from super-resolution to classification [9,20,21]). The group of atoms for a given
scene is called a dictionary. One such well-known SCD algorithm, proposed by Adam Charles et al.
in [8], has demonstrated that the learnt basis Du highly resembles the real spectra, and it is capable of
inferring HSI data from MSI images, when the “a” is explicitly constraint by a higher-order Laplacian
prior in addition to their sparsity. This algorithm, shown in Figure 1, is referred to as classic Spare
Coding Dictionary (C-SCD) in this paper. The C-SCD model has been shown capable of reconstructing
the HSI scenes by using the dictionary that had been trained from the imagery acquired from another
season of the same scene. It is seen from the objective function in Equation (2) that the learning of the
SCD model is required to minimise both the Du and “a” at the same time. However, this cost function
may not be jointly convex in the dictionary and the representation domains, which makes a global
minimisation solution difficult. One solution to this issue is the adaptation of a variational approach in
the C-SCD algorithm, which alternates the minimisation first with respected to the “a” for the given
the current Du, then a gradient descent over the elements in Du is taken for the given calculated “a” [8].
Furthermore, in the original C-SCD algorithm, the strategy for atoms selection during the learning
process is not well defined which results in the reselection of already selected or rejected atoms in the
later iterations, causing a severe slowdown of the algorithm convergence [22]. Although the C-SCD
achieves a reasonable result, the complexity of the C-SCD learning is very high ≈O(NK2), where N is
the number of pixels in the scene, and K is the iteration number.

Recent advances in the dictionary learning (DL) has been made by using the greedy methods such
as the orthogonal matching pursuit (OMP) [23], which finds the potential Du iteratively. New atoms
are added whenever it has the largest absolute inner product with the residual, and subsequently the
residual is updated, and the process is repeated. All the potential atoms found are grouped into a
sub-dictionary, S, and new atoms are selected orthogonal to the subset S in the subsequent iterations.
Enhancements such as the Simultaneous Orthogonal Matching Pursuit (SOMP), which estimates the
residual of several atoms simultaneously in the same loop [11]; the constraint of the “a” non-negatively
using non-negative least square (NNLS) to refine the selected representation in each iteration, together
with the QR factorisation instead of pseudo-inverse of the dictionary to obtain the representation,
have reduced the complexity of DL to O(NKlog(P)), where P is the inner loop count and P�K [24].
This algorithm is also known as the fast non-negative orthogonal matching pursuit (FNNOMP).
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Figure 1. Flow diagram of the classic spare coding dictionary (C-SCD) algorithm.

To learn EMs with the C-SCD model, two fundamental changes were necessary [16]. The `p norm
constraint from atoms is removed because real EMs often do not hold such constraint. Moreover, “a”
is constrained for sum-to-one abundance as per the linear mixing model (LMM). Two approaches
typically enforce the abundance condition. Fully constrained least squares (FCLS) for non-negative and
sum-to-one abundance is enforced through two Lagrange multipliers, one for positive constraint with
Karush–Kuhn–Tucker condition and the another for sum-to-one. Alternatively, by using one Lagrange
multiplier to maintain the positive condition and the sum-to-one condition is concatenated with ones
vector in the input signals and the EMs. The latter method is more favourable in computation time as
it does not need the second Lagrange multiplier. More information about this approach is in Chang’s
paper [25], which covers an overview of FCLS and other linear spectral mixture analysis methods.

3. Proposed Algorithm for Dictionary Learning (DL)

The objective of this paper is to propose a robust and efficient dictionary learning (DL) technique,
which enhances HSI scene reconstruction with the given MSI or HSI data sets as inputs. The proposed
technique reduces the computational complexity of the DL algorithm, and it has the capacity of
achieving better spectral reconstruction not only for the background pixels (i.e., majority materials in
the scene), but also the recovery of the minority pixels (i.e., trace materials in the scene) from the scene.
This is in contrast to the C-SCD algorithm in [8], which learns the dictionary in a suboptimal way by
randomly selecting pixels from the scene during the learning cycle, thus resulting in very variable
performances even when the same scene is run repeatedly.

Two algorithms have been proposed here, and both have adopted a clustering algorithm
(K-Means) to obtain a more representative spectral structure of the scene. The number of clusters (Jc)
have been designed to be a few times more than the intrinsic dimension (i.e., the number of EMs in the
scene) to include very small minority pixels in the scene to be clustered. These cluster centres set Ci,
is then formulated as the dictionary of the scene for the algorithm to learn. This is in great contrast
to the conventional DL algorithms, which construct their comprehensive dictionaries using all pixels
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in the scene. The number of the pixels (N) in the HSI scene is typically in the order of hundreds of
thousands, comparing with the limited number of elements (Jc) in Ci in the order of approximately
one-hundred pixels, the learning loop which utilises the Ci set will immediately cut the computational
complexity down by several orders of magnitudes.

The first algorithm is the modification of the C-SCD by substituting its overcompleted dictionary
by the Ci pixel set; the algorithm is then forced to select every member of the Ci to obtain the learned
dictionary rather than through random selections. The mini-code of this K-Means SCD algorithm
(KMSCD) is shown in Algorithm 1, and the complexity of the KMSCD is ≈O(JcK2), where (Jc) is the
number of clusters. The second algorithm (Algorithm 2) is designed for applications where a limited
number of mixtures (Nmp) are allowed per pixel. In most HSI scene simulators, a limit of up to three
or four mixtures per pixel [26] is allowed for the construction of the pixel texture. This Algorithm 2
first learns the Du using the KMSCD, but the abundance “a” is subsequently constrained through the
FNNOMP, which limits the maximum mixture per pixel to be four different materials (EMs). Note
that, in Algorithm 1, there is no limit on the number of mixtures per pixel.

Algorithm 1 Proposed K-Means SCD (KMSCD) algorithm.

1: Import HSI Image as ’Y’, number of EMs ’m’, user-defined step size ’s’ and step-size decay ’d’, and

maximum number of iterations as ’M’
2: Classify ’Y’ into ’Jc’ classes, where ’Jc’ is also number of samples per iteration
3: Initialise EM dictionary as Du as ’m’ random numbers
4: for k = 1 to K do . Iterate till convergence
5: Select Yk samples, one from each ’Jc’ class
6: ak = min||Yk − Duak||p, ∀ax ≥ 0 and ||ak||1= 1 . Infer positive sum-to-one abundance
7: Dk = (Yk − Du · ak)× ak . EM update estimation
8: Du ←− Du + s× Dk . Update EM dictionary
9: s = s × d . Update step-size
User-defined estimates like step size of 0.01 and decay of 0.99998, and non-negative least squares
function to infer coefficients remain unchanged from [8] for a like-for-like comparison. An inner
loop is required if more than one sample ’Yk’ is selected per iteration to estimate “a”.

Algorithm 2 Proposed for scene simulators: KMSCD+FNNOMP.

1: Import HSI Image as ’Y’, number of EMs ’m’, maximum number of EM materials per pixel ’Nmp’,

user-defined step size ’s’ and step-size decay ’d’, and maximum number of iterations as ’M’
2: Classify ’Y’ into ’Jc’ classes, where ’Jc’ is also number of samples per iteration
3: Initialise EM dictionary as Du as ’m’ random numbers
4: for k = 1 to K do . Iterate till convergence
5: Select Yk samples, one from each ’Jc’ class
6: ax = FNNOMP(Du, Yk, Nmp), ∀||ai||1= 1
7: Dk = (Yk − Du · ak)× ak

8: Du ←− Du + s× Dk

9: s = s × d

4. Data Sets and Accuracy of Scene Reconstruction Assessments

Herein, we use a scene from the Selene dataset [27]. The scene “Selene H23 VNIR” was acquired by
HySpex VNIR-1600 sensor at Porton Down range (Long 51◦8′19.7′′ N Lat 1◦39′16.9′′ W to 51◦7′41.7′′ N
1◦40′8.5′′ W) on 12 August 2014 BST 12:00:04. Natural materials like grass, soil and tree cover over 95%
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of Selene scene, and artificial materials such as ground markers, path, concrete, building and coloured
panels cover the remaining scene. Furthermore, the scene “Selene H23 Dual” was co-registered from
the HySpex VNIR-1600 and SWIR-384 data sets, have been used as the two main data sets in this
paper. The Dual image has a ground sampling distance (GSD) of 70 × 70 cm compared to the VNIR
with a GSD of 17 × 34 cm. QUAC [28] was applied to the raw data using ENVI software with a
generic sensor to obtain the reflectance of this dataset. Apart from Selene, the publicly available “Paso
Robles-Monterey” (AVIRIS dataset flight name: f150615t01p00r11) which is a high altitude AVIRIS
imagery consisting of vegetation, highway, and cities, and three “Virginia City” images (accessed from
https://www.spectir.com/contact#free-data-samples), which are images of a mountainous region,
have also been employed for experimental validation of the proposed algorithm. Table 1 summarises
the dimensions of the scenes.

Table 1. The dimensions of the hyperspectral scenes used in this paper.

Hyperspectral Images Lines Samples Bands Spectral Range (in µm)

Selene H23 VNIR 3752 1600 160 0.41 to 1

Selene H23 Dual 1876 380 448 0.41 to 2.5

Paso Robles-Monterey 5115 741 224 0.36 to 2.5

Virginia City 1807-1211 6349 320 178 0.4 to 2.45

Virginia City 1807-1220 6758 320 178 0.4 to 2.45

Virginia City 1807-1259 6904 320 178 0.4 to 2.45

All experimental runs were performed under the same configurations: (1) The DL has been
performed in two cases: one is using the whole scene to learn, which means the whole data set has
been utilised for training the EM, and the other is using halve of the scene to train the dictionary.
(2) All experimental runs were repeated 5 times and the averaged reconstruction accuracies were
then obtained. (3) All experiments using the proposed and the C-SCD method were performed by a
i7-6700K Quad core CPU, and the typical convergence time for the C-SCD runs were ~5 times longer
than that of the KMSCD

We analysed the reconstruction error, or fitting error, with two distance metric—Manhattan
distance (MD) and percentage differential `1 norm error (DL1NE). Sum of absolute point to point
distance difference, or MD, demonstrates how much error there is in terms of magnitude difference.
MD with a total of “B” bands is shown in Equation (3). However, we choose a second metric, DL1NE,
to avoid suppressing errors of low reflective materials. For instance, a DL1NE of 200% demonstrates
that the reconstructed pixel is three times in area for the same ground truth pixel. DL1NE is given by
Equation (4).

MD = `1norm =
B

∑
b=1

|ground truth - reconstructed| (3)

DL1NE = | `1 norm of ground truth pixel − `1norm of reconstructed pixel
`1 norm of ground truth pixel

|×100 (4)

The MD is usually normalised with respected to the number of spectral bands, especially when it
is used to compare the goodness of the algorithm for several data sets that have different number of
spectral bands. Both spectral distance error metric gives indication of the goodness of the reconstruction
only for the background materials, which are abundant in the scene; however, these methods are not
sufficiently sensitive enough to quantify the errors of very trace materials, e.g., the very small number
of artificial materials typically few % in the natural scene (e.g., the colour panels in the Selene data set).
In this case, a target detection algorithm known as the adaptive cosine estimator (ACE) [29,30] has
been adopted for testing the ability of the reconstruction to recover trace targets in the scene. ACE is

https://www.spectir.com/contact#free-data-samples
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shown in Equation (5) for ith pixel, where s is the known target, xi is the ith pixel in question, x̄ the
mean of the whole scene, C is the pseudoinverse covariance matrix and T represents transpose.

ACEi =
((s− x̄)TC(xi − x̄))2

((s− x̄)TC(s− x̄))((xi − x̄)TC(xi − x̄))
(5)

The detectability of the target is presented in a receiver operating characteristics (ROC), which
plots the positive–positive versus the positive–negative, and an example of the ROC is illustrated in
Figure 2. The locations of targets (i.e., the target map) is noted from the ground truth data set (i.e., the
Selene ground truth data in this paper). The ROC of the target is constructed by using the scores given
by ACE detection of the target in the reconstructed scene, and it is then constructed using the target
map information to indicate the faithfulness of the detection.
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Figure 2. Illustrating the implication of the receiver operating characteristics (ROC) in target detection.

5. Results

5.1. Feasibility of K-Means Clustering for Multispectral Data Set

As mentioned previously, one objective of this paper is to achieve an efficient HSI scene
reconstruction given by a multispectral image (MSI) as input. The proposed method involves a
preprocessing clustering method to extract the spectral characteristic of the scene. This section is
attempted to verify how robust is the clustering when the input data contains only a few <10 spectral
bands. Figure 3 depicts the false-colour maps of the Selene Dual scene clustered by K-Means into
arbitrarily selected 80 centres over 100 iterations. The input data sets consist of (i) all 448 hyperspectral
bands, (ii) 16 WorldView-3 (WV3) centred wavelengths and (iii) 8 WorldView-2 (WV2) centred
wavelengths. The colour of pixels in the figure represents the classes that they are in and the assignment
of the colours is random, meaning that the colour of ith class in all three cases can be different.
The figure highlights how well the grass, tree, soil, artificial materials, etc. are clustered over the
very different number of spectral bands in these three data sets. The classified patterns are shown
in Figure 3 and exhibit ~99% similarity over the three results, indicating that the clustering is robust
against the number of spectral bands of the input MSI data demonstrating the practicability of the
KMSCD for the reconstruction of HSI from the MSI imagery.
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(a) RGB Image (b) All Bands (c) WV3 (d) WV2

Figure 3. False-colour classification maps displayed with all 448 bands (b), 16 centre wavelengths of
the WV3 sensor (c) and 8 centre wavelengths of the WV2 sensor (d) classified by K-Means for H23 Dual
scene into 80 classes with MATLAB’s default maximum of 100 iterations. The figures show >99% of
classification similarities despite of the very small number of spectral bands (8 bands) that has been
utilised in (d).

5.2. C-SCD vs. KMSCD: Reconstruction of Background Pixels

5.2.1. Robustness of C-SCD and the Proposed KMSCD

This section aims to illustrate the robustness of the dictionary learning (DL) in C-SCD [8] and to
compare this with the proposed KMSCD method (Algorithm 1). The robustness can be assessed by
checking whether the most abundant EM in the scene can be reproducibility found over repeated runs
of both algorithms. In both cases, the experiments were run using the whole data set for DL and the
number of the K-Means cluster (Jc) set to the number of samples selected per iteration, which was
200 in C-SCD paper [8]. Figure 4 depicts the spectra of the first five most abundant materials in the
reconstructed Selene Dual data set over five repeated runs obtained by the C-SCD and the KMSCD.
The colour of the line plot is fixed as according to the order of the abundances, e.g., the red and the blue
plots indicate the most and second most abundant materials in the reconstructed scene, respectively.
Both methods manage to find the most abundant materials (in red plot) in four out of the five runs
(i.e., they fail to find the most abundant materials correctly in the fourth run) with the total abundance
of this material in the order of ~1.4× 105, which is roughly ~20% of the scene. The scene contains
1876 × 380 ~7.1× 105 pixels. However, the second most abundant material (in blue plot) that has been
found by the C-SCD exhibit two quite distinct EMs with total abundances ranging between 5× 104 to
7× 104 respectively; whereas the KMSCD gives three out of five runs the same EM with abundances
of ~4.4× 104, which amounts to ~6% of the scene. This result may thus suggest that the proposed
KMSCD performs slightly more robust than that of the C-SCD method.
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Figure 4. Most abundant endmembers (EMs) for the for five runs with 40 EMs between (a)
SCD-unmixing with random sample selection and (b) the proposed K-Means SCD algorithm (KMSCD)
unmixing.
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The robustness of the C-SCD and the KMSCD algorithms is further examined through their
reproducibility of scene reconstructions over the repeated five runs. Figure 5 plots the mean of the
DL1NE error given by the C-SCD and KMSCD algorithms. Over the five runs, the mean errors
and standard deviations (std) of the C-SCD and KMSCD are, respectively, 0.32% ± 0.057% and
0.24% ± 0.027%. The STD of the KMSCD over the five runs exhibit roughly halve of that by C-SCD,
further showing the much better robustness of the proposed KMSCD method in comparison to the
C-SCD.

-

Figure 5. Plots the mean of the differential L1 norm (DL1NE) of the 5 repeated runs of the Selene
Dual scene reconstruction performed by the C-SCD and the proposed KMSCD DL learning algorithms.
The STD of the DL1NE processed by the C-SCD is almost double of that processed by the proposed
method over the 5 experimental runs, further demonstrating the superior performance of the proposed
KMSCD algorithm.

5.2.2. Accuracy of C-SCD and KMSCD: Background Pixels

This section presents the main results of this paper, and the first focus is to verify the effectiveness
of the scene reconstruction for the background materials in the scene. Subsequently, the ability of the
DL algorithms to reconstruct trace materials is presented in the next section (Section 5.3). Figure 6
shows the DL1NE (i.e., the differential `1-norm of the reconstructed vector w.r.t. that of the ground
truth) false-colour map of the Selene Dual scene reconstructed by the proposed KMSCD (i.e., the
Algorithm 1) and also by other competing algorithms. The data input in all cases was the Selene
Dual 448 band data set and the sizes of the dictionary to be learnt were fixed at M = 50. In the
classification, a cluster is ideally assumed to be a candidate material on its own. We substituted
random sample selection and forced KMSCD to select one sample from each cluster. The DL for all
methods was performed using the first 1000 lines (approximately half of the scene). The result of
the reconstruction presented in Figure 6 is in false colour, and, to visualise the consistency of the
reconstruction performance over the entire scene among all competing methods, all results have been
presented to show errors up to a maximum of 3 times of the mean of the DL1NE error over the entire
scene. For example, the colour patterns in Figure 6a,b are very similar: both exhibit high errors (in
red) in the tree areas, whereas good reconstructions (i.e., blue colour) are seen over the glass and
the concrete slab in the scene. The differences between these two, are that the proposed KMSCD
result (Figure 6a) gives a mean of the DL1NE of 0.28% over the entire scene, which is ~40% better
of the reconstruction accuracy than that of the C-SCD (Figure 6b). These two figures also highlight
the more superiority in the proposed KMSCD for the reconstruction of the most abundant material
in the scene (i.e., the grass) over the C-SCD method: the whole scene apart from the tree area are all
in very low error <0.2% (in blue colour), and it can only be seen from the KMSCD result. Over the
five data sets employed in this study, it is seen from Table 2 that the proposed KMSCD is capable
of reconstructing these scenes with the lowest error over all competing algorithms that have been
adopted in this research. Similar to Table 3, Table 4 tabulates the mean of the MD error of the entire
scene for various data sets that have been employed in this work. Table 4 is the same as Table 3, but
the mean(MD/band) has been tabulated so to allow direct comparisons between data sets that may
have a differing number of spectral bands.
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(a) Proposed KMSCD (b) SCD Unmix (c) SD-SOMP

(d) CoNMF (e) MVSA (f) VCA

Figure 6. False-colour map of DL1NE of different methods on H23 Dual scene when trained from the
first 1000 lines, whose mean error is mentioned in Table 2. Each of the error maps has been presented in
various scales of [0 to 3 ×mean(DL1NE)], such that the consistency of the reconstruction performance
over the entire scene among all methods can be examined.
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It is seen from these Tables that the smallest errors (DL1NE and MD) over all five data sets that
were utilised in this study is achieved by the proposed KMSCD method, which exhibits performances
that are approximately between 20–500% better than all competing algorithms. The enhancement
figures that are tabulated at the bottom line of Tables 2–4, which utilise two different error metrics
(i.e., the DL1NE and the MD) for the assessment, are found to be very close to linear dependency
relationship (not shown here for brevity), implying that the accuracy assessments are highly consistent.
The best performances are denoted in bold.

Table 2. Mean DL1NE on various hyperspectral scenes.

Hyperspectral Images Proposed C-SCD Unmix SD-SOMP CoNMF MVSA VCA

Selene H23 VNIR 1.249 1.601 2.542 2.327 2.990 2.344

Selene H23 Dual 0.282 0.405 1.376 0.606 0.986 1.319

Paso Robles-Monterey 1.227 1.222 4.274 0.768 9.037 9.037

Virginia City 1807-1220 0.054 0.110 0.858 0.155 2.574 2.572

Virginia City 1807-1259 0.061 0.128 1.057 0.173 2.827 2.825

Mean error 0.57 0.69 2.02 0.81 3.68 3.62
± Std ±0.61 ±0.68 ±1.42 ±0.89 ±3.1 ±3.08

Enhanced reconstruction accuracy
over 5 datasets w.r.t. KMSCD 20.64% 251.79% 40.24% 540.93% 529.9%

First 1000 lines is used for training the dictionary with 50 atoms each for scenes Selene H23 VNIR, Selene H23
Dual and Paso Robles-Monterey. Reconstructed Virginia City images were trained on Virginia City 1807-1211.

Table 3. Mean Manhattan distance error on various hyperspectral scenes.

Hyperspectral Images Proposed SCD Unmix SD-SOMP CoNMF MVSA VCA

Selene H23 VNIR 1.47 1.6 2.65 2.29 2.77 2.83

Selene H23 Dual 2.33 2.51 3.94 2.69 3.63 5.46

Paso Robles-Monterey 1.93 1.99 7.37 1.93 15.79 15.79

Virginia City 1807-1220 0.25 0.3 0.94 0.25 0.84 0.99

Virginia City 1807-1259 0.25 0.28 0.98 0.25 0.82 0.99

Mean error 1.24 1.34 3.18 1.48 4.77 5.21
± Std ±0.96 ±1.01 ±2.66 ±1.16 ±6.28 ±6.19

Enhanced reconstruction accuracy
over 5 datasets w.r.t. KMSCD 7.22% 154.9% 18.94% 282.83% 318.4%

First 1000 lines is used for training the dictionary with 50 atoms each for scenes Selene H23 VNIR, Selene H23
Dual and Paso Robles-Monterey. Reconstructed Virginia City images were trained on Virginia City 1807-1211.

Table 4. Mean Manhattan distance error per band on various hyperspectral scenes.

Hyperspectral Images Proposed SCD Unmix SD-SOMP CoNMF MVSA VCA

Selene H23 VNIR 9.2e-03 1.0e-03 1.66e-02 1.43e-02 1.73e-02 1.77e-02

Selene H23 Dual 5.2e-03 5.6e-03 8.8e-02 6.0e-03 8.1e-03 1.22e-02

Paso Robles-Monterey 8.6e-03 8.9e-03 3.29e-02 8.6e-03 7.05e-02 7.05e-02

Virginia City 1807-1220 1.4e-03 1.7e-03 5.3e-03 1.4e-03 4.7e-03 5.6e-03

Virginia City 1807-1259 1.4e-03 1.6e-03 5.5e-03 1.4e-03 4.6e-03 5.6e-03

Mean error 5.2e-03 5.6e-03 1.38e-02 6.3e-03 2.1e-02 2.23e-02
± Std ±3.8e-03 ±3.9e-03 ±1.16e-02 ±5.4e-03 ±2.81e-02 ±2.74e-02

Enhanced reconstruction accuracy
over 5 datasets w.r.t. KMSCD 7.75% 167.83% 22.87% 307.75% 332.56%

First 1000 lines is used for training the dictionary with 50 atoms each for scenes Selene H23 VNIR, Selene H23
Dual and Paso Robles-Monterey. Reconstructed Virginia City images were trained on Virginia City 1807-1211.
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5.3. Reconstruction of Trace Materials in the Scene

5.3.1. C-SCD vs. KMSCD

This section describes the abilities of the DL algorithms, precisely, the C-SCD and the proposed
KMSCD algorithms, for the reconstruction of trace materials in the scene. There is a small amount (~1
of whole scene) of full-pixel (i.e., material occupancy = 1) artificial materials embedded in the Selene
scene, and their presence in the scene are depicted in the RGB image as shown in Figure 7a. A number
of small Orange Perspex panels with dimensions of approximately 40 × 40 cm, deployed in the scene
as targets, are used here to testify the ability of the DL algorithms for their recoveries. Due to the
random selection of pixels strategy adopted for the DL in the C-SCD algorithm, the recovery of the
Orange Perspex targets by the C-SCD is seen to fail as shown in Figure 7b. In contrast, these Orange
Perspex targets have been successfully recovered by the proposed KMSCD, as shown in Figure 7c.

Full and sub-pixel target 
locations of Orange 

Perspex material

Zooming in to 
target location

(a) Full and subpixel Orange Perspex target locations in ground truth.

(b) SCD-unmixing with random sample selection showing white
patch at target location because the EM is not learned.

Figure 7. Cont.
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(c) Proposed KMSCD unmixing with similar RGB as ground truth
image.

Figure 7. RGB image of the Selene Dual data set to show the location of the trace target materials and
the ability of DL algorithms to recover them.

To quantify the ability of the DL algorithms for the retrieval of these small targets, the receiver
operating characteristic (ROC) for the detection of the Orange Perspex from the Selene Dual scene,
reconstructed by C-SCD and the KMSCD for the same run shown previously with 50 EMs, are shown
in Figure 8. It is seen quite clearly from the ROC curve that the Orange Perspex targets have been
~12% better detected by the KMSCD than that from the C-SCD data, as according to the conventional
assessment method using the aura under the curve (AUC) metric for assessing the detection capability
quantitatively.

Figure 8. The receiver operating characteristic (ROC) for the detection of the Orange Perspex targets
from the Selene Dual scene reconstructed by the C-SCD and KMSCD algorithms. The small orange
targets are seen to be ~12% better detected from the KMSCD reconstructed scene.

5.3.2. KMSCD for Scene Simulation Applications

Most HSI scene simulators, such as the commercial-off-the-shelf CameoSim package [31], impose
a limited number of materials (Nmp) that can coexist within every pixel in the scene, shown in Figure 9.
The consequence of this constraint is that it may affect the HSI reconstruction accuracy, and it is the
purpose of this section to attempt to assess the side effect of this constraint. Two different ways to
constraint the Nmp have been implemented here: one is the use of the FNNOMP (i.e., the Algorithm 2,
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KMSCD+FNNOMP in Section 3), and the other employs the Texture Material Mapper (TMM) method
(i.e., the KMSCD+TMM).

Collection of different 
materials for the 

given scene

A lookup table (LUT) containing material 
index and it’s respective abundance 
values assigned to each pixel. Each pixel 
can have a maximum of 4 materials per 
pixel in the current structure.

Figure 9. Structure of EM-abundance input used by a scene simulator.

The TMM technique [26] has been used extensively in the HSI simulator (e.g., the CameoSim
package) [32–34], which estimates the abundances by evaluating the inverse of the Euclidean distances
of each EM with respect to the spectral characteristics of the mixed pixel, i.e., the test pixel. Note that
the results that have been presented in Section 5.2.2 are the reconstructions that have been processed
without the limitation on the Nmp. Figure 10 depicts the false-colour DL1NE map of the Selene Dual
scene reconstructed by Algorithm 2 (Figure 10a) and the TMM (Figure 10b) using a maximum of four
materials (Nmp) in every pixel. The mean DL1NE error of the whole scene for the reconstruction by
Algorithm 2 is found to be 0.74%, which is more than 2 times higher than that of the Algorithm 1
(i.e., the KMSCD without Nmp restriction). Furthermore, the mean DL1NE of the reconstruction that
constrained by the TMM exhibits 7.12% error, which is ~10 orders of magnitude higher than that of
Algorithm 2. Figure 11 plots the ROC for the detection of the Orange Perspex target from these two
scenes by the ACE detector, and the AUC of the Algorithm 2 shows approximately twice as that of the
one constrained by TMM. The combined results of these two figures may suggest that the proposed DL
method using KMSCD and, together with the FNNOMP, will be more suitable for HSI scene simulators
like the CameoSim as the material allocation method for practical HSI scene simulation applications.
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(a) KMSCD with FNNOMP (b) KMSCD with TMM

Figure 10. Selene H23 Dual scene by (a) the KMSCD+FNNOMP (Algorithm 2) and (b) the
KMSCD+TMM. The mean errors of the entire map for panels (a,b) are 0.74% and 7.12%, respectively,
showing the superiority of the FNNOMP over the TMM for constraining Nmp to four materials per pixel.

Figure 11. The ROC curve of Orange Perspex (OP) target material with adaptive cosine estimator
(ACE). ACE detector that shows the better recovery of the trace materials (Orange Perspex) from the
one reconstructed by the Algorithm 2 with an area under the curve (AUC) of 0.68, which is almost
twice as that constrained by TMM (AUC = 0.37).



J. Imaging 2019, 5, 85 17 of 20

6. Discussion and Conclusions

This paper proposes a simple yet effective method for improving the efficiency of sparse coding
dictionary learning (DL), thereby the robustness and effectiveness of applications, which make use of
compressive sensing (CS) technology, can be enhanced. CS is the technique which allows sparse signals
to be decomposed into a sparse representation “a” of a dictionary Du, and this dictionary Du has to
be learnt (or trained) from a comprehensive data base. The dictionary, in theory, should encompass
information and characteristics of all signals in the test dataset, and, in most cases, the dictionary is
constituted from the data cloud of the test scene which is also known as the self-dictionary.

This paper proposes the construction of a concise and comprehensive dictionary by using the
cluster centres of the input dataset, and then a greedy approach is adopted to learn all elements
within this endmember dictionary. The proposed method consists of an unsupervised clustering
algorithm (K-Means), and it is then coupled with an advanced sparse coding dictionary (SCD) method
such as the basis pursuit algorithm (orthogonal matching pursuit OMP) for the dictionary learning.
The effectiveness of the proposed KMSCD is illustrated through the reconstructions of several publicly
available HSI scenes.

Before the performance of the proposed KMSCD method is assessed, this paper first outlines the
practicality of using clustering method when the input data only consists of a few number of spectral
bands. This must be investigated, as the multispectral image (MSI) has been commonly employed as
the inputs for scene reconstructions. The result of Section 5.1 has indicated that the K-Means clustering
works equally well as that of the all bands HSI input, even when the MSI scene contains <10 bands.
Subsequently, the performance of the scene reconstruction by the proposed KMSCD has been shown
to be almost twice as robust as the C-SCD over the test of the five repeated runs experiment (see
Section 5.2.1). The capability of the scene reconstruction (i.e., reconstruction of background pixels) for
the KMSCD has been shown to be ~40% better than that of the C-SCD in the reconstruction of the
Selene dataset. Over the five data sets that have been employed in this study, it is seen from Table 2 that
the proposed KMSCD is capable of reconstructing these scenes with mean accuracies approximately
20–500% better than all competing algorithms adopted in this work. With respect to the reconstruction
efficiency of trace materials in the scene, the KMSCD is capable of ~12% improved recovery compared
with the C-SCD (see Section 5.3.1). These results, together with the fast convergences in the KMSCD
(see Section 4), have shown that the proposed DL that employs a simple clustering method for the
construction of the dictionary enhances the scene reconstruction substantially.

Finally, the usefulness of the KMSCD is demonstrated for the scene simulation application when
the number of materials coexists in a pixel is constrained to a maximum of four. In this experiment,
the constraint is implemented by using the FNNOMP algorithm, and it is found that the constraint
reduces the reconstruction accuracy of KMSCD by a factor of 2. However, this method achieves
~10 times better than that constrained by using the widely employed TMM algorithm. This may
suggest that the proposed DL method using KMSCD and, together with the FNNOMP, will be more
suitable to be the material allocation module of HSI scene simulators like the CameoSim package.
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Abbreviations

The following abbreviations are used in this manuscript.

ACE Adaptive Cosine Estimator
AUC Area Under Curve
C-SCD Classic Sparse Coding Dictionary
DL Dictionary Learning
ED Euclidean Distance
EM Endmember
GSD Ground Sampling Distance
KMSCD K-Means Sparse Coding Dictionary
LUT Lookup Table
ROC Receiver Operating Characteristic
SCD Sparse Coding Dictionary
HSI Hyperspectral Image
MD Manhattan Distance
MSI Multispectral Image
ROC Receiver Operating Characteristics
TMM Texture Material Mapper
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