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Abstract

Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify
the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here
we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq
datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation
experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets. In the HITS-CLIP dataset, the
signal/noise ratios of miRNA seed motif enrichment produced by the MiClip approach are between 17% and 301% higher
than those by the ad hoc method for the top 10 most enriched miRNAs. In the PAR-CLIP dataset, the MiClip approach can
identify ,50% more validated binding targets than the original ad hoc method and two recently published methods. To
facilitate the application of the algorithm, we have released an R package, MiClip (http://cran.r-project.org/web/packages/
MiClip/index.html), and a public web-based graphical user interface software (http://galaxy.qbrc.org/
tool_runner?tool_id = mi_clip) for customized analysis.
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Introduction

RNA-binding proteins (RBPs) participate in RNA translation,

splicing and editing events, and play essential roles in mRNA

maturation and downstream regulation of cellular events [1].

Hundreds of RBPs are encoded by the vertebrate genomes, and

each RBP has its specific RNA binding properties. For example,

AGO protein is an RBP that serves as a platform of mRNA and

small RNA interactions [2], and the FET family RBPs, including

FUS, EWSR1 and TAF15, play important roles in RNA editing

and human cancers [3,4]. Thus, accurate identification of RBP

binding targets is important to a systematic understanding of

transcription, translation and other biological processes within

cells.

Cross-linking immunoprecipitation coupled with high-through-

put sequencing (CLIP-Seq) technique has been developed to study

genome-wide RNA-protein interactions [5–7]. The general

procedures of CLIP include covalently linking RNA with RBP,

isolating the bound complex, removing the protein and converting

RNA to cDNA for sequencing. The CLIP experiments evolved

quickly with the development of next generation sequencing

(NGS) techniques. The most commonly used CLIP-Seq experi-

ments are: 1. high-throughput sequencing of RNA isolated by

cross-linking immunoprecipitation (HITS-CLIP) [5,8,9], and 2.

photoactivatable-ribonucleoside-enhanced cross-linking and im-

munoprecipitation (PAR-CLIP) [10–12]. Depending on the cell

culture and cross-linking method being used, various types of

sequencing errors are introduced at RBP binding sites with certain

probabilities [8]. HITS-CLIP utilizes UV cross-linking of proteins

with RNA and introduces mutations in the sequencing data. More

specifically, the mutations are induced on the cDNAs generated in

the reverse transcription step from the RNA fragments when the

reverse transcription enzyme incorporates an incorrect nucleotide

at the site of the cross-linked nucleotide due to attachment of the

remaining residues of the covalently bound protein. However, the

type of mutations is not well-defined and may vary for different

proteins [8,13]. PAR-CLIP utilizes photoreactive ribonucleoside

analogs for incorporation into RNA and some of the analogs that

are cross-linked by UV treatment at a later step will result in

specific nucleotide substitution events. For example, 4-thiouridine

treatment will induce T-.C mutations at crosslinking sites [12].

The iCLIP experiment, which involves a self-circularization step to

capture the truncation of cDNA reads, is less commonly used than

HITS-CLIP and PAR-CLIP [14]. In iCLIP experiments, cDNA

counts, rather than total tag count and mutant tag count, are used

to infer protein binding sites. The analysis of iCLIP experiments

requires distinct procedures and is therefore not considered in the

MiClip package.

The CLIP-Seq techniques allow genome-wide mapping of

RNA-protein interactions, but they also present computational

challenges for identifying the true binding sites from millions of

short reads with mutation information. In most studies, ad hoc

methods are employed to process CLIP-Seq data. Generally, CLIP

clusters are formed by overlapping the short sequencing tags and

simple cut-offs are applied to produce lists of reliable CLIP clusters

[3,5,9]. However, these methods are sensitive to the choice of cut-off
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values, and there are no confidence values associated with the

identified binding sites. To better analyze CLIP-Seq datasets, a few

bioinformatics tools have been developed recently. CLIPZ is an

online server for analyzing CLIP-Seq datasets [15]. However, it still

works under an ad hoc framework — no significant levels are given

for the resulting binding sites. wavClusteR [16] is designed to analyze

PAR-CLIP experiments. It assumes a two-component mixture

model based on relative substitution frequencies (RSFs) for

identifying reliable binding sites, and employs wavelet transforma-

tion for resolving peak boundaries. PARalyzer [17] is also designed to

analyze PAR-CLIP experiments. PARalyzer identifies reliable

binding sites as nucleotides with a minimum read depth and having

a higher likelihood of T-.C conversion than non-conversion.

PARalyzer and wavClusteR could not be easily extended to other types

of CLIP-seq datasets due to the underlying model assumptions.

Besides, StarBase v2.0 [18] is a comprehensive database with more

than 100 CLIP-Seq datasets.

Here, we present a model-based approach, MiClip, for

analyzing both HITS-CLIP and PAR-CLIP data. This approach

has been implemented in the R statistical environment [19]. It first

removes duplicates and finds CLIP clusters, then divides the task

of identifying reliable binding sites into two rounds of Hidden

Markov Model (HMM). The first HMM infers enriched vs. non-

enriched regions in CLIP clusters, and the second HMM infers

binding sites of RBPs vs. non-binding sites within the enriched

regions. Finally, the reliable binding sites and the CLIP clusters

containing these sites are reported in a user-friendly format. We

have tested this algorithm on two datasets and shown that MiClip

provides a general and efficient framework for identifying high-

confidence RBP binding sites at high resolution.

Materials and Methods

CLIP-Seq datasets and mapping
The AGO HITS-CLIP dataset described in Chi, et al. [9] was

downloaded from http://AGO.rockefeller.edu. The alignment of

the HITS-CLIP data was done by Novoalign (Novocraft Technologies)

to the mm10 reference genome. After alignment, the resulting

SAM files from Brain A–E were pooled in the HITS-CLIP dataset.

The FET PAR-CLIP data described in Hoell, et al. [3] was

downloaded from DRASearch, with study number SRP003889.

This dataset contains the PAR-CLIP experiments of three

proteins, TAF15, EWSR1 and FUS, in both inducible and stable

forms. The PAR-CLIP datasets were also aligned by Novoalign to

the hg19 genome using parameters. Multiple-hit reads are not

reported for both datasets. The resulting SAM files of both the

inducible and stable experiments for the same protein were pooled

in the PAR-CLIP dataset.

Finding CLIP clusters by overlapping CLIP-Seq tags
The MiClip package took the alignment SAM format files as

input. In each dataset, duplicate reads that have the same mapping

coordinates (including strand) were identified and collapsed to a

single ‘‘tag’’. Tags overlapping by at least one nucleotide were

grouped together to form CLIP clusters, and those not overlapping

with any other tags were discarded. The deletions on each base

were counted as mutation events for the AGO dataset, and the T-

.C substitutions on each base on the correct strand were counted

as mutation events for the TAF15, EWSR1 and FUS datasets.

Identify enriched regions (first round HMM)
To identify enriched regions, CLIP clusters were divided into

bins of 5 bp. Let x
kð Þ

1 be the total tag count in the t-th bin of k-th

cluster, so cluster k could be represented as a series of tag count

numbers: ~xx(k)~ x
(k)
1 ,x

(k)
2 ,:::,x(k)

Tk

� �
. Here we used HMM to deter-

mine the enriched regions from observed tag counts.

The HMM has two states:
I

(k)
t ~0 if bin t is non-enriched

I
(k)
t ~1 if bin t is enriched

�
.

Poisson model is a popular model to fit the count data [20,21].

Given state I
(k)
t , the observed tag counts were modeled by a two-

component Poisson mixture model:
X

(k)
t *Poisson(l0)DI (k)

t ~0

X
(k)
t *Poisson(l1)DI (k)

t ~1

�
,

so the emission probability could be written as Pr(X
(k)
t ~xDl0,l1,v)

~(1{v)
lx

0e{l0

x!
zv

lx
1e{l1

x!
, (l0vl1), where the v is the

proportion of enriched bins in the CLIP clusters. The transition

matrix P is a 262 matrix, where element pr,s is the transition

probability Pr(I
(k)
t ~sDI (k)

t{1~r). We estimated the l0, l1 and v

parameters first from the observed data using method of moments

[22], and then used the standard Viterbi algorithm [23] to infer the

hidden states I
(k)
t , namely the enriched vs. non-enriched bins. The

Viterbi algorithm determines the hidden state of each bin according

to the criterion that posterior probability of each bin in the inferred

state (enriched or non-enriched) should be larger than the posterior

probability of this bin in the other state, given the model and

observation. Finally, the adjacent enriched bins were concatenated

into enriched regions. A cartoon illustration of how first round

HMM works is shown in Fig. 1b.

Identify reliable binding sites (second round HMM)
To identify reliable binding sites, the enriched regions were

further divided into bins of 1 bp. Let (m
(n)
b ,x

(n)
b ) be the number of

mutations and total tag count in the b-th base pair of the n-th

enriched region. This HMM was designed to have two states:

D
(n)
b ~0 if base pair b is not a binding site

D
(n)
b ~1 if base pair b is a binding site

(
The observed

number of mutations M
(n)
b given the tag count X

(n)
b given D

(n)
b

was modeled by
M

(n)
b DX (n)

b *ZIB(p0,X
(n)
b ,Q)DD(n)

b ~0

M
(n)
b DX (n)

b *Bin(p1,X
(n)
b )DD(n)

b ~1

(
, here a

zero inflated binomial distribution (ZIB) [24] with probability

p0, size X
(n)
b and inflation parameter Q was used to model the

background mutations, such as random sequencing errors at non-

binding sites (D
(n)
b ~0), and a binomial distribution with prob-

ability p1 and size X
(n)
b was used to model the cross-linking

induced mutations at RBP binding sites (D
(n)
b ~1). So, the emis-

sion probability could be written as: Pr(M
(n)
b ~mDX (n)

b ~

x,p0,p1,h,Q)~(1{h) QI(m~0)z(1{Q)
x

m

� �
pm

0 (1{p0)x{m

� �
z

h
x

m

� �
pm

1 (1{p1)x{m

� �
where h is the proportion of binding sites

in enriched regions. We estimated the parameters as follows: First,

from the density plot of mutation rates (m/x), assume that we

could observe two modes f̂f1 and f̂f2, where f̂f1 corresponds to the

probability for success of the background ZIB component and f̂f2

corresponds to the probability of success for the binomial

component. Then, we chose a parameter c specified by the user,

so that f̂f1vcvf̂f2. The bins with mutation ratio
m

x
vc were used to

estimate p0 and Q for ZIB distribution using method of moments,

and the remaining bins were used to estimate p1 for the binomial

distribution. According to our simulation studies (data not shown),

the estimation procedure is robust and the choice of parameter
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c will not greatly change the estimated parameters. Again, the

standard Viterbi algorithm [23] was used to infer the hidden

states, and the probability of being a reliable binding site Pr(D
(n)
b ~

1D~XX ,~MM) was calculated for each base pair b. The enriched part of

the peak in Fig. 1b is shown as a cartoon in Fig. 1c to illustrate

how second round HMM works.

Genome Browser visualization
For all CLIP clusters, only the mapped tags that comprise each

cluster were taken into account when calculating base coverage.

Then, a BedGraph format file was generated for each sample, and

uploaded onto UCSC Genome Browser for visualization.

Motif Analysis
Exact matches to the 7-mer seed motifs of the top 10 most

enriched miRNAs were scanned by an in-house Perl script (this

script was included in the exec folder of the MiClip package for

users to replicate our results). The Perl script scanned the 7-mers

through the genomic sequences covered by all significant clusters

in the HITS-CLIP dataset and reported the locations of matches.

To estimate the signal to noise ratio, 40,000 background sequences

(with the same length as the mean length of the identified clusters)

that have no overlapping regions with the target sequences were

randomly chosen from the mouse genome. The same scanning

procedure was done in these background sequences to calculate

the signal/noise ratio for miRNA seed motif enrichment. The

relative distances from the binding site to the centers of the matches

within each cluster were calculated. If a cluster has more than one

possible binding site, the shortest distance was kept for analysis.

RNA structure prediction
The RNA sequence of SNORD58C on the negative strand was

fetched from UCSC Genome Browser. The structure of

SNORD58C snoRNA was predicted by the RNAfold online server

(http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi), which predicts

RNA structure by minimum free energy (MFE) and partition

function. All default options provided by the server were used.

Results

AGO HITS-CLIP dataset
We focus the demonstration of the MiClip method on the AGO

HITS-CLIP dataset described in Chi, et al. [9], while for the FET

PAR-CLIP dataset we will only present the results. In the AGO

HITS-CLIP study, AGO protein bound to mouse brain RNAs

was purified by UV-irradiating P13 neocortex and immunopre-

cipitation. After purification, complexes of two different modal

Figure 1. Demonstration of the MiClip algorithm. (a) The inference results of MiClip on AGO CLIP clusters. At the bottom, ‘‘Strand’’ refers to the
strands of clusters, ‘‘Enriched bins’’ shows whether a cluster contains enriched bins and ‘‘Binding sites’’ shows whether a cluster contains binding
sites. This region covers part of the Tor1b gene. (b) A cartoon of the first HMM. At the bottom, ‘‘# Tag’’ refers to the rounded number of tags covering
each bin and ‘‘State’’ shows whether a bin was inferred to be ‘‘enriched’’. (c) A cartoon of the second HMM. At the bottom, ‘‘# Tag’’ refers to the
number of total tags covering each base, ‘‘# Mut’’ refers to the number of mutant tags covering each base and ‘‘State’’ shows whether a base was
inferred to be a ‘‘binding site’’.
doi:10.1371/journal.pone.0093248.g001
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sizes were observed: 110 kD complexes harboring miRNAs

(miRNA library) and 130 kD complexes harboring mainly

mRNAs (mRNA library). The MiClip analysis was carried out

only on the mRNA library. All five replicates of the AGO mRNA

datasets were pooled, resulting in a total of around 26 million

reads. Around 22 million reads were aligned successfully to the

mm10 reference genome by Novoalign. Removing duplicates has

been shown to be important in CLIP-Seq analysis, and many

recent studies adopt slightly different methods of collapsing

duplicate reads in specific datasets [25–27]. To be general, MiClip

reads with exactly the same chromosome, strand, start site and end

site were defined as duplicates and collapsed to one tag. About 1.6

million unique tags were kept after removing duplicates. Then,

tags overlapping by at least one nucleotide were grouped together

to form CLIP clusters. Around 380,000 clusters with two or more

overlapping tags were formed. According to the study by Zhang, et

al. [8], deletion is the characteristic marker mutation for protein-

mRNA interaction sites in AGO and Nova HITS-CLIP experi-

ments. Thus, we only counted the occurrences of deletions on each

genomic site in our analysis for this dataset.

To identify the enriched regions, all clusters were divided into

bins of 5 bp, resulting in a total of 3,525,678 bins. On average,

each cluster was divided into ,9 bins. All the bins derived from

the same cluster were defined as one observation sequence. A two-

component-Poisson mixture model was fitted for all the tag counts

on the bin-level, and the status of being enriched or non-enriched

for each bin was inferred from the first round HMM. After the first

round HMM, 291,160 enriched bins were identified, which

correspond to 39,471 clusters. The distributions of tag counts of

enriched vs. non-enriched bins were shown in Fig. S1a in File S1.

Then, adjacent enriched bins were concatenated together and

formed 41,078 enriched regions. This number is larger than

39,471, because some clusters have multi-modal peaks, which

results in multiple enriched regions inside one cluster. One

advantage of the HMM in this step is that it could discriminate

CLIP clusters with different ‘‘shapes’’. For example, a ‘‘flat’’

cluster (Fig. S2 in File S1) that is comprised of 14 unique tags and

spans 41 bins was not classified as enriched, while a cluster with a

similar number of tags, but ‘‘sharper’’ pileup, would be more likely

to be deemed as enriched.

To identify reliable binding sites, total tag and mutant tag

information was collected on a single nucleotide basis within the

enriched regions, resulting in 1,441,030 bases. Then, a mixture

model of a zero-inflated binomial distribution and a binomial

distribution was fitted for the total tag numbers and mutant tag

numbers of all 1,441,030 bases. The zero-inflated binomial

distribution was used to encompass background mismatches on

non-binding sites, such as random PCR and sequencing errors,

and the binomial distribution was used to encompass mismatches

induced by cross-linking on binding sites. The status of binding

and non-binding at each base pair was then inferred by using the

second round HMM, and 6,867 single-nucleotide binding sites

were identified. There are 5,795 out of all 39,471 enriched CLIP

clusters containing binding sites, and most of them contain only

one binding site per cluster (Table S1 in File S1). The

distribution of mutation proportion of binding sites vs. non-

binding sites is shown in Fig. S1b in File S1. We also randomly

permuted the total tag counts and mutant tag counts data, and the

MiClip algorithm found a total of 665 CLIP clusters with at least

one reliable binding site in the permuted data. Therefore, the False

Discovery Rate (FDR) is 0.11.

All CLIP clusters were marked as to whether they contain

enriched regions, and for clusters with enriched regions they were

marked as to whether they contain at least one binding site

(Fig. 1a). A CLIP cluster containing at least one enriched bin with

binding site(s) was reported as a reliable cluster. One exemplary

cluster (the fourth cluster in Fig. 1a) with an identified binding site

was shown in more detail in Fig. 2a. The orange bars show non-

enriched bins, the red bars show enriched bins and the blue arrow

points to the binding site. For each identified binding site, MiClip

produced a probability score (Fig. 2b), which could be used to

prioritize subsequent validation experiments. A site with a higher

probability score means this site is a more reliable binding site.

When we aligned the reliable clusters to the mouse genome and

summarized the genomic locations of these clusters (Fig. 2c), we

discovered that the largest portion of the clusters (35%) falls into

39UTR. This is followed by coding sequences (27%) and intronic

regions (25%), while 59UTR, 59UTR extended regions and

39UTR extended regions each contain 1.6%, 1.2% and 3.6%,

respectively, of the clusters. Within mRNAs, the clusters are highly

enriched in 39UTR (,55%). This observation is consistent with

previous knowledge of miRNA regulation [28]. Also the percent-

age of each annotation type is distinctly different from the

background distribution of the annotation types of all the reads as

control (Fig. 2c), supporting the algorithm’s ability of filtering for

true binding sites in the 39UTR. Therefore our results suggest that

the MiClip method is able to find reliable CLIP clusters with

functional significance.

To further validate the MiClip approach, we tried to correlate

identified CLIP mRNA clusters with miRNA seed matches. A

recent X-ray study suggests that the AGO proteins function by

forming ternary structures with miRNA and mRNA [29]. By

mapping short reads from the miRNA library, Chi, et al. (Chi et al.

2009) were able to identify the most enriched miRNA species and

rank the miRNA species by their abundance, with the most

abundant miRNA being miR-30. We scanned for the 7-mer

(position 2–8) seed motif matches for the top ten most enriched

miRNAs within the 5,795 clusters. Fig. 3a shows an exemplary

significant CLIP cluster with a motif match for miR-9. The red

arrow points to the identified binding site, which has 14 deletions,

and the probability of this site being a true binding site is .0.999.

A miR-9 seed motif match occurs at 20 bp away downstream of

the binding site. We calculated the relative distances to the centers

of the miR-9 seed motifs from the binding sites within all reliable

clusters containing miR-9 motifs. For the example shown in

Fig. 3a, this distance is +20. Then, we plotted the positions of

conserved miR-9 seed matches relative to binding sites according

to the calculated distances (Fig. 3b). We found that most of the

miR-9 seed matches are within 250 to +50 bp of binding sites and

form a sharp peak around position 0, which are the binding sites.

Also, we plotted the distances relative to the binding sites for all the

top 10 miRNAs in Fig. 3c, and in this figure we plotted the pileup

of seed motifs as density curves, for the sake of clarity. The seed

matches for all top 10 miRNA motifs also tend to form very sharp

peaks towards position 0, confirming the validity of the identified

clusters and binding sites. Interestingly, the vertical line at pos = 0

does not cross many motif matches in Fig. 3b and Fig. 3c,

indicating the binding sites are not located directly within seed

motifs. This is because in the AGO HITS-CLIP experiment,

miRNA and mRNA were paired at the seed motif, and thus

partially protected from cross-linking. Similar phenomena were

observed in previous work by another group [17]. Another

interesting point to note is that seed motifs of some miRNAs, like

miR-9, are predominantly downstream of binding sites, while

motifs of other miRNAs, like let-7, locate both upstream and

downstream of binding sites in large numbers. Overall, these

results confirm the validity of the identified binding sites by

MiClip, and show that using binding sites rather than peak

A New Approach to Analyze CLIP-Seq Datasets
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summits, as in the original study, is more informative for finding

protein binding locations.

Moreover, we calculated the percentages of the 5,795 clusters

with seed motif matches for the top 10 miRNAs, as well as the

percentages in 40,000 background sequences, for computing the

signal/noise ratios for the top 10 miRNAs, as in the original

publication [9] and others [30] in the field of nucleotide motif

discovery. We found that 9 out of 10 miRNA seed matches are

enriched (Table 1). In the original publication, the authors also

provided enrichment ratios for the top 10 miRNAs from their list

of significant clusters, but the enrichment ratios are not as high as

calculated from the results of MiClip (Fig. 3d). For each miRNA,

signal/noise ratio by the MiClip method over the ad hoc method

ranges from 1.17 for miR-125 to 4.01 for miR-34 (Fig. 3d). In

conclusion, MiClip is able to find AGO binding sites and reliable

CLIP clusters with better biological significance than the ad hoc

method used in the original work.

FET family protein PAR-CLIP datasets
We also applied the MiClip method to the PAR-CLIP dataset

described in Hoell, et al. [3]. The FET family proteins (FUS,

EWSR1 and TAF15) are abundant and highly conserved RBPs

involved in cancer biology and other diseases. The binding targets

of the FET family proteins were studied using PAR-CLIP, in

which 4-thiouridine was used for cross-linking, and induced T-.C

mutations as the marker mutations for protein-RNA interaction.

The study discovered that FUS protein binding to RNAs is likely

to involve secondary structures, suggesting that structural motifs

might play an important role in protein-RNA recognition. We

used MiClip to analyze this dataset and compared the perfor-

mance of MiClip with the ad hoc, PARalyzer and wavClusteR

methods. We utilized the data provided in another study [31] as

the validation dataset where the binding strength of the FUS and

EWSR1 proteins to RNA transcript of every gene was measured

experimentally using RNA-seq.

Figure 2. The results produced by MiClip on the HITS-CLIP dataset. (a) One exemplary cluster with an identified binding site. The Genome
Browser visualization shows the tag pileup of this cluster. Orange bars denote non-enriched bins, red bars denote enriched bins and the blue arrow
points to the binding site. The number of mutant tags and the total tag count at this base are shown in the parentheses. (b) Histogram of the
probability scores of all 6,867 binding sites. The x-axis is the probability of a site being a binding site and the y-axis is the frequency. (c) The
percentages of all 5,795 reliable clusters identified by MiClip and all reads as background control mapped to each annotation category. CDS
represents coding sequence, upstream 2k represents 2 kb regions upstream of the 59UTRs, downstream 2k means 2 kb regions downstream of
39UTRs and Intergenic represents distal genomic regions not included in all the other categories.
doi:10.1371/journal.pone.0093248.g002
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The sequencing reads for the three proteins were aligned to the

hg19 reference genome, resulting in 4,459,260, 3,886,283 and

4,296,458 mapped reads for TAF15, EWSR1 and FUS proteins,

respectively. The library sizes of the three TAF15, EWSR1 and

FUS experiments are smaller than those of typical CLIP-Seq

studies, and saturation of sites at this sequencing depth is not

reached according to their own calculation [3]. As a result, the

identified reliable clusters are, on average, smaller in size

compared to the AGO HITS-CLIP dataset, with an example of

a FUS cluster given in Fig. 4a. Even so, MiClip still performed

efficiently and accurately on these datasets. MiClip identified

15,896, 18,261 and 41,632 reliable clusters with binding sites for

TAF15, EWSR1 and FUS, respectively. These three sets of

clusters are associated with 4,872, 5,018 and 6,265 genes,

respectively (Fig. 4b). The overlap of these target genes is

significant (Fig. 4c, pv,1E-16, by hyper-geometric test). These

results show that the binding patterns of the FET family proteins

are similar to each other, which is reasonable and expected,

because TAF15, EWSR1 and FUS have similar structures and

highly conserved RNA recognition motifs.

Then we compared the performance of MiClip with wavClusteR,

PARalyzer and the ad hoc method used in the original publication.

Piranha [32] is another CLIP-Seq analysis software. However, the

numbers of RBP binding sites identified by Piranha are too small

Figure 3. miRNA seed matches in AGO mRNA CLIP clusters. (a) An exemplary cluster with one reliable binding site and a seed match for miR-
9. The red rectangle is the binding site, which has 14 mutant tags out of 45 total tags. The miR-9 seed motif is ACCAAAG, which locates 20 bp
downstream of the binding site. (b) The positions of seed matches of miR-9 (positions 2–8) within the 5,795 significant clusters. 4 out of 199 seed
motifs are more than 100 bp upstream or downstream away from the binding sites, which are ignored. X-axis is the relative position with respect to
the binding site within each cluster. (c) The pileup of seed matches of the top 10 miRNAs (positions 2–8) within the 5,795 significant clusters drawn as
density curves. 49 out of 1557 seed motifs (all top 10 miRNAs) are more than 100 bp upstream or downstream away from the binding sites, which are
ignored. (d) The signal/noise ratio of miRNA seed motif enrichment. The blue bars show enrichment ratios for MiClip and the orange bars show
enrichment ratios for the ad hoc method. The numbers on top of these bars show the signal/noise ratio for clusters found by MiClip divided by the
signal/noise ratio for clusters found by the ad hoc method.
doi:10.1371/journal.pone.0093248.g003
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(,1000 for all possible model options) at a P value cutoff of 0.05.

Therefore, it is not included in this analysis. We compared the

binding strengths of target genes identified from the PAR-CLIP

datasets by the four methods using the external validation data

from Han, et al. [31]. In the Han study, the authors used

biotinylated isoxazole (b-isox) chemical to form RNA granule-like

aggregates in cell lysates so that proteins, as well as bound RNAs,

were precipitated upon exposure of lysates to the b-isox chemical.

By sequencing these RNAs in the control and the knockdown

conditions for a specific protein, the authors were able to

investigate the binding strength of the RBP to all gene targets.

In brief, the lower the ratio of the read count of an RNA transcript

in knockdown vs. control conditions, the more likely the protein

will bind to this RNA. We compared how many target genes

identified by the four methods are differentially bound by applying

a series of cutoff ratio values in the Han, et al. dataset. Genes with

ratio smaller than a cutoff will be defined as true targets. We kept

the top 5,000 genes found by the clusters identified by each tool for

the FUS dataset. Then we applied a cutoff ratio, for example 0.4,

to define truly bound genes, the 5,000 genes found by the MiClip

approach contain 25 true binding targets under the cutoff value of

0.4, which is 67% more than the ad hoc method, 47% more than

the PARalyzer method and 67% more than the wavClusteR method.

By applying a series of cutoff ratios from 0–0.5 for differentially

bound genes, we found that MiClip performed better than the ad

hoc, PARalyzer and wavClusteR methods in identifying target genes of

FUS and EWSR1 (Fig. 4d and Fig. S3 in File S1). As an

example of a reliable cluster identified by MiClip, but not by

wavClusteR, PARalyzer or the ad hoc method, the base coverage of a

CLIP cluster around SNORD58C is shown in Fig. 4a. The

knockdown vs. control ratio for this gene is extremely small (equals

0.00016), and the predicted structure of SNORD58C by RNAfold

shows that this snoRNA folds into a secondary structure where the

identified binding site resides at the very tip of the structure

(Fig. 4e). So, this gene is likely to be a true FUS binding target

identified by MiClip, but it was missed by the other methods.

FMR1 PAR-CLIP dataset
We extended the application of MiClip and comparison to other

available softwares to another PAR-CLIP dataset, where the RBP

of interest is FMR1 [33]. Loss of expression of FMR1 is associated

with Fragile X syndrome [34]. FMR1 is one member of the FMR1

RBP family proteins including FMR1, FXR1, and FXR2. FMR1

encodes for multiple isoforms and the authors conducted PAR-CLIP

experiments on isoform 1 and isoform 7 for both wild-type proteins

and I304N mutant proteins. Through bioinformatics and experi-

mental validation, the authors identified two major binding motifs

of FMR1, ACTK (K = G or A) and WGGA (W = A or T). Morever,

the authors found that ACTK and WGGA motifs are likely to occur

in repeats and that ACTK and WGGA motifs often occur together

with each other in short windows [33]. Here, we focus the app-

lication of MiClip on the isoform 7 wild-type protein experiment.

We downloaded the sequencing files from GSE39686, trimmed the

adapters and aligned the sequencing data to the hg19 genome using

Bowtie [35]. This resulted in ,5.5M mapped reads for following

analysis.

We ran MiClip, as well as PARalyzer and wavClusteR, on the

alignment data. MiClip identified a total of 11,212 significant

clusters with reliable binding sites. PARalyzer scored all 174,330

clusters with a self-defined value called ModeScore and wavClusteR

identified a total of 69,830 significant clusters. For a fair com-

parison, we ranked the clusters identified by PARalyzer by

ModeScore provided by the software and ranked the clusters

identified by wavClusteR by total tag intensity over each CLIP

cluster region. We picked the top 11,212 clusters identified by each

software and shortened or extended each cluster towards its

middle position to a uniform length of 30 bp. Then we scanned for

the total number of occurrences of ACTK and WGGA motifs in

the nucleotide sequences covered by these chosen clusters (one

sequence might contain multiple motifs). Fig. 5a shows that the

nucleotide sequences of clusters found by MiClip contain more

ACTK motifs and WGGA motifs than those found by PARalyzer

and wavClusteR. Furthermore, we calculated the number of

sequences that contain both ACTK and WGGA motifs, out of

all nucleotide sequences generated by each software. Fig. 5b shows

that MiClip found more such sequences that contain both motifs

than PARalzyer and wavClusteR. Again, these results suggest that

MiClip performs better than the other two softwares.

Discussion

In this study, we presented the MiClip approach for identifying

reliable protein-RNA binding sites and clusters in CLIP-Seq

datasets, including both HITS-CLIP and PAR-CLIP. MiClip is a

model-based approach that can identify high-confidence binding

sites using probability scores. Different from crosslinking-induced

mutation sites (CIMS) analysis [8] that only looks at mutation

rates, MiClip approach analyzes both tag counts and numbers of

Table 1. The enrichment of the top 10 miRNA seed sequences within the 5,795 clusters.

Rank miRNA Seed motif
# clusters with
seed match

Percentage of clusters
with seed match

Percentage of background
sequences with seed match Signal/Noise

1 miR-30 TGTTTAC 162 2.79% 0.69% 4.04

2 miR-9 ACCAAAG 199 3.43% 0.88% 3.89

3 miR-181 TGAATGT 165 2.84% 1.03% 2.75

4 miR-26 TACTTGA 102 1.76% 0.57% 3.08

5 let-7 CTACCTC 225 3.88% 0.64% 6.06

6 miR-27 ACTGTGA 189 3.26% 0.98% 3.32

7 miR-708 AGCTCCT 46 0.79% 1.16% 0.68

8 miR-124 GTGCCTT 318 5.48% 0.7% 7.82

9 miR-34 CACTGCC 66 1.13% 0.90% 1.25

10 miR-125 CTCAGGG 85 1.46% 1.05% 1.39

doi:10.1371/journal.pone.0093248.t001
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mutations simultaneously to improve detection power. It employs

two HMMs, one for searching enriched regions at 5 bp resolution,

and the other for searching binding sites at single base-pair

resolution. The two-stage approach handles large sequencing data

efficiently, while identifying binding sites at high-resolution. Our

study shows that the MiClip approach performs better than the

wavClusteR, PARalyzer and the ad hoc methods used in the original

publications. One potential of MiClip is that it requires only 2

parameters to control the model fitting. The first one is the cutoff

for truncating the counts of bins with extremely large count data

(for the first HMM) and the second one is the parameter c in

parameter estimation (for the second HMM). In comparison,

PARalyzer requires more than 8 parameters, and wavClusteR

requires 3 parameters to control model fitting. Some of these

parameters are not intuitive and informative, so it could be

difficult to decide the best values for these parameters. Usually the

more parameters there are, the more difficult and confusing it will

be. In the MiClip software, we provided default values for the 2

parameters, based on our experience with several CLIP-Seq

datasets.

Choosing the characteristic marker mutation is important when

analyzing CLIP-Seq datasets. The marker mutation type for PAR-

CLIP dataset is easy to determine, because it depends solely upon

the type of analog used in the experiment. However, for HITS-

CLIP experiments, choosing the right type of mutation as the

marker for binding events could be difficult. According to Zhang,

et al. [8], deletion is the marker mutation for AGO and Nova

HITS-CLIP experiments, but this may not hold true for other

proteins. In fact, our unpublished data shows that for a certain

human protein, we might need to include all types of mutations as

marker mutations, because a well-defined target transcript bound

by this protein contains large and comparable amounts of

Figure 4. Results produced by MiClip on the FET family PAR-CLIP dataset. (a) Genome Browser visualization of an exemplary FUS cluster.
Red arrow denotes the binding site. 2 out of 7 tags on this base have T-.C mutations. (b) The number of reliable CLIP clusters identified in each
sample and the number of genes whose gene bodies contain at least one cluster. (c) A Venn diagram of the overlap between gene targets identified
by MiClip for TAF15, EWSR1 and FUS. (d) Number of target genes identified by MiClip, PARalzyer, wavClusteR and the ad hoc method in the FUS
experiment. The x-axis is the cutoff ratio of the amount of RNA sequenced in the knockdown vs. control condition from the Han, et al. experiment. To
be fair, genes are sorted first by the number of overlapping significant CLIP clusters, and ties are then sorted by the number of bases in each gene
that have non-zero coverage of CLIP clusters. The top 5000 genes found by each tool were used for comparison. (e) The secondary structure of
SNORD58C predicted by the RNAfold online server. The color bar shows the base-pair probabilities. The red arrow points to the identified binding site
by MiClip.
doi:10.1371/journal.pone.0093248.g004
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deletions, insertions and substitutions. In such cases, it is a good

idea to run MiClip multiple times, each time specifying a different

marker mutation or mutation combination, in order to compare

the results and see which setting leads to the most reasonable

results.

Compared with MiClip’s and PARalyzer’s underlying statistical

models, wavClusteR has an additional feature for genomic positions

with very high rates of T-.C substitutions for modeling SNPs in

the reference genome. The proportion of mutant tags with specific

substitution, out of total tags on each base, is defined as relative

substitution frequency (RSF) by wavClusteR method [16]. In the

Mov10 dataset used in its original publication, the authors

discovered that the number of genomic positions with T-.C

substitutions is similar to the number of genomic sites with other

types of substitutions in the high RSF interval. Consequently, the

authors included one component in the statistical model to

represent this part, because they believed that these mutation sites

with high rates of substitutions are questionable, and could be

SNPs in the reference genome. However, the inherent probability

of observing T-.C mutation might be very different from the

inherent probabilities of other kinds of substitutions, especially for

cancer cell lines [36], making this approach problematic. Also, we

found that in the EWSR1 dataset, the number of T-.C mutations

is still much larger than the number observed for any other type of

substitutions in the [0.8–1] RSF interval (Fig. S4a and Fig. S4b
in File S1). So, in our dataset, the majority of high RSF T-.C

mutation sites may still be true binding sites. This discrepancy

could be caused mainly by the effect of different proteins and

experimental designs in these two different studies. Importantly,

the more convincing way to exclude false positives introduced by

SNPs is to screen identified binding sites by known SNPs that exist

in the experimental system according to other reliable information.

For example, one can filter out SNP artifacts by conducting

control experiments (e.g. RNA with no cross-linking) and align

sequences to reference genome to uncover non-experimentally

induced mutations. We provide one function MiClip.snp in the

MiClip package to implement this functionality when such control

experiment is available.

The MiClip algorithm takes full advantage of the unique

properties of HMM, which is the core of the MiClip algorithm.

First, HMM is a powerful method to identify hidden states with

spatial dependencies between neighboring observations. CLIP

clusters formed by overlapping short tags should have inherent

spatial dependency features. In Fig. S1a, bins with tag intensity of

5 can be inferred either as enriched or non-enriched with similar

probabilities. Bins with tag intensity of 5 should have higher

probability of being inferred as enriched when their neighboring

bins have bigger tag counts, which is how spatial dependency plays

a role in statistical inference. For inference of enrichment, we

implemented the Poisson model. For future studies, it would be

interesting to investigate whether a Negative Binomial mixture

model could help improve the inference accuracy. Secondly,

protein binding events will lead to sequencing tag pile up, as well

as sequencing mismatches in a random process, which can be

naturally reflected as an emission function. In Fig. S1b, genomic

sites with mutation ratio around 0.18 have similar probabilities of

being inferred as binding sites or non-binding sites. Here, using

binomial distributions to model the number of mutations, while

considering the total tag counts, is better than looking at the

mutation rate alone. As a simplified example, let us assume the

mutation probabilities are 0.2 and 0.1 for a binding site and a non-

binding site, respectively. The probability of observing 3 mutations

from 10 tags is 0.201 and 0.057 at a binding and non-binding site,

respectively, while the probability of observing 30 mutations from

100 tags is 0.0052 and 1.84e-8 at a binding and non-binding site,

respectively. As a result, although the mutation rates are the same

(equals 0.3), the probability of being a binding site for a site with

10 tag counts is different from a site with 100 tag counts. Overall,

MiClip’s analytic power is derived from the appropriate use of

HMM. Besides, this model-based approach is able to provide a

probability value for each identified binding site (Fig. 2b), which

helps researchers plan subsequent experiments.

Following MiClip analysis, downstream analyses could provide

new insights into binding sequence motifs or structural features,

gene targets and enriched regulatory pathways, as well as many

other aspects of RNA regulation for the protein of interest.

Recently, discovering transcriptional modules by integrating

binding information from ChIP-Seq or ChIP-chip experiments,

and expression data from RNA-Seq or DNA microarray

experiments, has gained a lot of attention [37,38]. The inclusion

of RNA-binding data from CLIP-Seq experiments could greatly

facilitate modelling of gene regulatory networks. In other studies,

CLIP-Seq data have been utilized to analyze RNA splicing events

[39,40] and miRNA targeting sites [41]. In conclusion, the analysis

of RNA-protein binding events by MiClip could provide a much

improved systematic understanding of gene regulation processes

when integrated with analyses of other types of data.

Figure 5. Comparison results of MiClip with PARalyzer and wavClusteR on the FMR1 PAR-CLIP dataset. (a) The total number of
occurrences of ACTK motifs and WGGA motifs in the nucleotide sequences covered by the top 11,212 clusters identified by each software. One
sequence may contain multiple matches and contribute more than one to the total count. (b) The total number of nucleotide sequences that contain
at least one ACTK motif and at least one WGGA motif, out of all the 11,212 sequences for each software.
doi:10.1371/journal.pone.0093248.g005
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We note that the CLIP-Seq technology is still in its infancy. Up

to now, no proper control experiments to estimate background

have been proposed to normalize for transcript abundance. This is

one of the long-standing problems of CLIP-Seq experiments. This

problem is not addressed by the CLIP-Seq analysis tools available

so far. As we don’t assume that the control data are available,

MiClip does not require a control input for analysis, either.

However, one advantage of MiClip over other existing tools is that

its second round of HMM employs binomial distribution of

mutant and total tag counts to identify high-confidence binding

regions. This partially avoids the problem of no control since the

probability of mutation occurrences in the CLIP-Seq condition is

independent of the transcript abundance inferred from the control

condition but still carries information for identification of RBP

binding sites.

RNA structures could potentially influence RBP-RNA binding

events. However, not every RBP has well-defined RNA binding

motif. Also the RNA binding motif could be vastly different for

different RBPs. This prevents us from incorporating RNA

structure motifs in our MiClip algorithm in a general manner.

We suggest biologists and bioinformatics to look for patterns of

RNA structure as well as RNA recognition motif in the significant

CLIP clusters found by MiClip, or any other CLIP-Seq peak

calling software. We will try to incorporate RNA structure motifs

in the statistical modelling in future versions of MiClip.

The MiClip R package is designed to be flexible in analyzing

both HITS-CLIP and PAR-CLIP datasets. In MiClip, the marker

mutations introduced in HITS-CLIP and PAR-CLIP experiments

could be defined as deletion, insertion, substitution, or some

combination of these mutation types. For example, if the

characteristic mutations induced for a specific protein are both

deletions and insertions, the MiClip method can take both types of

mutations into consideration at the same time. We also added an

option in the MiClip package to incorporate background sequenc-

ing data for normalization purpose, if such data are available.

Conducting background profiling of gene expression as a control

for CLIP-Seq experiments has not become a standard procedure

yet, but could be very helpful for improving the accuracy of the

identification of RBP targeting sties. The package can handle both

single-end and paired-end CLIP-seq data. Users could run this

package on UNIX, Mac OS or PC machines. In addition, the

MiClip package is highly efficient. It takes 45 minutes for MiClip to

analyze the FUS PAR-CLIP dataset with sequencing depth ,4.2

million reads, compared with wavClusteR which takes 2 hours to

analyze the same dataset. For the AGO HITS-CLIP dataset with

,26 million reads, MiClip only takes 60 minutes to process.

Although it takes PARalyzer about 30 minutes to process the FUS

dataset, it can only accept Bowtie-format output files from the

Bowtie aligner, which severely limits its application.

Taken together, the MiClip approach provides a general,

efficient and accurate method for identifying high confidence RBP

binding sites and CLIP clusters in various versions of CLIP-Seq

experiments. Moreover, the MiClip approach could be easily

adapted for other substitution-based high-throughput sequencing

datasets.

Implementation
We have implemented the algorithm in an R package, MiClip.

Part of the package is written in Perl to improve the efficiency and

flexibility in handling large sequencing data. The MiClip package

provides a function (MiClip.snp) to filter out the false positives

caused by SNP artifacts if a control sample is supplied. Also, a

helper R function to trim adaptor sequence from the 39 end of

Fastq format sequencing files is provided in the MiClip package.

The package source, user manual and vignette have been

documented on CRAN.

Running MiClip locally could avoid the trouble of uploading

huge data to web-based servers for analysis. However, to help

biologists with limited computation resources, we also developed a

user-friendly web-based interface to MiClip (Fig. S5 in File S1).

This user-friendly web server is able to take BAM files, as well as

SAM files, as input. The users do not need to download or install

any software, and do not need to learn any programming skills to

run the algorithm. This software is based on Galaxy platform [42–

44], and all the analysis parameters will be automatically saved to

ensure the reproducibility of the data analysis.

The manuals for both the R MiClip package and the Galaxy

MiClip software are provided in Text S1–S2 in File S1.
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