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Abstract

Large-scale biodiversity data are needed to predict species’ responses to global

change and to address basic questions in macroecology. While such data are

increasingly becoming available, their analysis is challenging because of the

typically large heterogeneity in spatial sampling intensity and the need to

account for observation processes. Two further challenges are accounting for

spatial effects that are not explained by covariates, and drawing inference on

dynamics at these large spatial scales. We developed dynamic occupancy mod-

els to analyze large-scale atlas data. In addition to occupancy, these models

estimate local colonization and persistence probabilities. We accounted for

spatial autocorrelation using conditional autoregressive models and autologis-

tic models. We fitted the models to detection/nondetection data collected on

a quarter-degree grid across southern Africa during two atlas projects, using

the hadeda ibis (Bostrychia hagedash) as an example. The model accurately

reproduced the range expansion between the first (SABAP1: 1987–1992) and

second (SABAP2: 2007–2012) Southern African Bird Atlas Project into the

drier parts of interior South Africa. Grid cells occupied during SABAP1 gen-

erally remained occupied, but colonization of unoccupied grid cells was

strongly dependent on the number of occupied grid cells in the neighbor-

hood. The detection probability strongly varied across space due to variation

in effort, observer identity, seasonality, and unexplained spatial effects. We

present a flexible hierarchical approach for analyzing grid-based atlas data

using dynamical occupancy models. Our model is similar to a species’ distri-

bution model obtained using generalized additive models but has a number

of advantages. Our model accounts for the heterogeneous sampling process,

spatial correlation, and perhaps most importantly, allows us to examine

dynamic aspects of species ranges.

Introduction

Some of the most pressing problems in nature conserva-

tion (e.g., biodiversity loss, climate change-induced range

shifts) play out at large geographic scales (Root et al.

2003, Gaston 2003, Parmesan 2006), and addressing them

requires biodiversity data collected across large areas (Jetz

et al. 2011). This type of data set is becoming more and

more available and is making it possible for key ecological

questions to be addressed in new ways (Hampton et al.

2013). For example, one development is the newly emerg-

ing field of conservation biogeography (Richardson and

Whittaker 2010), which applies macroecological concepts

to conservation (Kerr et al. 2007).

However, drawing robust inference from large-scale

ecological data is challenging. Data sets that span wide

geographic areas are typically heterogeneous because it is

difficult to collect those data in a standardized way.

Researchers increasingly rely on citizen scientists to con-

tribute to data collection (Greenwood 2007). Citizen

science allows researchers to obtain detailed data sets

across large spatial scales, and rigorous data collection

protocols are often employed. However, the analysis of

those data sets is challenging, because detection probabili-
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ties tend to vary spatially, for example due to variable

sampling effort, and because the large number of contri-

butors is bound to lead to variable levels of skill.

All observational data reflect both the underlying bio-

logical process and the observation process (Williams

et al. 2002). Even with relatively standardized sampling

protocols, population estimates can be imprecise or

biased simply because of the partial nature of the infor-

mation gathered through the observation process (K�ery

2011). Therefore, this process should be explicitly

accounted for in the analyses (Altwegg et al. 2008; K�ery

et al. 2010). Another complication with the analysis of

large-scale data sets is that they usually exhibit spatial

autocorrelation (Latimer et al. 2006). This can sometimes

lead to biased inference if ignored (Dormann et al. 2007;

Beale et al. 2008), especially in the case of uneven spatial

sampling or if accuracy at a fine scale is desired. Spatial

relationships are clearly important when analyzing

dynamic processes, such as colonization and extinction

(Bled et al. 2011).

There is therefore a need for robust methods to analyze

large-scale data sets as an underpinning for research in

macroecology and biogeography, including conservation

biogeography. Ideally, methods should offer a flexible way

to account for the observation process and spatially corre-

lated effects. These methods should also allow for an

analysis of the dynamics underlying large-scale biodiversity

patterns, such as local extinction and colonization, and

permit inferences about environmental covariate effects.

Dynamic occupancy models (MacKenzie et al. 2003,

2006) offer a framework for analyzing large-scale species

distribution data while accounting for the observation

process (K�ery et al. 2010). Occupancy models are

designed to separate the underlying biological process

responsible for species distribution, from the observation

process. The sampling protocol requires that spatial units

be sampled repeatedly within a short enough time span

to ensure that a species is either always present or always

absent within a sampling season. Based on this closure

assumption, one detection establishes a site as occupied,

and other detections and nondetections provide informa-

tion about detection probability conditional on presence.

The closure assumption can be violated in various ways.

If the species colonizes or goes extinct from sites during

the period over which closure is assumed, estimates of

detection probabilities may be biased, leading to biased

estimates of occupancy probabilities (Rota et al. 2009).

Species may be temporarily absent from sites, for example

if the home ranges of individuals are larger than the spa-

tial sampling unit or if species use habitats seasonally. In

this case, occupancy can be interpreted as space use

(MacKenzie et al. 2006) and estimates are unbiased when

space use is random.

The closure assumption is relaxed in dynamic occu-

pancy models (MacKenzie et al. 2003). Dynamic occu-

pancy models (MacKenzie et al. 2003) assume closure

over sampling seasons and allow for extinction and colo-

nization between seasons. The appeal of dynamic occu-

pancy models for species distribution data is that they

include parameters that determine the dynamics of spe-

cies distributions, allowing researchers to determine what

drives these dynamics (Altwegg et al. 2008).

Here, we develop a dynamic hierarchical occupancy

model to analyze bird atlas data collected across South

Africa, Lesotho, and Swaziland during two atlas projects

(Harrison et al. 1997, 2008). This model has to encom-

pass the spatial autocorrelation that occurs at such a

scale, dynamic processes occurring at different timescales

(both between and within the two atlas projects), and the

specificities of each project’s sampling designs. Moreover,

this model has to be general in order to be applied to

species with different life-history traits. In order to illus-

trate the use of the model, we apply it to study the range

dynamics of the hadeda ibis (Bostrychia hagedash), a spe-

cies that has naturally expanded its range across southern

Africa over the past 100 years (Macdonald et al. 1986).

Methods

Data

To monitor the distributions of bird species, two atlas

projects were conducted across southern Africa. Data for

the first Southern African Bird Atlas Project (SABAP1)

were collected mostly between 1987 and 1992, whereas

field work for SABAP2 started in June 2007 and is still

ongoing in 2013 (Harrison et al. 1997; Harebottle et al.

2007). Both projects employed a similar protocol: volun-

teers collected checklists of all bird species they saw dur-

ing a birding session within predetermined regular grid

cells that span the whole region. For SABAP1, these were

quarter-degree grid cells, whereas for SABAP2, they were

5′ 9 5′ grid cells. To compare the data between the two

projects, we pooled SABAP2 data across the nine grid

cells that correspond to a quarter-degree cell. Even

though 2894 (SABAP1) and 985 (SABAP2) observers con-

tributed to data collection, 90% of the data were collected

by 25% (SABAP1) and 27% (SABAP2) of the observers.

The large majority of checklists were collected by inten-

sely birding for a few hours, even though volunteers were

allowed to add species to their lists for up to 30 days in

SABAP1 and up to 5 days in SABAP2. The protocol for

SABAP2 further imposed a minimum of 2 hours of

intense birding and asked birders to note the hour of

intense birding during which a species was first seen.

Species encountered after the intense birding but within
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the 5 days limit were recorded as such. Both atlases asked

birders to note each species only once, regardless of how

many individuals were seen. Our analysis included the

2025 quarter-degree grid cells covering South Africa, Swa-

ziland, and Lesotho (see Figs S1–S3). Multiple checklists

were collected per year for many grid cells. Both projects

employed a rigorous vetting process to identify possible

misidentifications and other errors (see Harrison et al.

1997 and Harebottle et al. 2007 for details).

We developed a model to estimate range dynamics

from these data. As environmental covariates on initial

occupancy, we used the proportion of area occupied by

the relevant vegetation types in each grid cell, using data

from Mucina and Rutherford (2006). The eight biomes/

categories we considered were the savanna biome, Albany

thicket biome, forests biome, fynbos biome, Indian ocean

coastal belt, grassland biome, Nama-karoo biome, and an

“others” category (grouping desert, succulent karoo bio-

mes, azonal vegetation, and waterbodies). Hadedas need

trees for breeding and open, relatively moist habitat for

feeding (Duckworth et al. 2010). We therefore expected

that occupancy would differ between forests, savannah,

fynbos, and the more arid karoo biomes.

Model

We modeled the observed occupancy Yc (Yc = 1 if the

species is detected and 0 if not) on checklist c for the

species of interest using a hierarchical approach. In this

hierarchical model, we considered three levels reflecting

two ecological processes at two timescales and the obser-

vation process. First, we modeled the distribution at the

scale of each SABAP (i.e., occupancy). Then, the yearly

occupancy (referred hereafter as use) within each SABAP

is modeled conditionally on the occupancy at the SABAP

level. Finally, the detection/nondetection data are modeled

conditionally on the yearly use. A general graphical repre-

sentation of this model is presented in Figure 1.

First level: Occupancy during SABAP1 and SABAP2

We are particularly interested in the species’ distribution

over each SABAP and how this distribution changed

between the two projects. Occupancy is then defined as

the species’ distribution within the atlas region during

one SABAP, that is, all the grid cells where the species

might be found, even though they are not guaranteed to

actually be present in any given year (or indeed, with a

small probability, at all during an atlas period). Therefore,

if we consider i = 1, 2,…, N spatial units (i.e., grid cells),

the first ecological process level described occupancy Xi,s

(Xi,s = 1 if occupied, 0 if not occupied) in cell i, during

SABAPs. We model occupancy Xi,s in cell i, during

SABAPs by a Bernoulli distribution with parameter qi,s as:

Xi;s �Bernoulliðqi;sÞ

Use UseUse

Occupancy SABAP 1 Occupancy SABAP 2

Use UseUse

EC
O

LO
GI

CA
L 

PR
O

CE
SS

O
BS

ER
VA

TI
O

N
 

PR
O

CE
SS

Xi,1 Xi,2

Zi,1,t Zi,1,t+1Zi,1,t–1 Zi,2,t Zi,2,t+1Zi,2,t–1

Yc Yc
Yc YcYc

YcYc

Yc

Yc Yc
Yc YcYc

Yc
Yc YcYc

Yc Yc
Yc

Yc Yc

Yc YcYc

Yc

Figure 1. Model diagram representing the relationship between the three hierarchical levels of occupancy Xi,s, use Zi,s,t, and observation Yc. The

four-cell grid represents a simple spatial lattice where the species of interest can either be present (dark cells) or absent (white cells) within the

time period of interest (SABAP or year depending on the temporal scale). The plain horizontal arrow represents the dynamic processes of cell

persistence and colonization between SABAPs. Dashed horizontal arrows indicate dynamic processes of exploitation and appropriation within each

SABAP. As illustrated, the number of checklists collected varies between cells and years.
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The Bernoulli parameters for SABAP1 and SABAP2 are

modeled differently. While we modeled occupancy proba-

bility during SABAP1 directly, occupancy during SABAP2

was derived from previous occupancy status and a

dynamic process of colonizations and extinctions (see

below). Occupancy during SABAP1 was estimated using

generalized additive models (GAM) to account for the

habitat structure based on the vegetation data and spa-

tially structured and unstructured random effects.

logitðqi;1Þ ¼ ao þ
Xm

h¼1

fhðHh;iÞ þ bi þ ei

where ao is an intercept, fh(Hh,i) are smooth functions

linking occupancy probabilities to Hh,i habitat covariates

(i.e., percentage of cell i covered by habitat/biome h). The

smooth functions fh () were modeled using spline func-

tions with two knots as described in Crainiceanu et al.

(2005). Finally bi and ɛi are the spatially structured and

unstructured random effects for cell i.

The spatially correlated random effects bi are expressed as

a CAR model where the spatial effect of the cell i is based on

contiguous grid cells, those cells that share a common

boundary or corner with cell i. Specifically, we use an intrin-

sic version of the CAR model analogous to that proposed by

Besag et al. (1991). The Gaussian CAR model for the spa-

tially correlated random effect bi can then be defined as

bijB�i �Normal
�X

k 6¼i

wik

wi:
bk; r

2
bMik

�

where B is the vector [b1,…, bN], and B�i the correspond-

ing vector that omits bi. Connectivity between cell i and

cell k is represented by element wik (wik = 1 if cells are

neighbors, 0 otherwise). Mik is a N 9 N diagonal matrix

(where N denotes the total number of cells) with elements

Mii proportional to the conditional variance of bi|B�i, r2b
is the conditional variance parameter. In the intrinsic

model, we set Mii = 1/ni, where ni is the number of

neighbors of cell i. Essentially, bi has a normal distribu-

tion with conditional mean given by the average of the

spatially correlated random effects of its neighbors. The

conditional variance is inversely proportional to the num-

ber of neighbors of bi.

Occupancy during SABAP2 resulted from processes of

persistence (a previously occupied cell may stay occupied)

and colonization (a previously unoccupied cell may

become occupied). Occupancy probability of a cell during

SABAP2 was then defined as the result of a first-order

Markov process conditional on cell occupancy state dur-

ing SABAP1, as in the dynamic occupancy models pre-

sented by MacKenzie et al. (2006), Royle and K�ery

(2007), and Bled et al. (2011):

qi;2 ¼ /iXi;1 þ cið1� Xi;1Þ
where φi and ci are persistence and colonization probabil-

ities for cell i between SABAP1 and SABAP2. Those prob-

abilities are then defined as:

logitð/iÞ ¼ /0 þ /0
i þ /00

i Di

logitðciÞ ¼ c0 þ c0i þ c00i Di

with φ0 and c0 are intercepts, /0
i and c′i random cell

effects, and φ″i and c″i slopes for the response of persis-

tence and colonization probabilities to neighborhood

occupancy Di. Di is a covariate defined as the proportion

of first-order neighboring cells to cell i (i.e., grid cells that

share a common boundary or corner with cell i) occupied

during SABAP1. A cell that has a large number of occu-

pied neighbors is more likely to stay occupied (rescue

effect of Brown and Kodric-Brown 1977) or to become

colonized (e.g., Hanski 1998). This is an autologistic

model (Bled et al. 2011; Yackulic et al. 2012).

Second level: Use within each SABAP

We view occupancy as a description of the species’ range

within the study area, even though a grid cell may not be

used by the species continuously during SABAPs. Our

model therefore had a second ecological process describ-

ing use Zi,s,t of cell i, during year t of SABAPs. Introduc-

ing this dynamic component allowed us to relax the

closure assumption so that we only require closure within

each year but not throughout the full atlas periods. We

modeled use Zi,s,t in cell i, during year t of SABAPs by a

Bernoulli distribution with parameter li,s,t and condition-

ally on occupancy Xi,s such as:

Zi;s;t �Bernoulliðli;s;t � Xi;sÞ
If cell i is not occupied during SABAPs, that is,

Xi,s = 0, then use Zi,s,t is also equal to 0. If cell i is occupied

during SABAPs, then the use probability is equal to li,s,t.
Initial cell use probabilities for SABAP1 and SABAP2,

that is, t = 1, were assumed to be iid Bernouilli random

variables, conditioned on cell occupancy status Xi,s and

with li,s,1 having a prior distribution uniform between 0

and 1. In subsequent periods, the use probabilities li,s,t
were defined conditionally on the previous year’s use sta-

tus Zi,s,t�1 (as well as occupancy status Xi,s) and dynamics

parameters such as:

li;s;t ¼ wi;s;tZi;s;t�1 þ hi;s;tð1� Zi;s;t�1Þ
where the dynamics of the use status within each SABAP

were modeled by two parameters: exploitation probability

wi,s,t (or its complement, cell-specific abandonment,

1 � wi,s,t), and appropriation probability hi,s,t. Exploitation
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probability wi,s,t corresponds to the probability of contin-

ued use of cell i between year t and year t + 1 during

SABAPs; it is similar to persistence probability at the occu-

pancy level. Appropriation probability hi,s,t corresponds to
the probability of cell i being used in year t + 1, after not

having been used in year t and is similar to colonization

probability at the occupancy level. Exploitation probability

and appropriation probability are furthermore modeled as:

logitðwi;s;tÞ ¼ w0
i;s þ w00

s;t

logitðhi;s;tÞ ¼ h0i;s þ h00s;t

where w0
i;s and h′i,s are random cell effects, and w″s,t

and h″s,t are random year effects, for exploitation and

appropriation probabilities, respectively.

Third level: Observation process

Finally, we modeled observed occupancy Yc for checklist c

(i.e., in year t during SABAPs for cell i, by observer k) by

a Bernoulli distribution conditional on use Zi,s,t with

detection probability pc such as:

Yc �Bernoulliðpc � Zi;s;tÞ
Since sampling design protocols were slightly different

between SABAP1 and SABAP2, we had to model detec-

tion probability differently for the two SABAPs. For the

modeling of detection probability for SABAP1, we defined

detection probability at the checklist level pc as

logitðpcÞ ¼ pstatusðcÞ;SABAP1 þ xk þ b0i

where pstatus(c),SABAP1 is the intercept describing the mean

detection probability for the species depending on its sea-

sonal breeding status at the time when checklist c was col-

lected. In our example, we distinguish between June to

November versus December to May, which corresponds

to courtship, and breeding versus nonbreeding seasons

for most resident birds in our region. The breeding status

can be thought of as a general seasonal effect. Here, sea-

sonal breeding status defines periods of homogeneous

detection probabilities that could vary throughout a year,

depending on the species’ biology. For hadedas, we

expected detectability to be higher when they are breeding

than when they are not breeding. Parameters xk and b′i
correspond to random observer effects for observer k and

spatially structured random effects for cell i, respectively.

The spatially structured random effects for cell i are

defined similarly as presented above for occupancy, using

a CAR model, and were introduced to account for varia-

tion in detection probability caused primarily by spatial

variation in abundance.

For SABAP2, we had more information about factors

that could have affected detection probability. We knew

(1) whether the species was detected during the initial

period of intense birding, (2) and if so, during which

hour of this initial period. Therefore, detection probabil-

ity at the checklist level for SABAP2 was defined as

pc ¼ IðcÞð1� p0cÞhðcÞ�1p0c
þ ð1� IðcÞÞð1� p0cÞmðcÞp00c

where I(c) is an indicator function indicating if species

detection for checklist c occurred during the initial period

of intense birding (I(c) = 1), or not (I(c) =0), h(c) is hour

of first detection, m(c) is the number of hours spent bir-

ding intensely for checklist c, and p′c is the hourly detec-

tion probability during the period of intense birding. The

probability of detecting the species anytime after the ini-

tial period of intense birding is denoted as p00c. These

probabilities were defined as

logitðp0cÞ ¼ pstatusðcÞ;SABAP2 þ x0
k þ b00i

logitðp00c Þ ¼ pstatusðcÞ;SABAP2 þ x0
k þ b00i þ d

where pstatus(c),SABAP2 is the intercept describing the mean

hourly detection probability for the species depending on

its seasonal breeding status at the time when checklist c

was collected, x′k is a random observer effect, b”i corre-

sponds to a spatially structured random effect, and d is the

difference in detection probability between the period of

intense birding and subsequent less intense birding. These

definitions of p′c and p″c are similar to the definition of

the global detection probability of SABAP1, except that p′c
is an hourly detection probability and p″c is the detection

probability over the whole undefined period of time fol-

lowing the initial intense birding period of m(c) hours.

Implementation

We implemented the model using program WinBUGS

(Lunn et al. 2000). We ran three chains using noninforma-

tive priors, for 50,000 iterations after a 150,000 iteration

burn-in period. The WinBUGS code for our model is pro-

vided in Appendix S1 of the Supporting Information.

Example

We modeled the dynamics of the southern African range of

the hadeda ibis (Bostrychia hagedash). Hadedas are relatively

conspicuous birds because of their loud and characteristic

calls and tendency to forage in open spaces. They do not

resemble any other species that occurs in the region. Hade-

das are undergoing a range expansion in our study area at

least since the early 1900s (Macdonald et al. 1986), probably

due to land use change (Duckworth et al. 2010). The species

is detected over most of South Africa and seems to have

extended its range between the two projects (Fig. S3).
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Figure 2. (A) Estimated mean occupancy probability of the hadeda ibis (Bostrychia hagedash) based on checklist data collected during the first

Southern African Bird Atlas Project (SABAP1, 1987–1992). Panels (B) and (C) show the 2.5th and 97.5th quantiles of the posterior distribution.
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Figure 3. (A) Estimated mean occupancy probability of the hadeda ibis (Bostrychia hagedash) based on checklist data collected during the second

Southern African Bird Atlas Project (SABAP2, 2007–2012). Panels (B) and (C) show the 2.5th and 97.5th quantiles of the posterior distribution.
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Results

Occupancy dynamics between SABAP 1 and 2 – The hade-

da was widely present over South Africa during SABAP1

(Fig. 2) and SABAP2 (Fig. 3) with occupancy probabili-

ties over 0.8 for most of South Africa. Only in the north-

western part of the country were the occupancy

probabilities lower (under 0.5 during SABAP1). The

northwestern part of South Africa is also a relatively

remote area where data collection effort has been low

(Figs S1 and S2). This led to a high uncertainty in the

occupancy probabilities in this area (Fig. 2).

Occupancy increased from SABAP1 to SABAP2

(Fig. 3), and estimated occupancy probabilities were high

throughout the study area for SABAP2. This reflects the

observed range expansion well, even though the uncer-

tainty in occupancy probabilities was still high for the

northwestern part of the country. Overall, the proportion

of occupied cells between SABAP 1 and 2 increased by

8.2% [95% credible interval 4.5; 11.0%]. This was the

result of high persistence and colonization probabilities.

Persistence probability was overall homogenous over

South Africa (between 0.9 and 1, Fig. S4). Colonization

probability showed a spatial structure with a low proba-

bility in the north of South Africa and in areas mainly

dominated by deserts (Fig. S5). Persistence and coloniza-

tion probabilities were positively correlated with the num-

ber of occupied surrounding grid cells (Fig. 4), even

though the persistence probability was always high. Little

local extinction seems to have happened during the

course of our study, which agrees with the observation

that this species is generally increasing in South Africa

(Duckworth et al. 2010). The colonization probability was

low (<0.2) for cells surrounded by unoccupied neighbors

(D = 0%), but increased quickly with increasing neigh-

borhood occupancy.

The spatially structured random effects for occupancy

during SABAP1 showed a gradient going from southeast

to northwest (Fig. 5), while the unstructured random

effect showed no particular spatial pattern (Fig. S6). This

indicates that the spatial autocorrelation in occupancy

was effectively captured by the spatial covariates (habitat)

and the CAR component.

Hadedas were more likely to occupy grid cells during

SABAP1 that had a higher percentage covered by Albany

thicket, fynbos, forest, Indian Ocean coastal belt, and

grassland biomes (Fig. 6). As expected, occupancy proba-

bility was negatively correlated with the presence of

savannah and Nama-karoo biomes.

Use within SABAPs – Use within each SABAP stayed

rather constant, even though slight variation in use prob-

abilities among years indicated that the species presence

in each grid cell varied during each atlas project. In 1986,

the core of the species’ range in this region (southwest of

South Africa) had an average use probability between 0.8

and 0.85 (Fig. 7, upper panel). Five years later, this prob-

ability increased to 0.90–0.95 (Fig. 7, lower panel). The

inclusion of a hierarchical level relaxed the closure

assumption that one would have had to make by treating

each atlas period as a single season. Modeling use allowed

us to detect slight year-to-year variation in presence while

providing a good representation of the occupancy over

the full duration of each project.

Observation process – Because of the slightly different

sampling designs, our estimates of the detection probabil-

ity is per checklist for SABAP1 and per hour of birding

for SABAP2. These two detection probabilities cannot be

directly compared. However, we found that the detection

probabilities during the breeding season were higher than

detection probabilities during the nonbreeding season

during both projects. For SABAP1, the detection proba-

bility at the checklist level was higher by 0.39 [0.34; 0.45],

on the logit scale, during the breeding season compared

with the nonbreeding season. For SABAP2, the hourly

detection probability increased by 0.06 [0.02; 0.09] on the

logit scale during the breeding season over the nonbreed-

ing season.

During SABAP1, there was a clear spatial pattern in

detection probability with relatively higher detection

probabilities in the southwestern part of the region (Fig.

S7). During SABAP2, this spatial component was less
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pronounced (Fig. S8). This could be due to the difference

in sampling design (and therefore modeling). The stan-

dard error maps of the spatially structured random effects

for detection probability reflect patterns in sampling

intensity for each SABAP (Figs S1 and S2). There was

considerable variation in detection probabilities among

observers in both atlas projects (Fig. S9). Such variation

is expected when data are collected by a large and poten-

tially heterogeneous group of observers.

Discussion

We developed an occupancy model for analyzing

biodiversity data that is conceptually similar to a

GAM-based species’ distribution model, which is cur-

rently a popular tool for analyzing large-scale occurrence

data (Elith and Leathwick 2009). In addition, however,

the dynamic occupancy model allowed us to examine the

range dynamics of hadedas across the subcontinent, while

accounting for the observation process. We believe that

accounting for the observation process is particularly

important in large-scale data sets where sampling effort

and detection probabilities almost necessarily vary spa-

tially. Among the less heterogeneous data sets are the

ones collected by coordinated atlas projects.

Atlas projects typically aim at mapping species occur-

rence across large areas. A common design for conducting

atlases is to divide the area into a regular grid and

attempt to collect data for all grid cells over a limited

time. This general protocol was also employed for two

bird atlases in southern Africa, SABAP1 and 2. In the case

of the SABAP, observers were asked to collect checklists,

leading to repeated detection/nondetection data for the

>700 bird species found on the subcontinent.
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The SABAP data have a number of properties that are

typical for this type of data. Most importantly, these are

uneven spatial coverage (see Figs S1 and S2), variable

effort per checklist, and a large number of observers with

potentially heterogeneous skills (see Fig. S9). These prop-

erties form the observation process that makes the raw

data a distorted representation of the true processes we

want to study. Separating the observation process from

the biological process generally requires either repeated

observations of the process at least in some portion of the

grid cells or else potentially restrictive assumptions

about covariate relationships determining occupancy and
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detection parameters (Lele et al. 2012). Site occupancy

models (MacKenzie et al. 2002, 2006) are one statistical

approach designed for this situation.

To relax the closure assumption made by occupancy

models, we added a dynamic component within the sea-

sons, which in our case were the main atlas periods. Add-

ing this extra level allows a focal species to be temporarily

absent, and therefore not recordable, from grid cells that it

occupies in the longer term. We call this level “use”, fol-

lowing MacKenzie et al. (2006). We found a slight increase

in use within SABAP1 that was in line with the expansion

of the species’ range between the atlases (see Fig. 7).

At the spatial resolution of our data, we expected occu-

pancy dynamics to be more clearly manifested over the 15-

year time step between the two projects compared with

yearly time steps. We therefore selected an approach that

focuses on the dynamics of range expansion over a 15-year

time frame. One consequence of defining the atlas period

as a season and modeling yearly use within season is that a

grid cell could potentially be estimated to be occupied but

never used, which rarely happened in our case. Alterna-

tively, one could define occupancy as the probability of a

grid cell being used at least for 1 year within each season.

Models based on this approach would not condition use

(Zi,s,t) on seasonal occupancy, but would instead treat the

latter as a derived parameter. Under such an approach,

occupancy probability would equal zero when a cell has

not been used at all, but it would be harder to model occu-

pancy directly as a function of covariates. Both modeling

approaches are reasonable, and we selected the one that we
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Figure 7. The probability of an occupied grid

cell being used by hadedas in a particular year.

We show the estimates for the years (A) 1986

and (B) 1991 as examples.
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thought to be most consistent with our objectives that

focused on range dynamics between the two SABAP peri-

ods and broad-scale occupancy within each period.

Another general property of grid-based sampling

designs is that neighboring grid cells may not be indepen-

dent, even after accounting for possible shared habitat co-

variates. We found that modeling the spatial effects was

important in our case. We used conditional autoregressive

models (CAR, Besag et al. 1991) to account for residual

spatial autocorrelation in occupancy during SABAP1 and

detection probabilities in both atlases. The observation

process also appeared to be spatially autocorrelated, and

this could be due to variation in abundance affecting

detection probabilities. Another approach to deal with

abundance-induced spatial heterogeneity in detection

would have been to utilize detection information to infer

abundance (Royle and Nichols 2003). Modeling spatial

autocorrelation in occupancy models is currently a field

of active development (Johnson et al. 2013). Additional

covariates could explain part of the residual spatial auto-

correlation. Covariates could also be incorporated at the

use level (Zi,s,t) and for modeling persistence and coloni-

zation parameters where they could provide valuable infor-

mation about drivers of use and occupancy dynamics.

We modeled spatial dependencies in persistence and

colonization probabilities using autologistic models (Bled

et al. 2011; Yackulic et al. 2012); that is, these probabili-

ties depended on the number of neighboring grid cells

that were occupied during SABAP1. Autologistic models

may fail if too many grid cells are not sampled at all.

Where it works, however, in our opinion, this model

makes biological sense (i.e., provides a mechanistic

model) because unoccupied grid cells are more likely to

be colonized from nearby occupied sites than from sites

further away (Hanski 1998; Clobert et al. 2001). Likewise,

persistence may be increased in neighborhoods with high

occupancy because of the rescue effect (Brown and

Kodric-Brown 1977). Modeling range dynamics in this

way can give important information on how fast species

may colonize suitable habitat, an important parameter for

projecting both species range shifts under climate change

and invasion speed (Neubert and Caswell 2000; Altwegg

et al. 2013). A big limitation of current species’ distribu-

tion models is that they cannot realistically account for

dispersal limitation (Midgley et al. 2006).

Citizens have become an important partner in scientific

projects that require data collected across a large spatial

scale (Greenwood 2007). This is an especially gratifying

collaboration, because this gives researchers a direct way

to connect with the general population and increases

awareness for big challenges such as biodiversity loss and

climate change. However, there is often a conflict between

making the data collection protocol stringent enough to

allow for robust analysis, and making it simple enough

for observers to enjoy participating and be able to adhere

to the protocol. The big advantage of using grid- and

checklist based protocols is that they provide repeated

detection/nondetection data. Repetition would be difficult

to achieve with point-based protocols, where often not

much about the observation process is known.

Macroecological questions, by their very nature, require

data from the typically large geographic scale of species

ranges. Historically, macroecological questions have been

addressed primarily by identifying patterns (e.g., in species

distribution) and then trying to infer underlying processes

from these patterns (e.g., Brown 1995). Because most pat-

terns can potentially be explained by numerous underlying

processes, these inferences have been widely challenged

and are characterized by substantial uncertainty (Strong

et al. 1984; Gaston and Blackburn 1999). An alternative

approach to inference about dynamic processes is to study

these processes directly (e.g., see discussion in MacKenzie

et al. 2006). That was our approach in this modeling

effort, and we note that it can easily be adapted to other

atlas data sets. Certainly, important macroecological con-

servation questions about changes in species distributions

in response to land use change and climate change can be

readily addressed using this approach.
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African Bird Atlas Project (SABAP2): logarithm of the

number of checklists plus one per quarter-degree grid

cell.

Figure S3. Map showing detections of hadeda ibis

(Bostrychia hagedash) during the two Southern African

Bird Atlas Projects (SABAP1 and 2).

Figure S4. The probability of hadedas to persist in occu-

pied grid cells between 1992 and 2007, and 2.5% and

97.5% quantiles.

Figure S5. The probability of hadedas colonizing unoccu-

pied grid cells in southern Africa between 1992 and 2007,

and 2.5% and 97.5% quantiles.

Figure S6. Unstructured random effects for hadeda occu-

pancy probability during the first Southern African Bird

Atlas Project (SABAP1), and standard error.

Figure S7. Spatially structured random effects for detec-

tion probabilities of hadedas during the first Southern

African Bird Atlas Project (SABAP1).

Figure S8. Spatially structured random effects for detec-

tion probabilities of hadedas during the second Southern

African Bird Atlas Project (SABAP2).

Figure S9. Posterior distribution for the standard devia-

tion in detection probabilities of hadedas among observ-

ers during the first Southern African Bird Atlas Project

(SABAP1, panel A) and during the second Southern Afri-

can Bird Atlas Project (SABAP1, panel B).

Appendix S1. BUGS code used to fit the model.
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