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Abstract DNA methylation, repressive histone modifications, and PIWI- interacting RNAs are 
essential for controlling retroelement silencing in mammalian germ lines. Dysregulation of retroele-
ment silencing is associated with male sterility. Although retroelement silencing mechanisms have 
been extensively studied in mouse germ cells, little progress has been made in humans. Here, we 
show that the Krüppel- associated box domain zinc finger proteins are associated with DNA methyl-
ation of retroelements in human primordial germ cells. Further, we show that the hominoid- specific 
retroelement SINE- VNTR- Alus (SVA) is subjected to transcription- directed de novo DNA methylation 
during human spermatogenesis. The degree of de novo DNA methylation in SVAs varies among 
human individuals, which confers significant inter- individual epigenetic variation in sperm. Collec-
tively, our results highlight potential molecular mechanisms for the regulation of retroelements in 
human male germ cells.

Editor's evaluation
Retrotransposons undergo massive reprogramming of their methylation states during germ cell 
development, but some elements are immune to this remodeling. This manuscript explores the 
contribution of binding motifs for KRAB- Zinc Finger Proteins (KZFPs) and position towards genes to 
explain the variable methylation dynamics of different retrotransposon families, namely L1, SVA and 
LTR12, as well as potential inter- individual variation during male germ cell development in humans, 
using an integrative analyses of available sequencing datasets. By bringing insights into the complex 
regulation of retrotransposons, it could be of particular interest to the epigenetics community.

Introduction
Transposable elements comprise more than 40% of most extant mammalian genomes (Lander et al., 
2001). Among these, certain types of transposable elements called retroelements, including short/
long interspersed elements (SINEs/LINEs) and hominoid- specific retrotransposons SINE- VNTR- Alus 
(SVA) are active in humans and can be transposed (Huang et al., 2012; Maksakova et al., 2013; 
Ostertag et  al., 2003). As retrotransposons cause genome instability, insertional mutagenesis, or 

RESEARCH ARTICLE

*For correspondence: 
kei.fukuda@riken.jp (KF); 
yshinkai@riken.jp (YS)

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 18

Preprinted: 19 May 2021
Received: 06 January 2022
Accepted: 21 March 2022
Published: 22 March 2022

Reviewing Editor: Deborah 
Bourc'his, Institut Curie, France

   Copyright Fukuda et al. This 
article is distributed under the 
terms of the Creative Commons 
Attribution License, which 
permits unrestricted use and 
redistribution provided that the 
original author and source are 
credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.76822
mailto:kei.fukuda@riken.jp
mailto:yshinkai@riken.jp
https://doi.org/10.1101/2021.05.19.444783
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article      Chromosomes and Gene Expression | Genetics and Genomics

Fukuda et al. eLife 2022;11:e76822. DOI: https://doi.org/10.7554/eLife.76822  2 of 23

transcriptional perturbation and are often deleterious to host species (O’Donnell and Burns, 2010), 
multiple defense mechanisms have evolved against transposition. The first line of defense is transcrip-
tional silencing of integrated retroelements by chromatin modifications, such as DNA methylation and 
histone H3 lysine 9 (H3K9) methylation (Fukuda and Shinkai, 2020; Goodier, 2016). Most retroele-
ment families are bound by Krüppel- associated box domain zinc finger proteins (KRAB- ZFPs), which 
coevolved to recognize specific retroelement families (Imbeault et al., 2017; Jacobs et al., 2014; 
Wolf et al., 2015). KRAB- ZFPs repress retroelements by recruiting KAP1/TRIM28 (Sripathy et al., 
2006) and other repressive epigenetic modifiers (Schultz et al., 2002; Schultz et al., 2001).

Restricting retroelements is especially important for germ cells, because only germ cells transmit 
genetic information to the next generation. During embryonic development, primordial germ cells 
(PGCs) undergo epigenetic reprogramming, characterized by DNA demethylation and global reset-
ting of histone marks in mice and humans (Gkountela et al., 2015; Guo et al., 2015; Kobayashi 
et al., 2013; Seisenberger et al., 2012; Seki et al., 2007; Tang et al., 2015). A subset of young 
retroelements resists this global DNA demethylation event in PGCs, which may be required for retro-
element silencing (Gkountela et al., 2015; Guo et al., 2015; Kobayashi et al., 2013; Seisenberger 
et  al., 2012; Seki et  al., 2007; Tang et  al., 2015). H3K9 trimethylation mediated by SETDB1 is 
enriched in DNA demethylation- resistant retroelements in mouse PGCs (Liu et al., 2014). As SETDB1 
regulates DNA methylation of a subset of retroelements (Matsui et al., 2010; Rowe et al., 2013), 
and it is recruited to the retroelements via interaction with KRAB- ZFPs, it has been hypothesized that 
SETDB1/KRAB- ZFPs may contribute to DNA demethylation resistance in PGCs.

In contrast to the extensive DNA hypomethylation in PGCs, the genomic DNA of sperm is highly 
methylated in both humans and mice (Hammoud et al., 2014; Kobayashi et al., 2013; Molaro et al., 
2011; Okae et al., 2014). Retroelements are also subjected to de novo DNA methylation during sper-
matogenesis in mice via the PIWI/piRNA pathway (Aravin et al., 2008; Inoue et al., 2017). Epigenetic 
alterations in retroelements and dysfunction of retroelement silencing pathways in male germ cells 
are associated with male sterility linked to azoospermia (Aravin et al., 2007; Bourc’his and Bestor, 
2004; Carmell et al., 2007; Heyn et al., 2012; Urdinguio et al., 2015). In addition, epigenetic alter-
ations of retroelements in male germ cells can be potentially transmitted to the next generation with 
phenotypic consequences (Daxinger et al., 2016; Rakyan et al., 2003). Therefore, deciphering the 
regulatory mechanisms of retroelements in germ cells contributes to the understanding of sterility and 
transgenerational epigenetic inheritance. Extensive studies have been conducted to understand DNA 
methylation mechanisms in mouse spermatogenesis; however, limited progress has been achieved in 
humans.

In this study, we aimed to clarify the regulatory mechanisms of DNA methylation of retroelements 
in human germ cells and performed an integrative analysis using three sets of previously reported 
data, which included whole- genome bisulfite sequencing (WGBS) data for human PGCs (hPGCs) and 
sperm, the transcriptome of human male germ cells, and comprehensive human KRAB- ZFPs ChIP- exo 
data.

Results
Transposable elements showing DNA demethylation resistance in 
hPGCs
To learn more about the factors that contribute to DNA demethylation resistance in hPGCs, we rean-
alyzed publicly available WGBS data for male hPGCs (Guo et al., 2015). The global erasure of DNA 
methylation is mostly complete at 19 weeks of gestation (Figure 1A), therefore, we analyzed the 
DNA methylation status of full- length transposable elements (a copy whose length is 90% or more 
of the length of the consensus sequence of each subtype, listed in Supplementary file 1) in male 
hPGCs at 19 weeks of gestation to identify retroelements that showed resistance to demethylation. 
We generally focused on the retroelement types that had been analyzed for the DNA methylation 
status more than 30 copies. Among the retroelements we analyzed, the primate- specific retroele-
ment families L1PA, SVA, and LTR12 showed high levels of DNA methylation (Figure 1B). In the SVA 
family, SVA_A, which emerged 13–14 million years ago (Mya) and is the oldest SVA type, showed the 
highest DNA methylation levels relative to other SVA types. This includes the currently active SVA_E/F 
(Figure 1C). In the L1 family, L1PA3–5, which emerged 12–20 Mya and is moderately young, showed 
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Figure 1. Retroelements showing DNA demethylation resistance. (A) Violin plots showing DNA methylation levels of each CpG site during human male 
germ- cell development. DNA demethylation was almost completed at 19 weeks of gestation. (B) Scatter plots showing average DNA methylation level 
of each retroelement type between somatic cells and male human primordial germ cells (hPGCs) at 19 weeks of gestation. Only full- length copies were 
used for this analysis, and retroelement types with ≧30 full- length copies were shown. Each plot was colored according to its retroelement family (red: 
SVA, blue: L1, green: LTR, gray: Alu). (C–E) Violin plots showing DNA methylation level of each retroelement type in hPGCs at 19 weeks of gestation. 
p- Value was calculated by Tukey’s test and was described in Supplementary file 2. The number in parentheses was analyzed copy number. (F–H) Bar 

Figure 1 continued on next page
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higher methylation levels than the older (L1PA5–8) and younger L1 types, including the currently 
active L1 (L1HS) (Figure 1D). LTR12 (also known as HERV9 LTR) is not currently active and all LTR12 
types are highly methylated (Figure 1E). Therefore, it appears that young but inactive L1PA, SVA, and 
LTR12 types are resistant to DNA demethylation in hPGCs. Because 100 bp short- read NGS data did 
not map efficiently onto the currently active L1 transposon, L1HS (Figure 1—figure supplement 1A), 
and DNA methylation of only about 10% of full- length L1HS copies could be analyzed (Figure 1—
figure supplement 1B), it is possible that a subset of L1HS is resistant to DNA demethylation. Epig-
enome analysis using long- read sequence technology, such as nanopore sequencing, may provide an 
answer to this question (Ewing et al., 2020). Even though some retroelement types showed relatively 
high DNA methylation levels in hPGCs, the DNA methylation levels of each retroelement type were 
highly variable among full- length copies (Figure 1C–E), which prompted us to try to identify potential 
DNA sequences required for DNA demethylation resistance. To this end, we classified each retro-
element copy according to DNA methylation levels as follows: low <20%, 20% ≤ medium < 60%, 
and high  ≥60%. Using this classification, we determined that both the ‘high’ and ‘low’ classes of 
copies exist in highly methylated retroelement types in hPGCs, such as SVA_A, L1PA3, and LTR12C 
(Figure 1F–H).

The presence of ZNF28- and ZNF257-binding motifs are correlated 
with demethylation resistance in SVA_A
KRAB- ZFPs are important factors for retroelement silencing. Their activity is mediated by the recruit-
ment of KAP1 and SETDB1, which induces retroelement DNA methylation (Matsui et al., 2010). To 
investigate whether KRAB- ZFPs could be involved in the DNA demethylation resistance of SVAs, 
we reanalyzed the binding peak data of 250 KRAB- ZFPs identified by ChIP- exo using exogenously 
tagged KRAB- ZFPs in human HEK293T cells (Helleboid et  al., 2019; Imbeault et  al., 2017). We 
observed that the ZNF257 and ZNF28 peaks overlapped more frequently with highly methylated 
SVA_A copies than with lowly methylated copies (Figure 2A). Because peaks of ZNF611 and ZNF91, 
which interact with SVAs in human embryonic stem cells (hESCs) (Haring et al., 2021; Jacobs et al., 
2014), were observed in both lowly and highly methylated SVA_A copies (Figure 2A), it is unlikely 
that these two KRAB- ZNPs contribute to the differences in DNA methylation among SVA_A copies. 
Of the ‘high’ SVA_A elements, 63.8% and 44.7% were bound by ZNF257 or ZNF28, respectively. 
However, no ‘low’ SVA_A showed binding (Figure 2A), and both ‘high’ and ‘medium’ SVA_A copies 
significantly overlapped with the ZNF257- or ZNF28- binding peaks (Figure 2—figure supplement 
1A). The frequency of overlap with the ZNF257/28 peaks and the enrichment of ZNF257/28 in SVA_A 
were positively correlated with DNA methylation (Figure 2B and C), and both ZNF257 and ZNF28 
showed the highest enrichment of SVA_A when SVA family members were compared (Figure 2D).

It is possible that the correlation between the DNA demethylation resistance of SVA_A and the 
binding potential of specific KRAB- ZNFs based on ChIP- exo mapping data in HEK293T cells could 
result from differences in read mappability. To determine the likelihood of this, we calculated the 
mappability of each transposon copy by virtually creating reads from the retroelements and mapping 
them onto the genome. Although highly methylated SVA_A copies showed greater mappability than 
those that were lowly methylated (Figure 2—figure supplement 1B), the correlation between SVA_A 
DNA methylation levels and enrichment for ZNF28/257 was observed even when only SVA_A copies 
with similar mappability (50–70%) were used for analysis (Figure 2—figure supplement 1C). There-
fore, we concluded that the enrichment of ZNF28/257 in SVA_A in HEK293T cells is correlated with 
SVA_A DNA methylation levels in hPGCs.

The SVA element has a region containing variable- number tandem repeats (VNTRs) in the middle 
segment. SVA_A contains one type of VNTR (VNTR1), whereas the other SVA classes possess two 

graphs showing the fraction of ‘low’, ‘medium’, and ‘high’ methylated class of each retroelement type in male hPGCs at 19 weeks of gestation. The 
retroelement copies used in these figures were same as those in (C- E).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Raw data of graphs in Figure 1.

Figure supplement 1. Mappability of whole- genome bisulfite sequencing (WGBS) reads on transposable elements.

Figure 1 continued
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Figure 2. Identification of Krüppel- associated box domain zinc finger proteins (KRAB- ZFPs) associated with DNA demethylation resistance in SINE- 
VNTR- Alus (SVAs). (A) Scatter plots showing the fraction of low- methylated or highly methylated SVA_A copies which overlaps of KRAB- ZFP peaks. 
ZNF257 and ZNF28 peaks were more frequently overlapped with ‘high’ methylated SVA_A than ‘low’ methylated SVA_A. For this analysis, publicly 
available ChIP- exo data from 250 human KRAB- ZFPs in HEK293T cells were used. (B) Bar graphs showing the fraction of SVA_A copies with ZNF257 and 

Figure 2 continued on next page
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types of VNTRs (VNTR1 and VNTR2) (Figure 2E). The ZNF257- and ZNF28- binding motifs, which were 
predicted by HOMER (Heinz et al., 2010; Figure 2F), are in VNTR1 (Figure 2E, Figure 2—figure 
supplement 1D). The number of ZNF257- and ZNF28- binding motifs within SVAs was the highest 
in SVA_A (Figure 2E) and was most strongly correlated with the copy number of VNTR1 in SVA_A 
out of all the SVA classes (Figure  2G). The VNTR1 copy number was also highly variable among 
SVA_A copies (Figure 2G), and DNA methylation of SVA_A was positively correlated with the VNTR1 
copy number (Figure 2H, Figure 2—figure supplement 1E) and the number of ZNF257/28 motifs 
(Figure 2I, Figure 2—figure supplement 1F). We also confirmed that DNA methylation levels within 
the VNTR were correlated with ZNF257 or ZNF28 association (Figure 2—figure supplement 1G, H). 
These results indicate that a high number of ZNF257- and ZNF28- binding motifs within the VNTR 
increases the enrichment of KRAB- ZFPs. This might contribute to maintaining SVA_A DNA methyla-
tion during hPGC development. We confirmed the RNA expression of ZNF257 and ZNF28 in hPGCs 
by reanalysis of single- cell RNA- seq data from hPGCs and neighboring somatic cells (Guo et  al., 
2015; Figure 2—figure supplement 2A, B). However, there was no direct evidence for ZNF28/257 
protein expression and its binding to SVAs in hPGCs, which warrants further studies.

The presence of the ZNF649-binding motif is correlated with 
demethylation resistance in L1s
We also analyzed the correlation between KRAB- ZFP- binding motifs and the DNA methylation status 
of L1s and LTR12s in hPGCs. Consistent with previous reports that ZNF649 and ZNF93 bind L1s (Cosby 
et al., 2019; Jacobs et al., 2014), ZNF649 and ZNF93 peaks were frequently found in L1PA2–6 and 
L1PA3–6, respectively (Figure 3A), and these two KRAB- ZFPs were enriched at the 5ʹ terminus of the 
L1 sequences (Figure 3B). The frequency of L1 copies overlapping with ZNF649 and ZNF93 peaks 
was correlated with the DNA methylation levels of L1s in hPGCs (Figure 3C, Figure 3—figure supple-
ment 1A). Because read mappability in L1 (L1PA4) was similar across the different DNA methylation 
groups (Figure 3—figure supplement 1B), ZNF649 and ZNF93 are candidate factors for the DNA 
demethylation resistance of these L1s. As was the case for SVA_A, the presence of ZNF649- or ZNF93- 
binding motifs (Figure 3D) was also correlated with DNA methylation levels (Figure 3E).

Reanalysis of single- cell RNA- seq data for hPGCs and neighboring somatic cells (Guo et al., 2015) 
showed that both ZNF649 and ZNF93 were expressed more in hPGCs than in neighboring somatic 
cells (Figure 2—figure supplement 2A, B). Because the correlation between the presence of binding 
motifs and DNA methylation levels was stronger in ZNF649 than in ZNF93 (Figure 3E), we investi-
gated ZNF649 in more detail. The ZNF649- binding motif was located at the 5ʹ UTR of L1s (Figure 3F), 
consistent with the enrichment of ZNF649 in the 5′ UTR (Figure 3B). The enrichment of ZNF649 in 
L1s was decreased in L1PA2 and abrogated in L1HS (Figure 3B). Along with the decreased ZNF649 
enrichment, a base substitution at the fifth position of the ZNF649- binding site was observed in the 
consensus sequences of L1HS (Figure 3F). Because the fifth position of the ZNF649- binding site (T) is 
conserved in highly methylated L1 copies (Figure 3G), a T in this position may be required for ZNF649 
to bind to L1. Although highly methylated L1 copies had two mismatches within the ZNF649- binding 
motif, one at the third position (T→G) and one at the sixth position (A→T) (Figure 3G), a minor fraction 

ZNF28 peaks. SVA_A copies were classified by DNA methylation levels in 19 W human primordial germ cells (hPGCs) (N = 8, 26, 47 in low, medium, and 
high, respectively). p- Value was calculated by chi- square test. (C) Enrichment of ZNF257 and ZNF28 on SVA_A classified by DNA methylation levels in 
male hPGCs at 19 weeks of gestation. (D) Enrichment of ZNF257 and ZNF28 on each SVA subtype. (E) Position of ZNF257- and ZNF28- binding motifs 
along SVA consensus sequences. VNTR1 and VNTR2 are composed of multiple copy number of tandem repeats, and the copy number of these number 
tandem repeats (VNTRs) is highly variable among SVA copies. Both ZNF257- and ZNF28- binding motifs were found within VNTR1 of SVAs. (F) Sequence 
logo of ZNF257- and ZNF28- binding motifs. (G) Violin plots showing copy number of VNTR1 of each SVA subtype. (H) Violin plots showing VNTR1 copy 
number of SVA_A classified by its DNA methylation status in male hPGCs at 19 weeks of gestation. (I) Violin plots showing the number of ZNF257 and 
ZNF28 motifs in SVA_A classified by DNA methylation status in male hPGCs at 19 weeks of gestation. p- Value was calculated by Tukey’s test.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Raw data of graphs in Figure 2.

Figure supplement 1. Correlation between ZNF257/ZNF28- binding motifs and DNA methylation levels in SVA_A copies.

Figure supplement 2. Expression of Krüppel- associated box domain zinc finger proteins (KRAB- ZFP) genes in somatic cells and human primordial germ 
cells (hPGCs).

Figure 2 continued
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full- length L1 copies. ZNF649 binds 5’ regions of L1PA2–PA8, while ZNF93 binds the 5’ regions of L1PA3–PA8. (C) Bar graphs showing the fraction of L1 
copies with ZNF93 and ZNF649 peaks. L1 copies were classified by their type and DNA methylation levels in male human primordial germ cells (hPGCs) 
at 19 weeks of gestation. (D) Sequence logo of ZNF93- and ZNF649- binding motifs. (E) Bar graphs showing the fraction of L1 copies with ZNF93- and 
ZNF649- binding motifs. The presence of ZNF93- and ZNF649- binding motifs was correlated with higher DNA methylation of L1 in male hPGCs at 
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of the ZNF649- binding motif had the same base composition at these sites (Figure 3D). Thus, these 
two mismatches may not abrogate ZNF649 binding. We also confirmed high DNA methylation in the 
ZNF649- binding motifs at individual loci (Figure 3H).

The presence of the ZNF850-binding motif is correlated with 
demethylation resistance in LTR12C
For the LTR12C family, we found that ZNF850 more frequently overlapped with highly methylated 
LTR12C/D/E copies than lowly methylated ones when we analyzed the binding peak data for 250 
KRAB- ZFPs (Helleboid et al., 2019; Imbeault et al., 2017; Figure 3—figure supplement 2A, B). 
We focused on LTR12C because it had the highest analyzable copy number (LTR12C: 2054; LTR12D: 
130; LTR12E: 46 copies). The ZNF850- binding motif was more frequently found in highly methyl-
ated LTR12C copies than in lowly methylated copies (Figure 3—figure supplement 2C). Two high- 
confidence binding motifs (q- value < 0.01) were identified at the 5′ portion of LTR12C consensus 
sequences (Figure 3—figure supplement 2D), which was consistent with ZNF850 enrichment in the 
5′ portion of LTR12C (Figure 3—figure supplement 2E). Lowly methylated LTR12C copies contained 
mismatches more frequently at the eighth and tenth positions of the first and second predicted 
binding sites along LTR12C, respectively (Figure 3—figure supplement 2F). An example of highly 
methylated LTR12C loci with a ZNF850 peak is shown in Figure 3—figure supplement 2G. These 
data suggest that KRAB- ZNFs prevent DNA demethylation during male germ- cell development.

The mode of DNA methylation acquisition during spermatogenesis 
varies depending on retroelement type
To investigate whether lowly methylated retroelements in hPGCs acquire DNA methylation during sper-
matogenesis, we analyzed publicly available human sperm WGBS data from two donors (Hammoud 
et al., 2014). The two donors were of similar age (donor 1 – 32 and donor 2 – 37), and both were 
white Caucasians. The dynamics of DNA methylation in retroelements during spermatogenesis vary 
depending on retroelement type and individual characteristics. Most L1 copies acquired DNA meth-
ylation during spermatogenesis in both individuals, whereas LTR12C copies maintained their DNA 
methylation status in hPGCs during spermatogenesis (Figure 4A). A substantial difference between 
individuals was observed in the SVAs. The majority of SVA copies acquired DNA methylation during 
spermatogenesis in sperm donor 1, but not in donor 2 (Figure 4A). To evaluate these trends more 
efficiently, we classified retroelement copies based on DNA methylation levels in sperm (common 
high: > 60% in both donors; high and low: > 60% in donor 1 and < 20% in donor 2; common low: < 
20% in both donors). The majority of lowly methylated L1 copies in hPGCs were highly methylated in 
sperm cells from both donors (Figure 4B). In contrast, most LTR12C/D copies maintained their PGC 
DNA methylation status during spermatogenesis (Figure 4C). Among the SVA types, SVA_A showed 
high levels of DNA methylation in both sperm donors, whereas other SVA types showed variable DNA 
methylation levels when both sperm donors were compared (Figure 4D), especially in SVA copies that 
had low DNA methylation levels in hPGCs (Figure 4E).

The degree of DNA methylation acquisition during spermatogenesis 
varies among SVA copies
Although the DNA methylation status of SVAs was highly variable between the sperm donors, a 
subset of SVA copies acquired DNA methylation or maintained a low methylation state during 

19 weeks of gestation (L1PA2 and -PA6 were not significant for ZNF93). p- Value was calculated by Hypothesis Testing for the Difference in the Population 
Proportions using a function of prop.test by R. (F) Comparison of sequences of ZNF649- binding sites among L1 types. L1HS lost the ZNF649 motif by a 
base substitution. (G) Comparison of sequences at ZNF649- binding sites between low- and high- methylated L1. (H) Representative view of correlation 
between DNA methylation of L1PA4 in hPGCs and ZNF649- binding peak.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Raw data of graphs in Figure 3.

Figure supplement 1. Enrichment of ZNF649/93 on L1PA4.

Figure supplement 2. ZNF850 association is correlated with DNA demethylation resistance of LTR12 family in human primordial germ cells (hPGCs).

Figure 3 continued
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Figure 4. DNA methylation dynamics of retroelements during human spermatogenesis. (A) Scatter plots showing DNA methylation levels of each 
retroelement copy in male human primordial germ cells (hPGCs) at 19 weeks of gestation and sperm. Whole- genome bisulfite sequencing (WGBS) 
data from two sperm donors (Hammoud et al., 2014) were used for this analysis. Donor 1 and donor 2 were colored by orange and cyan, respectively. 
(B–D) Bar graphs showing the fraction of groups determined by DNA methylation patterns in two sperm donors in L1 (B), LTR12 (C), and SINE- VNTR- 
Alus (SVA) (D). ‘Other’ indicates groups except for common high, common low, and high and low, such as low methylated in donor 1 and mediumly 

Figure 4 continued on next page
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spermatogenesis in both sperm donors (Figure 4D). It is possible to get insight for mechanisms of de 
novo DNA methylation of SVAs during spermatogenesis by comparing SVAs that acquired DNA meth-
ylation (‘low’ in hPGCs and ‘common high’ in sperm) to SVAs that maintained hypomethylation (‘low’ 
in hPGCs and ‘common low’ in sperm) in both sperm donors. Phylogenetic analysis of ‘common low’ 
and ‘common high’ SVA copies (SVA_B and _D) showed that these two classes were not genetically 
separated (Figure 5A), indicating that the acquisition of DNA methylation in SVAs during spermato-
genesis is not genetically determined.

The presence of transcription- directed retroelement silencing mechanisms, such as the PIWI/piRNA 
pathway (Watanabe et al., 2018), prompted us to investigate the correlation between the genomic 
distribution of SVA copies and DNA methylation. Approximately half of the SVA_B–F copies were 
inserted into the gene body, and most of them were in the antisense direction (Figure 5B). ‘Common 
high’ SVA_B–F copies were enriched in the gene body in the antisense direction, while ‘common 
low’ SVA_B–F copies were depleted from the gene body (Figure 5B). Reanalysis of publicly available 
single- cell RNA- seq data in human testes (Sohni et  al., 2019) revealed that genes with ‘common 
high’ SVA_B–F copies in the antisense orientation showed greater expression in spermatogonial stem 
cells relative to genes with ‘common low’ (Figure 5C). Therefore, SVAs located in actively transcribed 
regions in the antisense orientation are efficiently subjected to de novo DNA methylation during sper-
matogenesis. The expression of genes with ‘high and low’ SVA_B–F copies in the antisense direction 
was higher in spermatogonial stem cells than the expression of other randomly extracted genes and 
genes with ‘common low’ SVA_B–F copies. However, the expression of these genes was lower than 
the expression of genes with ‘common high’ SVA_B–F copies (Figure 5C). Approximately half of the 
‘high and low’ SVA_B–F copies were located in non- genic regions, but RNA- seq reads from previ-
ously reported undifferentiated spermatogonia (Tan et al., 2020) mapped more frequently around 
the non- genic ‘high and low’ SVA_B–F copies than the ‘common low’ B–F copies (Figure 5D). There-
fore, non- genic ‘high and low’ SVA_B–F copies are frequently inserted in transcribed regions during 
spermatogenesis. These results implicate the possibility that SVAs acquire DNA methylation during 
DNA methylation via transcription- directed machinery, and that the effectiveness of de novo DNA 
methylation varies among individuals.

SVAs are a potential source of inter-individual epigenetic variation in 
sperm
Inter- individual variation in DNA methylation in SVAs was also observed when another set of publicly 
available sperm WGBS data from three Japanese donors was analyzed (Okae et al., 2014; Figure 6A). 
For additional validation, we performed amplicon sequencing (amplicon- seq) of bisulfite PCR prod-
ucts for SVAs on sperm from five Japanese donors (Figure 6B). Our amplicon- seq yielded approxi-
mately 1.7–2.2 M read pairs and measured the DNA methylation level of over 90% of the full- length 
SVA_B–F copies (minimum read depth of CpG ≥ 5, analyzed CpG number ≥ 10) (Figure 6C). Again, 
‘high and low’ SVA_B–F copies showed variations in DNA methylation among donors (Figure 6D). 
Thus, inter- individual variation in SVA methylation in sperm is a common phenomenon and is not 
ethnically specific.

To estimate the impact of SVAs on inter- individual epigenetic variations in sperm, we identified 
differentially methylated regions (DMRs) in two sperm donors, as shown in Figures 4 and 5; Hammoud 
et al., 2014. Although the DNA methylation profiles between the two donors were highly correlated 
(Figure 6E), 2008 regions were identified as DMRs (donor 1 < donor 2: 332, donor 2 < donor 1: 
1676). Of the 1676 donor 1- specific methylated DMRs, 772 (46.1%) overlapped with SVAs (Figure 6F). 
We also observed differential DNA methylation among individuals in SVA- associated DMRs in our 

methylated in donor 2. Bar graphs were also separated by DNA methylation levels (high or low) in male hPGCs at 19 weeks of gestation. (E) Violin plots 
showing DNA methylation levels of SVA copies in male hPGCs at 19 weeks of gestation, sperm donor 1, and sperm donor 2. The violin plots were also 
separated by DNA methylation levels of SVA copies in male hPGCs at 19 weeks of gestation. Although hypomethylated SVA copies in male hPGCs at 
19 weeks of gestation acquired DNA methylation during spermatogenesis, the degree of DNA methylation increase was significantly different between 
sperm donors. p- Value was calculated by Dunnett’s test.

The online version of this article includes the following source data for figure 4:

Source data 1. Raw data of graphs in Figure 4.

Figure 4 continued
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amplicon- seq data (Figure 6G). Therefore, SVAs significantly contribute to inter- individual variations 
in the sperm epigenome. In contrast to the inter- individual epigenetic variation of SVAs in sperm, a 
reanalysis of WGBS data of adult skeletal muscle from 15 individuals and of helper CD4- positive T cells 
from 18 individuals, which was deposited in the International Human Epigenome Consortium (IHEC) 
portal, showed high DNA methylation of SVAs in all individuals (Bujold et al., 2016; Figure 6—figure 
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Figure 5. Transcription- associated regulation of DNA methylation of SINE- VNTR- Alus (SVA) during spermatogenesis. (A) Phylogenetic analysis of SVA_B 
(left) and SVA_D (right) copies low methylated in male human primordial germ cells (hPGCs) at 19 weeks of gestation. SVA copies highly methylated by 
both sperm donors were colored by red, while those hypomethylated by both sperm donors were colored by blue. (B) Bar graphs showing the fraction 
of SVA_B–F copies inserted in a gene body. SVA copies were classified by DNA methylation patterns in two sperm donors. Only low- methylated SVA 
copies in male hPGCs at 19 weeks of gestation were used for this analysis. The number in parentheses represents analyzed copy number. (C) Violin plots 
showing the expression of genes in adult spermatogonial stem cells 2 (Sohni et al., 2019). Genes were classified according to the DNA methylation 
status of SVAs inserted in them in the antisense direction. p- Value was calculated by Tukey’s test. (D) Enrichment of RNA- seq reads from undifferentiated 
spermatogonia (Tan et al., 2020) around non- genic SVAs. Only low- methylated SVA copies male hPGCs at 19 weeks of gestation were used for the 
analysis, and SVA copies were classified by DNA methylation patterns in two sperm donors (common low, high, and low and common high).

The online version of this article includes the following source data for figure 5:

Source data 1. Raw data of graphs in Figure 5.
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Figure 6. SINE- VNTR- Alus (SVAs) constitute a major source of inter- individual epigenetic variations in sperm. (A) Violin plots showing DNA methylation 
of SVA copies in previously reported three sperm donors (#1–#3) (Okae et al., 2014). Only low- methylated SVA copies in male human primordial 
germ cells (hPGCs) at 19 weeks of gestation were used for the analysis. SVA copies were classified by DNA methylation levels of two sperm donors 
from Hammoud et al., 2014. Donor #1 showed significantly higher DNA methylation levels in ‘high and low’ SVA copies than other sperm donors. 
p- Value was calculated by Tukey’s test. (B) Scheme of amplicon sequencing (amplicon- seq) for analyzing SVA methylation. (C) Bar plots showing the 
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supplement 1A, B). Thus, inter- individual variations in DNA methylation of SVAs in sperm are essen-
tially canceled during development.

Finally, to investigate whether inter- individual DNA methylation variations are associated with phys-
iological or disease conditions, we reanalyzed publicly available WGBS data from five healthy donors 
and six oligozoospermic patients (European Nucleotide Archive [ENA] under the accession number 
PRJEB34432) (Leitão et  al., 2020). The disease condition was not associated with inter- individual 
DNA methylation variations in SVAs, because both healthy donors and oligozoospermic patients 
showed inter- individual variations of DNA methylation in ‘high and low’ SVA_B–F copies (Figure 6—
figure supplement 1C). On the other hand, a comparison of various physiological conditions between 
highly methylated individuals and lowly methylated ones (median methylation levels of ‘high and low’ 
> 50% vs. < 50%) revealed that blood testosterone levels were significantly higher in lowly methylated 
individuals than in highly methylated ones (Figure 6—figure supplement 1D). However, prolactin, 
follicle stimulating hormone, luteinizing hormone (LH), sex hormone- binding globulin blood levels, 
and age were not significantly different between the two groups (Figure 6—figure supplement 1D). 
Although further validation of this correlation is required, DNA methylation of SVAs in sperm may be 
associated with physiological conditions.

Discussion
In this study, we showed that the binding potential of KRAB- ZFPs correlates with retroelement DNA 
demethylation resistance in hPGCs. Furthermore, we found that de novo DNA methylation patterns 
in spermatogenesis vary among the L1, LTR, and SVA retroelements. In addition, we ascertained that 
the SVAs located in transcription- active regions in the antisense orientation are prone to methylation 
during spermatogenesis, which implies that the transcription- directed DNA methylation machinery 
might contribute to de novo DNA methylation of SVAs in male germ cells. Notably, the extent of de 
novo DNA methylation of SVAs in male germ cells is variable among human individuals, with SVAs 
being a major source of epigenetic variation in sperms.

We showed that DNA demethylation resistance in hPGCs frequently occurred in moderately young 
retroelements such as L1PA, SVA_A, and LTR12, but not in currently active retroelements. Because we 
targeted full- length transposons, our analysis was biased toward relatively young transposons. Thus, 
it is possible that some fragmented older transposons may also be resistant to DNA demethylation in 
hPGCs. A subset of LTR transposons, including LTR12, function as enhancers (Deniz et al., 2020). It 
was recently reported that LTR5s, which are Hominidae- specific LTR- type transposons and hypometh-
ylated in hPGCs (DNA methylation levels < 10%), can function as enhancers to promote hPGC differ-
entiation (Xiang et al., 2022). Therefore, in the case of LTR12C, maintaining DNA methylation might 
be beneficial for hPGC development because it suppresses inappropriate activation of transposon- 
embedded enhancer function.

In addition, KRAB- ZFP binding potentially contributed to the DNA demethylation resistance of L1s 
and SVAs. ZNF257/28, ZNF649/ZNF93, and ZNF850 were associated with the DNA demethylation 
resistance of SVAs, L1s, and LTR12Cs, respectively (Figure 7). In hPGCs, multiple KRAB- ZNPs were 
correlated with DNA demethylation resistance in the same retroelements, which may contribute to 
more robust or cooperative retroelement suppression. Although ZNF91 reportedly binds to the VNTR 
in SVAs and silences SVA expression in embryonic stem cells (ESCs) (Haring et al., 2021; Jacobs 

fraction of analyzed full- length SVA copies by amplicon- seq. (D) Violin plots showing DNA methylation levels of SVA copies in five sperm donors from 
amplicon- seq. Only low- methylated SVA copies in male hPGCs at 19 weeks of gestation were used for the analysis. SVA copies were classified by DNA 
methylation levels of two sperm donors from Hammoud et al. Donor #5 showed significantly higher DNA methylation levels in ‘high and low’ SVA copies 
than other sperm donors. p- Value was calculated by Tukey’s test. (E) Scatter plot showing the DNA methylation between sperm donor 1 and sperm 
donor 2 from Hammoud et al. DNA methylation levels between these two donors were highly correlated. (F) Heatmap showing DNA methylation levels, 
genomic distribution, and overlap with SVAs of differentially methylated regions (DMRs). (G) Representative view of DMRs overlapping with SVA. Black 
and green boxes represent SVA and DMR, respectively.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Raw data of graphs in Figure 6.

Figure supplement 1. Inter- individual epigenetic variation in SINE- VNTR- Alus (SVAs) was correlated with testosterone levels in bloods.

Figure 6 continued
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of L1, SVA, and LTR12. ZNF649, ZNF257/28, and ZNF850 were associated with DNA demethylation resistance of L1, SVA, and LTR12C, respectively. 
The dynamics of DNA methylation during spermatogenesis are largely different among retroelement types. The majority of L1 copies acquired DNA 
methylation during spermatogenesis, whereas the DNA methylation status of LTR12 in human primordial germ cells (hPGCs) tended to be maintained 
during spermatogenesis. The mode of DNA methylation changes in SINE- VNTR- Alus (SVAs) during spermatogenesis largely differs between copies 
and individuals. SVA copies located in highly transcriptionally active regions acquire DNA methylation during spermatogenesis, while those located in 
transcriptionally inactive regions maintain a hypomethylated state during spermatogenesis. In contrast, the degree of DNA methylation in sperm in SVA 
copies located in low transcriptionally active regions was highly variable among the individuals. These results suggest that SVAs may be methylated by 
transcription- directed DNA methylation mechanisms during spermatogenesis, and their activity varies among individuals.
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et al., 2014), the DNA demethylation resistance of SVAs did not correlate with ZNF91 binding, indi-
cating that a different KRAB- ZFP set is used to suppress SVAs in human PGCs and ESCs. Both ZNF257 
and ZNF28 bound to VNTR1 (Figure 2E), and high copy numbers of VNTR1 were correlated with high 
ZNF257 and ZNF28 enrichment and DNA methylation (Figure 2H1). The reduction in VNTR1 copy 
number after SVA_B emergence (Figure 2G) may have been necessary for SVAs to escape silencing 
mechanisms in hPGCs. The human genome encodes at least 350 KRAB- ZFPs, and not all KRAB- ZFPs 
were included in the ChIP- seq dataset used in this study (100 copies remained unmapped). Thus, 
the involvement of other KRAB- ZFPs in DNA demethylation resistance of retroelements in hPGCs is 
possible. Although we observed a strong correlation between KRAB- ZFPs and DNA demethylation 
resistance, direct evidence for this correlation remains elusive because of the limited availability of 
human fetal gonads and of high- specificity antibodies for KRAB- ZFPs. Because they can function as 
in vitro derivation systems, PGC- like cells (PGCLCs) may be a promising model for investigating the 
biology of PGCs. Although successful establishment of human PGCLCs has been reported (Sasaki 
et al., 2015), sufficient DNA demethylation has not been observed in human PGCLCs (von Meyenn 
et al., 2016). Thus, the currently available human PGCLCs are not suitable models for investigating 
the mechanisms of DNA demethylation resistance. Optimizing the derivation conditions for human 
PGCLCs will aid in our understanding of retroelement silencing in PGCs.

Additionally, we showed that the mode of DNA methylation acquisition during spermatogenesis 
was very different among retroelement types. The majority of L1 copies acquired DNA methylation 
during spermatogenesis, whereas LTR12 maintained its DNA methylation status in hPGCs during sper-
matogenesis (Figure 7). L1HS, which both ZNF93 and ZNF649 were unable to bind, also acquired 
DNA methylation during spermatogenesis (Figure 4B), suggesting the involvement of other factors in 
the de novo DNA methylation of L1 during spermatogenesis. The PIWI- piRNA pathway is responsible 
for the DNA methylation of L1 transposons in mouse male germ cells (Aravin et al., 2007; Carmell 
et al., 2007; Kojima- Kita et al., 2016; Manakov et al., 2015; Shoji et al., 2009). The PIWI- piRNA 
pathway may also be functional in humans, because mutations in genes associated with the PIWI- 
piRNA pathway are linked to human male infertility (Arafat et al., 2017; Gu et al., 2010). Moreover, 
the majority of putative piRNAs that mapped to transposons at gestational week 20 are derived from 
L1 (Reznik et al., 2019). Therefore, the PIWI- piRNA pathway is a candidate pathway for L1 silencing 
in human male germ cells.

Our data showed that the acquisition of DNA methylation of SVAs during spermatogenesis 
correlated with the inserted regions and not with the nucleotide sequence. SVAs inserted in tran-
scriptionally active regions in the antisense direction are efficiently targeted for de novo DNA meth-
ylation during spermatogenesis. In mouse spermatogenesis, MIWI2 binds piRNAs and is recruited to 
the nascent transcribed regions that are complementary to piRNAs (Watanabe et al., 2018). Subse-
quently, MIWI2- interacting protein SPOCD1, which forms a complex with DNMT3A and DNMT3L, 
and potentially with a rodent- specific DNA methyltransferase DNMT3C (Barau et al., 2016), induces 
DNA methylation on transposons (Zoch et  al., 2020). Therefore, one possible mechanism for the 
de novo DNA methylation of SVAs during spermatogenesis is that the MIWI2/SVA- derived piRNA 
complex targets nascent transcripts with antisense SVAs and induces DNA methylation. There are 
also other transcription- directed repetitive element silencing mechanisms, such as those involving the 
HUSH complex, which repress L1s and SVAs (Fukuda et al., 2018; Liu et al., 2018; Robbez- Masson 
et al., 2018). The HUSH complex targets young full- length L1s located within the introns of actively 
transcribed genes (Fukuda and Shinkai, 2020; Liu et al., 2018). In addition to the HUSH complex, 
efficient pericentromeric heterochromatin formation requires the transcription of pericentromeric 
satellite repeats, which stabilize SUV39H pericentromeric localization (Johnson et al., 2017; Shirai 
et al., 2017; Velazquez Camacho et al., 2017). Because SUV39H is also associated with retroele-
ment silencing (Bulut- Karslioglu et al., 2014), both the HUSH complex and SUV39H are candidate 
factors associated with the transcription- directed DNA methylation of SVAs in human male germ 
cells. In eukaryotes, gene bodies are the most conserved targets of DNA methylation. Gene body 
DNA methylation levels are often correlated with transcriptional levels (Teissandier and Bourc’his, 
2017). This is because of the interaction between the elongating RNA polymerase II and SETD2, 
which results in H3K36me3. H3K36me3 participates in the de novo methylation of DNA by recruiting 
DNMT3 enzymes via their chromatin reading PWWP domains (Baubec et al., 2015; Shirane et al., 
2020). Furthermore, antisense RNAs embedded within protein- coding genes are selectively silenced 
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by H3K36 methyltransferase SET2 in Saccharomyces cerevisiae (Venkatesh et al., 2016). Thus, the 
machinery for gene body DNA methylation regulated by SETD2 is also a candidate for the de novo 
DNA methylation of SVAs during spermatogenesis.

The mechanism underlying inter- individual epigenetic variations in SVA in human sperm is unknown. 
In addition to genetic differences among individuals, both intrinsic and extrinsic environmental differ-
ences may contribute to inter- individual variations in SVAs. Our data indicate that in sperm, the 
degree of DNA methylation of SVAs located in genomic regions with low transcriptional activity varies 
among individuals. Thus, the effectiveness of transcription- directed de novo DNA methylation in male 
human germ cells may vary among individuals. Previous studies have shown that hypermethylation 
of the PIWIL2 and TDRD1 promoter regions, which are involved in the PIWI- piRNA pathway, is asso-
ciated with abnormal DNA methylation and male infertility in humans (Heyn et al., 2012). There-
fore, the effectiveness of the PIWI- piRNA pathway may vary among individuals and contribute to the 
epigenetic variation of SVAs in male germ cells. SVAs function as enhancers (Gianfrancesco et al., 
2017), alter the chromatin state near the insertion site (Fukuda et al., 2017), and are associated with 
Fukuyama- type congenital muscular dystrophy and Lynch syndrome (Ostertag et al., 2003; Payer 
and Burns, 2019). Therefore, differences in SVA regulation among individuals may induce changes 
in gene regulation in male germ cells, alter the risk of genome instability, and affect the incidence of 
disease among individuals.

Materials and methods
Semen collection
Ejaculates were provided by patients who visited the Reproduction Center of the Ichikawa General 
Hospital, Tokyo Dental College. All study participants were briefed about the aims of the study and 
the parameters to be measured, and consent was obtained. The study was approved by the ethics 
committees of RIKEN, Tokyo University, and Ichikawa General Hospital. Sperm concentration and 
motility were measured using a computer- assisted image analyzer (C- Men, Compix, Cranberry Town-
ship, PA). Human semen was diluted twice with saline, layered on 5.0 mL of 20 mM HEPES buffered 
90% isotonic Percoll (Cytiba, Uppsala, Sweden), and centrifuged at 400 × g for 22 min. The sperm in 
the sediment was recovered to yield 0.2 mL, and then introduced to the bottom of 2.0 mL of Hanks’ 
solution to facilitate swim- up. The motile sperm in the upper layer were recovered.

Preparation of SVA amplicon-seq
Genomic DNA was subjected to bisulfite- mediated C to U conversion using the MethylCode Bisul-
fite Conversion Kit (ThermoFisher Scientific), and then used as a template for PCR for 35 cycles with 
EpiTaq (Takara) using the following primers: SVA_1_Fw  TTAT  TGTA  ATTT  TTTT  GTTT  GATT  TTTT  TGTT  
TTAG . SVA_1_Rv  AAAA  AAAC  TCCT  CACA  TCCC  AAAC  SVA _2_Fw  TTAA  TGTT  GTTT  AGGT  TGGA  GTGT  
AGTG  SVA _2_Rv  CAAA  AAAA  CTCC  TCAC  TTCC  CAAT A. SVA_3_Fw  TTTG  GGAG  GTGT  ATTT  AATA  GTTT  
ATTG  AGAA  SVA_3_Rv  TAAA  CAAA  AATC  TCTA  ATTT  TCCT  AAAC  AAAA  AACC . The PCR products from 
three sets of primers were combined, purified using a MinElute PCR Purification Kit (QIAGEN), and 
fragmented using Picoruptor (Diagenode) for 10 cycles of 30 s on and 30 s off. Then, the amplicon- seq 
library was constructed using KAPA LTP Library Preparation Kits (KAPA BIOSYSTEMS) and SeqCap 
Adapter Kit A (Roche). The amplicon- seq libraries were sequenced on a HiSeq X platform (Illumina).

WGBS and amplicon-seq analysis
We used the hg19 version of the human genome for NGS analysis because the predicted KRAB- ZFP 
peaks were derived from this version. Using the newest version of the human genome (GRCh38) did 
not significantly affect the conclusions. The following publicly available WGBS data were used in this 
study: hPGCs (SRP050499), sperm (SRP028572, ERP117337, JGAS00000000006), and adult tissues 
(IHEC data portal). For the IHEC data, we used processed data for our analysis.

• Quality control, read mapping, and DNA methylation calculation

Low- quality bases and adaptor sequences were trimmed using Trim Galore version 0.3.7 (http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/). For WGBS data from hPGCs, the first 
nine bases were further trimmed. The trimmed reads were aligned to the hg19 genome using Bismark 
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v0.14.1, with paired- end and non- directional mapping parameters (--non_directional) (Krueger and 
Andrews, 2011). The unmapped reads after paired- end mapping were re- aligned to the same refer-
ence in single- end mode. We validated that this mapping mode only reported uniquely mapped 
reads. The methylation level of each CpG site was calculated as follows: (number of methylated reads/
number of total reads). Only CpG sites with at least five reads were used for all analyses. Only nearly 
full- length retroelements, whose length is 90% or more of the length of the consensus sequence of 
each subtype, were used for DNA methylation analysis of retroelements. We also included solo- LTR 
transposons in the DNA methylation analysis if they also possessed more than 90% of the consensus 
LTR sequence. Retroelement information was obtained from the UCSC Genome Browser (http:// 
genome.ucsc.edu/). For the DNA methylation analysis of retroelements, we used retroelements 
containing at least 10 CpG sites with a read depth of at least five reads. The methylation level of each 
retroelement copy was calculated by averaging the methylation levels of CpG sites within the copy.

Classification of retroelement copy according to DNA methylation levels.
Retroelement copies were classified according to their DNA methylation levels as follows: low < 

20%, 20% ≦ medium < 60%, high ≧ 60%.

• Association of KRAB- ZFP peaks, binding motifs, and retroelements.

We obtained the peak regions of 250 KRAB- ZFP, which were previously reported (Helleboid et al., 
2019; Imbeault et al., 2017), from the gene expression omnibus GSE78099 and GSE120539. Overlap 
of the KRAB- ZFP peak and retroelement copy was investigated using bedtools v2.15.0 (Quinlan and 
Hall, 2010). The binding motif of each KRAB- ZFP was predicted by the  findMotifsGenome. pl program 
in Homer v4.8.3 (Heinz et al., 2010). The KRAB- ZFP- binding motifs along retroelement copies were 
searched using FIMO (Grant et al., 2011). We used predicted motif sites with a q- value of 0.00005 or 
less for ZNF257/ZNF28/ZNF850 and with a q- value of 0.05 or less for ZNF93 and ZNF649 in this study.

• DMR identification

DMR candidates were identified using the ‘Commet’ command in BisulFighter (Saito et al., 2014). 
To enhance the confidence of DMR call, we calculated the average methylation levels of the candidates 
using CpG sites with ≥5 reads in both sperm donors, and among the candidates, those containing 
≥10 successive analyzable CpG sites and showing a ≥40% methylation difference were determined as 
DMRs.

Phylogenetic analysis of retroelement copies
The evolutionary history was inferred using the maximum likelihood method based on the Tamu-
ra- Nei model (Tamura and Nei, 1993). The initial tree(s) for the heuristic search were obtained by 
applying the neighbor- joining method to a matrix of pairwise distances estimated using the maximum 
composite likelihood approach. The tree was drawn to scale, with branch lengths measured as the 
number of substitutions per site. There were 10,153 positions in the final dataset. Evolutionary anal-
yses were conducted using MEGA6 (Tamura et al., 2013).

Calculation of read mappability of each retroelement copy
We generated 100 bp reads from each position along the retroelement copy and aligned the simu-
lated reads to the human genome using Bowtie with –m 1 or Bismark. Then, the mappability of each 
copy was calculated by dividing the number of properly mapped reads by the total number of reads 
derived from each copy.

RNA-seq analysis
We reanalyzed previously reported single- cell RNA- seq data from the testes (Sohni et  al., 2019), 
hPGCs, and somatic cells next to hPGCs (Guo et al., 2015). Read count data of genes and cell type 
annotation of each cell were obtained from the Gene Expression Omnibus under accession numbers 
GSE124263 and GSE63818. Reads per million mapped reads (RPM) for the genes were calculated for 
each cell. We used the average RPM of spermatogonial stem cells 2 (Figure 5C). We also reanalyzed 
previously reported RNA- seq data from undifferentiated spermatogonia (Tan et  al., 2020), which 
was deposited in the Gene Expression Omnibus under accession number GSE144085. Low- quality 
bases and adaptor sequences were trimmed using Trim Galore version 0.3.7. Then, trimmed reads 
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were aligned to the hg19 genome using Bowtie v0.12.7 with -m 1 to remove multiple mapped reads. 
Enrichment of RNA- seq reads around SVAs was visualized using ngsplot (Shen et al., 2014).

ChIP-seq analysis
We reanalyzed previously reported KRAB- ZFP ChIP- exo data (Helleboid et al., 2019; Imbeault et al., 
2017), which were deposited in the Sequence Read Archive SRP070561 and SRP162756. Low- quality 
bases and adaptor sequences were trimmed using the Trim Galore version 0.3.7. Then, trimmed reads 
were aligned to the hg19 genome using Bowtie v0.12.7 with -m 1 to avoid multiple mapped reads. 
Enrichment of ChIP- exo reads around retroelements was visualized using ngsplot (Shen et al., 2014).

Visualization of NGS data
The Integrative Genomics Viewer (Robinson et al., 2011) was used to visualize the NGS data. Enrich-
ment of RNA- seq reads and KRAB- ZFPs was visualized using ngsplot (Shen et al., 2014). Scatter plot 
and violin plot analyses were performed using the ggplot2 package in R.

Data access
All reads from amplicon- seq in this study have been submitted to the Gene Expression Omnibus 
under accession number GSE174562.
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