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Abstract

Background

Electrical vagal nerve stimulation (VNS) has been used for years to treat patients with drug-

resistant epilepsy. This technique also remains under investigation as a specific treatment

of patients with Alzheimer’s disease. Recently we discovered that VNS induced hippocam-

pal formation (HPC) type II theta rhythm, which is involved in memory consolidation. In the

present study, we have extended our previous observation and addressed the neuronal

substrate and pharmacological profile of HPC type II theta rhythm induced by VNS in anes-

thetized rats.

Methods

Male Wistar rats were implanted with a VNS cuff electrode around the left vagus nerve, a

tungsten microelectrode for recording the HPC field activity, and a medial septal (MS) can-

nula for the injection of a local anesthetic, procaine, and muscarinic agents. A direct, brief

effect of VNS on the HPC field potential was evaluated before and after medial-septal drug

injection.

Results

Medial septal injection of local anesthetic, procaine, reversibly abolished VNS-induced HPC

theta rhythm. With the use of cholinergic muscarinic agonist and antagonists, we demon-

strated that medial septal M1 receptors are involved in the mediation of the VNS effect on

HPC theta field potential.

Conclusion

The MS cholinergic M1 receptor mechanism integrates not only central inputs from the

brainstem synchronizing pathway, which underlies the production of HPC type II theta

rhythm, but also the input from the vagal afferents in the brain stem.
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Introduction

Electrical vagal nerve stimulation (VNS) has been used for years to treat patients with drug-

resistant epilepsy [1–5]. Although VNS was approved as adjunctive therapy for reducing the

frequency of seizures in adults and adolescents, the mechanisms through which VNS modu-

lates activity in the central nervous system are still poorly understood. Interestingly, this

technique also remains under investigation as a specific treatment for several other psychiat-

ric and neurological disorders. Among these, VNS is used for the treatment of Alzheimer’s

disease [6], depression [4,7,8], schizophrenia [9], migraine [10,11] and central inflammation

[12,13]. In addition, VNS has been found to enhance motor and cognitive function in animal

models of traumatic brain injury [14], increase alertness [15], enhance the extinction of con-

ditioned fear [16] and alter norepinephrine, dopamine, serotonin and GABA levels in the

hippocampal formation (HPC) [17,18]. Interestingly, VNS has also been demonstrated to

enhance HPC-induced long-term potentiation (LTP) [19,20] and improve memory in rats

and humans [21–23]. The latter findings suggest that VNS may affect memory by enhancing

neural plasticity in brain structures associated with memory storage, such as the HPC. This

memory processing is related to an increase in the excitation of the hippocampal neuronal

network and the presence of a local theta rhythm [24–29]. In agreement with this suggestion,

Broncel et al. [30], using several experimental protocols, have recently demonstrated that

VNS induced the HPC theta rhythm in anesthetized rats. This was the first direct finding

demonstrating the vagal nerve to be involved in central mechanisms underlying oscillations

and synchrony in limbic cortex.

The fundamental question arises as to the neuronal substrate and pharmacological profile

underlying the effect of VNS on HPC theta. The vagal nerve is a major component of the para-

sympathetic nervous system and plays a key role in the neuroendocrine-immune axis to main-

tain homeostasis. It is a mixed cranial nerve consisting of 20% efferent and 80% afferent fibres.

The nucleus of the solitary tract (NST), being the main vagal relay site in the brain, receives the

most vagal afferents [31]. This nucleus in turn projects to several structures including the locus

coeruleus, periaqueductal grey matter, dorsal raphe nucleus, paraventricular thalamic nucleus,

amygdala and the medial septum [32–36]. However, there is no direct anatomical projection

from the NST to the hippocampal formation [37]. These findings suggest that vagal input

might be passed through the NST, and then reaches the HPC probably through the next multi-

synaptic pathway that has not been yet described. It seems that the medial septal nucleus and

the vertical limb of the nucleus of the diagonal band of Broca (MS/vDBB) is the best candidate

for carrying the vagal input from the NST to the hippocampal formation. This region functions

as the node in ascending pathways, sending inputs to the HPC [38,39]. It is widely known

that MS/vDBB cells act as a pacemaker for discharges of hippocampal neurons responsible for

theta production [38,40–42]. In addition, this region is the principal source of strong choliner-

gic innervation of HPC [38,43–48] which was previously demonstrated to determine the pro-

duction of HPC type II theta rhythm [38,44,49,50].

The purpose of the present study was to test the hypotheses that: i/ the medial septal region

mediates the effect of VNS on HPC type II theta, and ii/ this mediation has a cholinergic pro-

file. Portions of these data have appeared in abstract form [51,52].

Materials and methods

The studies described below were approved and monitored by Local Ethics Committee for

Animal Experiments in Lodz (Permissions Number: 5/LB13/2016). All surgery was performed

under anesthesia, and all efforts were made to minimize suffering.

Pharmacological profile of VNS-induced theta rhythm
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Subjects and surgical procedure

The data were obtained from 35 male Wistar rats (120–150 g) housed on a 12 h light/dark

cycle with free access to water and food. The rats were initially anesthetized with isoflurane

(Baxter, Belgium) while a jugular cannula was inserted. Isoflurane was then discontinued, and

urethane (0.6 g/ml, Sigma Chemical Co., USA) was administered via the jugular cannula in

order to maintain anesthesia throughout the experiment. Anesthesia levels were maintained

such that theta field potentials and the transition from theta to large irregular activity (LIA)

could occur spontaneously. Body temperature was maintained at 36.5 ± 0.5˚C by a heating

pad, and heart rate was monitored constantly throughout the experiment.

Vagal electrode implantation

Since it is generally observed that left VNS minimizes potential cardiac effects, such as brady-

cardia or asystole [4], in the second stage of the procedure, the left cervical-vagal nerve was

gently separated from the muscles and then isolated from the carotid artery using glass section

sticks. Before implantation of the stimulating electrode, the vagal nerve was moisturized with

glycerine. A custom-made platinum-iridium cuff electrode (SPM35 10HY, MicroProbe, USA)

was gently placed around the vagal nerve (Fig 1A). The platinum-iridium wire leads were tun-

nelled subcutaneously for about 2 cm and then connected with the input from a PSIU6 isola-

tion unit (Grass-Astromed, West Warwick, USA).

Hippocampal electrode implantation

The rats were placed in a stereotaxic frame with the plane between bregma and lambda levelled

to horizontal. An uninsulated tungsten wire placed in the cortex, 2 mm anterior to bregma,

served as an indifferent electrode, and the stereotaxic frame was connected to the ground. A

tungsten microelectrode (0.1–0.9 MΩ) for recording the hippocampal field activity was placed

in the right dorsal HPC, in the stratum lacunosum-moleculare (3.7 mm posterior to bregma,

2.0–2.2 mm lateral from the midline and 2.6–2.9 mm ventral to the dural surface [53]; Fig 1B).

An AC amplifier (P-511, Grass-Astromed, West Warwick, USA) was used for recording field

Fig 1. A diagrammatic representation of the electrode implantation arrangement. (A) The platinum-iridium cuff stimulating electrode was positioned on

the left vagal nerve. (B) The recording electrode was implanted in the right hippocampal formation and the injection cannula in the right medial septum (see

details in the text).

https://doi.org/10.1371/journal.pone.0206532.g001
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potentials, with the low filter set at 1 Hz and the high filter set at 0.3 kHz. The mentioned band

pass filter was applied to the data prior to any analysis. The field activity was displayed using a

digital storage oscilloscope (Tektronix TDS 3014, USA) and a PC computer (Spike 2.7, Cam-

bridge Electronic Design, GB). EEG signals were digitalized by interface (1410 plus, Cam-

bridge Electronic Design, GB) and recorded onto a computer hard disk for subsequent off-

line analysis. After the optimal HPC field potential was obtained (theta amplitude of at least

400 μV), the electrode was fixed to the skull with dental cement.

Medial septal cannula implantation and injections

In preliminary experiments, we did not find evidence for the lateralization of the effects of

intraseptal injection of drugs used on hippocampal theta (data not shown). Hence, in the ini-

tial experiments, microinjection (26 gauge, 5 ml Hamilton 701N microsyringe) of saline and

all agents used were always performed into the right MS (Fig 1B). The coordinates of Hamilton

canulae were as follows: 0.6 mm superior from bregma, 0.3 mm lateral from the midline, and

6.5–7.0 mm ventral to the dural surface [53]. All 35 animals receiving the drug injection to the

medial septum were divided into six experimental groups (5 or 6 animals each, Table 1): 1/

The animals of group I were administrated with 1 μl of 0.9% NaCl. 2/ The animals of group II

were administrated with a local anesthetic, 1 μl procaine hydrochloride (20%). 3/ The animals

of group III were injected with cholinergic receptor antagonist atropine sulphate (20 μg/1μl).

4/ The animals of group IV were administrated with cholinergic M1 receptor antagonist dicy-

clomine hydrochloride (4μg/1 μl). 5/ The animals of group V were administrated with cholin-

ergic M2 receptor antagonist gallamine triethiodide (2 μl/1 μl). 6/ The animals of group VI

were injected with selective M1 receptor agonist McN-A343 (0.5 μl/1μl). All drugs used

in this study were obtained from the Sigma Chemical Corporation (St. Louis, USA) and

injected into the region of the medial septum at the same rate of 1 μl/30 s. The threshold con-

centration of procaine hydrochloride and atropine sulphate were developed previously [54,

55] and the threshold concentrations of dicyclomine hydrochloride, gallamine triethiodide

and McN-A343 were developed in preliminary experiments (data not shown).

Vagal nerve stimulation

Based on our previous experiments [30], in the present study, the following square pulse

parameters were applied: pulse duration (1 ms), train duration (10 s), frequency (10 Hz) and

current intensity of 8 mA. These VNS parameters were previously found to induce a direct,

brief effect on HPC field potential, i.e., theta rhythm appearing during vagal stimulation. VNS

was delivered through a PSIU6 isolation unit (Grass-Astromed, West Warwick, USA) from an

S48 square pulse stimulator (Grass-Astromed, West Warwick, USA). VNS was applied twice

or three times, depending on the applied protocol (Fig 2). In each protocol, the medial-septal

drug injection was pre-treated by 5 min HPC field recording while 10 s VNS was applied

Table 1. Experimental group and injection compounds.

Group Place of injection Compound Dose/volume Number of animals

Group I medial septum NaCl 0.9%/1μl 5

Group II procaine hydrochloride 20%/1μl 6

Group III atropine sulphate 20 μg/1μl 6

Group IV dicyclomine hydrochloride 4 μg/1μl 6

Group V gallamine triethiodide 2 μg/1μl 6

Group VI McN-A343 0.5 μg/1μl 6

https://doi.org/10.1371/journal.pone.0206532.t001
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(control). The VNS was always applied at a moment when no spontaneous theta was present

in the HPC field potentials.

Experimental protocols

Initially, the experiments were performed on 39 rats, but only 35 animals were taken into con-

sideration (in four animals, the injection sites in the medial septum were incorrect). Thirty five

rats were divided into six experimental groups in which different arrangements of VNS and

HPC field potential recording were applied (Fig 2). As shown in Fig 2, in groups I and V, VNS

was applied twice: in control, pre-injection time and after the injection, between the 15 and 20

min. In groups II, III, IV and VI, VNS was applied three times: in control, pre-injection time

and twice post-injection: between the 15–20 min and then between the 60 and 65 min (group

II and VI) or 180 and 185 min (groups III and IV).

Fig 2. A schematic arrangement of protocols applied in each experimental group (I-VI). Each 5-min pre- and post-VNS period is marked with a thin

vertical line. Each 10-s VNS is marked with a thick line (see details in the text).

https://doi.org/10.1371/journal.pone.0206532.g002
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Recording procedure and data analysis

HPC field activity was recorded continuously and analyzed in five-minute panels before drug

injection and at strictly defined times after the medial-septal drug injection, (see Fig 2). Power

spectra in the 0–50 Hz range for the 10 s HPC field potential recordings obtained during each

VNS session were generated using the fast Fourier transform (FFT) algorithm implemented in

the Spike 2.7 software package (Cambridge Electronic Design, GB) after a Hanning window

was applied to the time series, which were obtained at a sample rate of 100 Hz.

In this study, theta epochs were defined as rhythmic high amplitude sinusoidal waveforms

in a strictly defined frequency band (3–6 Hz). These were identified by peaks in the power

spectra within that frequency band, and confirmed by visual inspection of the raw EEG traces.

Theta frequency for each 10s VNS epoch was then defined as the frequency with maximum

power within the 3–6 Hz range, and theta power for each 10s VNS epoch as the peak power

value within the same frequency range.

Statistics

Mean values and standard errors of the mean (± SEM) of two measured theta parameters

(power and frequency) obtained during VNS performed before the medial septal drug injec-

tion and in successive time periods after the injection were computed and compared. The

power and frequency of HPC theta rhythm induced during VNS, before and after the medial-

septal drug injections, were subjected to the Shapiro-Wilk test to check the normal distribution

of the data. Then, the Mann-Whitney U test was performed (StatSoft Poland).

Histological procedure

The recording electrode tip location was marked by passing 15 μA current for 14 min (7 min

cathodal, 7 min anodal, S48 stimulator; Grass-Astromed, West Warwick, USA). Next, the rat

was sacrificed by an overdose of urethane for histological examination. The brain was removed

and stored in 10% formalin. Frozen brain sections (30 μm) were taken serially and mounted

on glass slides for the reconstruction of the medial septal injection sites and the evaluation of

HPC theta recording sites (data not shown).

Results

Only data obtained in experiments performed on rats with the correct location of the HPC

recording sites and the correct medial septal injection sites were presented in this study

(n = 35). Fig 3 provides microphotographs and a diagrammatic reconstruction [53] of repre-

sentative locations of the injection sites in the medial septum in three representative rat prepa-

rations of each group (18 sites) and representative HPC electrode tip location.

The effect of MS 0.9% NaCl injection on VNS-induced HPC theta rhythm

The effect of intra-septal injection of 0.9% NaCl on VNS-induced type II theta is shown in Fig

4. Fig 4A provides a representative example taken from one animal illustrating the effect of

0.9% NaCl micro-infusion into the MS on VNS-induced HPC type II theta in anesthetized

rats. This figure also provides a corresponding power spectrum estimated from each data seg-

ment in pre- and post- injection time using the FFT (15 min). Before the MS microinjection of

0.9% NaCl, VNS-induced HPC theta rhythm in the power spectrum had a peak frequency

5.0 ± 0.1 Hz. At 15 min post-injection of 0.9% NaCl, VNS-elicited HPC theta (peak frequency

4.9 ± 0.2 Hz in power spectrum) had a mean power and frequency similar to VNS-induced

Pharmacological profile of VNS-induced theta rhythm
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theta observed in the pre-injection segment (p> 0.05 for power, p> 0.05 for frequency,

Mann-Whitney U test; Fig 4B, Table 2).

The effect of MS procaine injection on VNS-induced HPC theta rhythm

The effect of intra-septal injection of procaine on VNS-induced type II theta is shown in Fig 5.

Fig 5A provides a representative example taken from one animal illustrating the effect of pro-

caine microinjection into the MS on VNS-induced HPC type II theta rhythm in anesthetized

rats. Fig 5A also provides a corresponding power spectrum estimated from each data segment

in pre- and post- injection time using the FFT (at 15 and 60 min). Before the microinjection of

procaine into the MS, VNS-induced HPC theta rhythm in the power spectrum had a peak fre-

quency 4.6 ± 0.1 Hz. At 15 min post-injection, VNS no longer elicited HPC theta (absence of

a peak in the power spectrum). At 60 min post-injection of procaine, VNS again elicited HPC

theta with an power and frequency similar to the control, pre-injection conditions (p> 0.05

for power, p> 0.05 for frequency, Mann-Whitney U test; Fig 5B, Table 2).

Fig 3. Microphotographs (A and B) and a diagrammatic reconstruction of representative locations of the

injection sites in the medial septum in three representative rat preparations of each group (18 sites, C) and

representative HPC electrode tip location.

https://doi.org/10.1371/journal.pone.0206532.g003
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The effect of MS atropine injection on VNS-induced HPC theta rhythm

The effect of intra-septal injection of atropine on VNS-induced type II theta is shown in Fig 6.

This figure provides a representative example taken from one animal illustrating the effect of

atropine micro-infusion into the MS on VNS-induced HPC type II theta in anesthetized rats.

Fig 6 also provides a corresponding power spectrum estimated from each data segment in pre-

and post- injection time using the FFT (at 15 and 180 min). Before the microinjection of atro-

pine into the MS control, VNS-induced HPC theta rhythm in the power spectrum had a peak

frequency 4.9 ± 0.2 Hz. At 15 min post-injection, VNS no longer elicited HPC theta (absence

Fig 4. The effect of MS 0.9% NaCl injection on VNS-induced HPC field potential and related power-frequency (FFT) histogram. (A) VNS is marked with a

horizontal line. The parameters of VNS are marked below this line. Arrows indicate the power-frequency histograms calculated from the analog examples of

hippocampal field potentials taken pre-injection of 0.9% NaCl (control) and 15 min post-injection of 0.9% NaCl during 10 s VNS. Calibration: 1 s, 150 μV. (B)

Statistical analysis (Mann-Whitney U test) of mean ± SEM power and frequency (VNS(1) vs VNS(2)).

https://doi.org/10.1371/journal.pone.0206532.g004
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of a peak in the power spectrum). At 180 min post-injection, atropine still completely abol-

ished VNS-elicited HPC theta rhythm (absence of peak in power spectrum of the analog exam-

ple taken at 180 min post-injection).

The effect of MS dicyclomine injection on VNS-induced HPC theta rhythm. The effect

of intra-septal injection of M1 cholinergic antagonist dicyclomine on VNS-induced type II

theta is shown in Fig 7. This figure provides a representative example taken from one animal

illustrating the effect of dicyclomine micro-infusion into the MS on VNS-induced HPC type II

theta in anesthetized rats. Fig 7 also provides a corresponding power spectrum estimated from

each data segment in pre- and post- injection time using the FFT (at 15 and 180 min). Before

the microinjection of dicyclomine into the MS, VNS-induced HPC theta rhythm in the power

spectrum had a peak frequency 5.1 ± 0.1 Hz. At 15 min post-injection, VNS no longer elicited

HPC theta (absence of a peak in the power spectrum). At 180 min post-injection, dicyclomine

still completely abolished VNS elicited HPC theta rhythm (absence of a peak in the power

spectrum of the analog example taken at 180 min post-injection).

The effect of MS gallamine injection on VNS-induced HPC theta rhythm

The effect of intraseptal injection of M2 cholinergic antagonist gallamine on VNS-induced

type II theta is shown in Fig 8. Fig 8A provides a representative example taken from one ani-

mal illustrating the effect of gallamine microinjection into the MS on VNS-induced HPC type

II theta in anesthetized rats. This figure also provides a corresponding power spectrum esti-

mated from each data segment in pre- and post- injection time using the FFT (at 15 min).

Before the microinjection of gallamine into the MS, VNS-induced HPC theta rhythm in the

power spectrum had a peak frequency 5.2 ± 0.1 Hz. At 15 min post-injection of gallamine,

VNS-elicited HPC theta (peak frequency 5.0 ± 0.1 Hz in the power spectrum) had a mean

power and frequency similar to VNS-induced theta observed in the pre-injection segment

(p> 0.05 for power, p> 0.05 for frequency, Mann-Whitney U test; Fig 8B, Table 2).

The effect of MS injection of McN-A343 on VNS-induced HPC theta

rhythm

The effect of intraseptal injection of cholinergic M1 agonist McN-A343 on VNS-induced type

II theta is shown in Fig 9. Fig 9A provides a representative example taken from one animal

Table 2. Summated statistical details concerning power and frequency of VNS-induced theta rhythm after intraseptal injection of different agents (group I–group

VI). Statistical analysis: Shapiro-Wilk and Kruskal-Wallis tests.

Number of VNS Parameters of theta rhythm Group

Group I Group II Group III Group IV Group V Group VI

VNS(1) control power (μV2) 6882.0 ± 703.6 6786.0 ± 609.6 6911.8 ± 599.4 9392.6 ± 814.5 7003.9 ± 807.7 7488.0 ± 679.1

p> 0.05 p> 0.05 p> 0.05 p> 0.05 p> 0.05 p> 0.05
frequency (Hz) 5.0 ± 0.1 4.6 ± 0.1 4.9 ± 0.2 5.1 ± 0.1 5.2 ± 0.1 4.9 ± 0.2

p> 0.05 p> 0.05 p> 0.05 p> 0.05 p> 0.05 p> 0.05
VNS(2) power (μV2) 7204.3 ± 633.8 No theta No theta No theta 6899.6 ± 747.5 7706.7 ± 728.2

p> 0.05 p> 0.05 p> 0.05
frequency (Hz) 4.9 ± 0.2 5.0 ± 0.1 5.0 ± 0.2

p> 0.05 p> 0.05 p> 0.05
VNS(3) power (μV2) - - - - - - - - - 6211.0 ± 584.6 No theta No theta - - - - - - - - - 9210.4 ± 812.7

p> 0.05 p < 0.01
frequency (Hz) - - - - - - - - - 4.4 ± 0.2 - - - - - - - - - 5.2 ± 0.1

p> 0.05 p> 0.05

https://doi.org/10.1371/journal.pone.0206532.t002
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Fig 5. The effect of MS procaine injection on VNS-induced HPC field potential and related power-frequency (FFT) histogram. (A) VNS is marked with a

horizontal line. The parameters of VNS are marked below this line. Arrows indicate the power-frequency histograms calculated from the analog examples of

hippocampal field potentials taken pre-injection of procaine (control), 15 and 60 min post-injection of procaine during 10 s VNS. Calibration: 1s, 150 μV. (B)

Statistical analysis (Mann-Whitney U test) of mean ± SEM power and frequency (VNS (1) vs VNS(3)).

https://doi.org/10.1371/journal.pone.0206532.g005
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illustrating the effect of McN-A343 microinjection into the MS on VNS-induced HPC type II

theta in anesthetized rats. This figure also provides a corresponding power spectrum estimated

from each data segment in pre- and post- injection time using the FFT (at 15 min). Before the

microinjection of McN-A343 into the MS, VNS-induced HPC theta rhythm in the power spec-

trum had a peak frequency 4.9 ± 0.2 Hz. At 60 min post-injection of McN-A343, VNS-elicited

HPC theta (peak frequency 5.2 ± 0.1 Hz in power spectrum) had a similar mean frequency

(p> 0.05, Mann-Whitney U test; Fig 9, Table 2). In contrast to the frequency, the power of

VNS-induced HPC theta increased, especially 60 min post injection (p < 0.01, Mann-Whitney

U test; Fig 9B, Table 2).

Discussion

The basic experimental model used in the present study to evaluate the central effect of VNS

was HPC type II theta rhythm recorded in urethanized rats. We have recently provided the

first evidence that, using different protocols and current pulse parameters, VNS produced a

very well synchronized HPC type II theta [30].

Fig 6. The effect of MS atropine injection on VNS-induced HPC field potential and related power-frequency (FFT) histogram. VNS is marked with a horizontal

line. The parameters of VNS are marked below this line. Arrows indicate the power-frequency histograms calculated from the analog examples of hippocampal field

potentials taken pre-injection of atropine (control), 15 and 180 min post-injection of atropine during 10 s VNS. Calibration: 1s, 150 μV.

https://doi.org/10.1371/journal.pone.0206532.g006
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The theta rhythm is considered to be a “fingerprint” of the limbic cortex [56]. Previous

studies demonstrated that theta is involved in a number of physiological regulations, including

LTP, learning and navigation, locomotor activity, and sensory-motor integration [57–65]. The

studies also showed, both behaviorally and pharmacologically, that theta is not a homogenous

field oscillation. In fact, two distinct types of theta rhythms have previously been distinguished:

anesthetic-resistant and cholinergic-mediated type II theta at a frequency range of 3–6 Hz, and

anesthetic-sensitive, probably serotonin-mediated type I theta (7–12 Hz), which is related to

motor behaviors [38, 66–72]. This type of theta depends on the non-cholinergic pathway that

arises from the neocortex and cingulate cortex and reaches the HPC via the entorhinal cortex

[69].

Recently, Larsen et al. [73,74] using a model of freely moving rats (i.e. type I theta), demon-

strated that VNS slowed theta rhythm and decreased its power. In contrast to Larsen et al.

[73,74], in the present study, we tested type II theta rhythm which typically is observed in anes-

thetized rats. The generation of the HPC type II theta is determined by structures of pontine

region, hypothalamus and basal forebrain which form the ascending brainstem hippocampal

Fig 7. The effect of MS dicyclomine injection on VNS-induced HPC field potential and related power-frequency (FFT) histogram. VNS is marked with a

horizontal line. The parameters of VNS are marked below this line. Arrows indicate the power-frequency histograms calculated from the analog examples of

hippocampal field potentials taken pre-injection of dicyclomine (control), 15 and 180 min post-injection of dicyclomine during 10 s VNS. Calibration: 1s, 150 μV.

https://doi.org/10.1371/journal.pone.0206532.g007
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synchronizing pathway [39,43,48,75,76]. The medial septum is considered to be a nodal point

of this pathway [44]. On the basis of the above-mentioned data, it seems that in addition to the

different model used and different VNS parameters and protocols applied previously [73,74],

the difference in neuronal substrate between type II and type I theta could additionally deter-

mine a completely different response of HPC rhythmic field potential to VNS in the previous

experiments [73,74]. Larsen et al. [73,74] had decisive arguments to suggest that VNS induces

a decrease in hippocampal excitation since, in addition to the decrease in amplitude and

power of type I theta rhythm, these authors observed decreased efficacy in synaptic

Fig 8. The effect of MS gallamine injection on VNS-induced HPC field potential and related power/frequency (FFT) histogram. (A) VNS was marked with a

horizontal line. Parameters of VNS were marked below this line. Arrows indicate the power-frequency histograms calculated from analog examples of hippocampal

field potentials taken pre-injection of gallamine (control) and 15 min post-injection of gallamine during 10 s VNS. Calibration: 1s, 150 μV. (B) Statistical analysis

(Mann-Whitney U test) of mean ± SEM power and frequency (VNS(1) vs VNS(2)).

https://doi.org/10.1371/journal.pone.0206532.g008
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Fig 9. The effect of MS McN-A343 injection on VNS-induced HPC field potential and related power-frequency (FFT) histogram. (A) VNS is marked with a

horizontal line. The parameters of VNS are marked below this line. Arrows indicate the power-frequency histograms calculated from analog examples of

hippocampal field potentials taken pre-injection of McN-A343 (control), 15 and 60 min post-injection of McN-A343 during 10 s VNS. Calibration: 1 s, 150 μV. (B)

Statistical analysis (Mann-Whitney U test) of mean ± SEM power and frequency (VNS(1) vs VNS(2), and VNS(1) vs VNS(3)).

https://doi.org/10.1371/journal.pone.0206532.g009
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transmission. Considering our data concerning type II theta, which appears when the animal

is still or anesthetized, we would not go so far as to suggest that VNS induces inhibition of

the hippocampal neuronal network. Quite the opposite. The presented data actually indicates

the excitation of the hippocampal formation during VNS, as previously suggested [30].

This suggestion is also supported by earlier findings that VNS potentiates hippocampal LTP

and enhances hippocampal synaptic transmission in freely moving and anesthetized rats

[19,20,23].

The medial septum, is widely accepted to be the pivotal extrinsic regulator of theta rhythm

occurring in the limbic system [43,48,77]. The main function of the MS/vDBB is the distribu-

tion of inputs to the cingulate cortex, entorhinal cortex, and hippocampal formation, i.e. lim-

bic structures in which well synchronized, local theta field potentials are observed. Rhythmic

outputs from the medial septum area act as a “pacemaker” for those structures, inducing theta

rhythm [38,39,48,50,67,76,78–82].

In the light of the above-presented data, new and important findings regarding the neuro-

nal substrate underlying HPC type II theta rhythm emerged from the present study. The

results of the second experiment, that temporal inactivation of the MS by the local anesthetic

procaine reversibly abolishes VNS-induced HPC theta, clearly demonstrate that medial sep-

tum integrates not only central inputs from the brainstem synchronizing pathway which

underlies the production of HPC type II theta rhythm, but also input from the vagal nerve.

The pharmacological profile of the MS involved in the VNS effect on HPC rhythmic field

potentials was evaluated in the remaining experiments described. The experiments conducted

in the group III and IV, with use of the MS injection of atropine, the nonselective muscarinic

receptor antagonist and dicyclamine, the selective M1 antagonist, suggest that the M1 receptor

subtype is involved in the medial-septal mediation of the VNS effect on hippocampal field

potential since both agents irreversibly abolished VNS-elicited HPC theta. This suggestion was

proved in the next experiments conducted with use of gallamine, the selective antagonist of

M2 receptors. Specifically, the MS injection of this agent did not affect the HPC theta rhythm

induced by VNS. The definitive confirmation of M1 receptor profile of VNS-induced type II

theta was provided in the experiment with the use of McN-A343. This selective M1 receptor

agonist was found to enhance the VNS-induced HPC theta power. The described cholinergic

profile of VNS-induced type II theta rhythm supports earlier pharmacological findings con-

cerning this type of theta [38,50,67,83–85].

Although the involvement of the muscarinic M1 receptor subtype in the central pharmaco-

logical mechanism underlying VNS-induced HPC type II theta was proved in the present

experiments, the possible participation of other noncholinergic receptors cannot be dis-

counted. Previous electrophysiological and neurochemical data suggested that the modulatory

effect of VNS on hippocampal LTP may involve the central noradrenergic systems. It was ear-

lier pointed out that VNS potentiates noradrenaline (NE) release in the hippocampus [8,17,18]

and NE was also demonstrated to increase the discharge rate of HPC pyramidal and granular

cells [86,87]. Interestingly, it was also shown that blockade of the dorsal ascending noradrener-

gic bundle abolished septal elicitation of HPC theta rhythm [88]. On the other hand, NE has

never been demonstrated to affect hippocampal theta-related cells, which underlies this field

potential [67]. Additionally, the bath perfusion of the hippocampal formation slices with NE

did not elicit theta oscillation and did not even alter the production of cholinergic-induced

theta rhythm in the HPC slice preparations [89].

Finally, one more issue should be addressed. The other possible explanation for the

observed effect of VNS on HPC type II theta rhythm is that VNS may cause changes in periph-

erally released stress-related hormones, which, in turn, may affect hippocampal function

through a mechanism not related to the medial septal area. For example, corticosterone was
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earlier demonstrated to induce the release of hippocampal acetylcholine [90] leading to the

increase of the theta amplitude [91]. However, it should also be pointed out that the release of

the corticosterone takes a relatively slow time and VNS-induced theta rhythm appeared in the

present study immediately during stimulation.

In summary, the present data provide the first evidence for the role of the medial septum in

the mechanism of the effect of VNS on hippocampal formation type II theta rhythm in rats. In

addition, the present experiments, with the use of cholinergic muscarinic agonist and antago-

nists, demonstrated for the first time the involvement of muscarinic M1 receptor subtype in

the medial septal mediation of VNS-induced HPC theta.
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