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Protein-directed self-assembly of a fullerene crystal
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Christopher B. Murray6, Rudresh Acharya3, William F. DeGrado4, Yong Ho Kim1,7 & Gevorg Grigoryan8

Learning to engineer self-assembly would enable the precise organization of molecules by

design to create matter with tailored properties. Here we demonstrate that proteins can

direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures.

A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water

soluble. Two tetramers associate with one C60, promoting further organization revealed in a

1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between

two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge

conductance, whereas both the protein-alone crystal and amorphous C60 are electrically

insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar

range, with lattices of known protein crystals geometrically compatible with incorporating the

motif. Taken together, these findings suggest a new means of organizing fullerene molecules

into a rich variety of lattices to generate new properties by design.
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P
rogrammable self-assembly of molecular building blocks is
a highly desirable way of achieving bottom-up control over
novel functions and materials. Applications of molecular

assemblies are well explored in the literature, ranging from
optoelectronic1,2, magnetic3, and photovoltaic4 devices to chemical
and bioanalytical sensing5, and medicine6. However, it has been a
daunting challenge to quantitatively describe and control the
driving forces that govern self-assembly, particularly given the
broad range of molecular building blocks one would like to
organize. In this respect, nature’s self-assembling macromolecules
hold considerable promise as standard chassis for encoding precise
organization. By learning to engineer the assembly of these
molecules, myriad other molecular building blocks can be co-
organized in desired ways through non-covalent or covalent
attachment. The protein polymer is a particularly attractive
candidate for a standard assembly chassis given its rich chemical
alphabet, diversity of available assembly geometries, broad
ability to engage other molecular moieties, and the possibility
of engineered function. Considerable progress has been made
in the area of engineering protein assemblies7,8, using either
computational9–14 or rational approaches15–18, but the problem
remains a grand challenge. A major difficulty lies in accounting for
the enormous continuum of possible assembly geometries available
to proteins to engineer a sequence that predictably prefers just one.
General design principles, which provide predictive rules of
assembly, are thus of enormous utility in limiting the geometric
search space and enabling robust design11,19.

In this work, we demonstrate the first ever high-resolution
structure of co-assembly between a protein and buckminsterfuller-
ene (C60), which suggests a simple structural mode for protein–
fullerene co-organization. Three separate crystal structures,
resolved to 1.67, 1.76 and 2.35 Å, reveal a protein lattice with C60

groups occupying periodic sites wedged between two helical
segments, each donating a Tyr residue. A half site of the motif is
estimated to have nM-scale affinity for C60, such that binding of
fullerene appears to direct the organization of protein units in the
co-crystal. The assembly exhibits a nm-spaced helical arrangement
of fullerenes along a crystallographic axis, endowing the crystal
with electrical conductance properties. We closely investigate the
interfacial geometry of the C60-binding motif, finding it to be
common among protein crystal lattices. C60 and its derivatives have
been previously reported to interact with several proteins20–25,
although a high-resolution structure of a protein–C60 has been
lacking. Still, prior evidence of interaction indicates that fullerenes
and proteins are compatible as materials. This, together with
the simple (and naturally recurrent) geometry of the C60-binding
motif we discover, suggests that it may be possible to use the
structural principles emergent from our study to generate a variety
of C60–protein co-assemblies to further explore and exploit the
properties of fullerenes26.

Results
C60-binding peptide organizes fullerenes. As a candidate for
organizing C60, we considered a peptide we had designed in a
previous study (sequence in Fig. 1a), which forms an anti-
parallel coiled-coil tetramer at mM concentrations (Protein
Data Bank, PDB, entry 3S0R)11. Two key properties appear
to make the peptide suitable for assembling C60. First, the
single aromatic residue in its sequence, tyrosine at position 9, is
exposed and available for potential C60 binding23,27. Second,
the peptide appears to have an exceptionally low barrier to
crystallization, forming X-ray diffraction quality crystals
within hours. Inter-tetramer contacts within the resulting
lattice are not extensive (Supplementary Fig. 1), suggesting
that the ease of crystallization may be due to an innately

low penalty for freezing out conformational degrees of
freedom.

Upon sonication, C60 was readily solubilized in an aqueous
solution of the peptide, hereafter referred to as COP
(C60-organizing peptide), but not buffer-only solutions. The
resulting C60–COP suspensions, stable after centrifugation for at
least 3 months (not monitored thereafter), produced character-
istic absorbance spectra revealing the presence of both protein
and the fullerene (Fig. 1b). Size-exclusion chromatography (SEC)
of COP alone was consistent with its tetrameric oligomerization
state (black in Fig. 1c). On the other hand, upon the solubilization
of C60, an additional peak appeared in the chromatogram,
corresponding to a species of molecular mass approximately that
of a dimer of tetramers (red in Fig. 1c; Supplementary Fig. 2).
This suggests that the solubilization of C60 occurs in a structurally
specific manner with a change in oligomerization state of COP.

Despite COP’s propensity to crystallize, attempts to
co-crystallize C60 with COP were not met with success. The
C60–COP suspensions did form crystals, but these appeared to be
devoid of fullerene. We reasoned that this could be due to an
insufficient amount of solubilized C60, such that not all binding
sites on COP would be saturated and the protein-only species
would selectively crystallize. Indeed, a rough estimate based on the
C60–COP ultraviolet spectrum (Fig. 1b) and molar absorptivity of
C60 at 340 nm taken from water/poly(vinylpyrrolidone) suspen-
sions28, suggests one molecule of C60 for B24 COP tetramers
(see Methods). To address this issue, we produced solutions of
COP with C60 pyrrolidine Tris-acid (C60Sol; Supplementary
Fig. 3), a more water-soluble analogue of C60 (solubility
0.002–0.005 mg ml� 1 at pH 7.4). The SEC chromatogram of the
COP–C60Sol suspension again clearly shows two peaks—one
corresponding to COP alone and another with apparent molecular
weight corresponding to a dimer of COP tetramers (compare
black and blue traces in Fig. 1c; also Supplementary Fig. 2).
Further, absorbance at 340 nm (specific to the fullerene) clearly
demonstrates that all of C60Sol elutes in the second (octameric)
peak, arguing for a specific structure-based association (top plot,
blue trace Fig. 1c). These results are further supported by analytical
ultracentrifugation (AUC) sedimentation equilibrium experiments
at a range of concentrations, showing tetramer–octamer
equilibrium for C60Sol–COP solutions (with a dissociation
constant of 118mM), whereas a single-species monomer model is
sufficient for COP alone (Supplementary Methods).

Crystals from the resulting suspension grew within 24 h
in several conditions, and three separate structures of the
C60Sol–COP complex were resolved to 1.67, 1.76 and 2.35 Å,
respectively (Fig. 1d–g; Supplementary Figs 5–6; Table 1). To
our knowledge, these represent first high-resolution structures
of a protein–fullerene complex. As in the protein-only structure,
COP forms a canonical tetrameric anti-parallel coiled coil29.
Each tetramer presents four tyrosine residues (one per
monomer) in exterior c positions of the coiled-coil heptad,
and each of these engages a C60 moiety. One C60 is wedged
between two Tyr residues donated by adjacent tetramers, such
that two tetramers are needed to coordinate one C60 (Fig. 1f).
This arrangement fits well with the apparent octameric peak in
the SEC chromatogram and AUC profiles of C60Sol–COP
(Fig. 1c; Supplementary Fig. 4), suggesting that higher-order
organization begins already in solution before crystallization.
The water-solubilizing Tris-acid side chain of C60Sol is not
visible in the electron density map. The group likely points into
the solvated inner channel of the crystal and is highly mobile as
the C60 core rapidly rotates around its centre. This is consistent
with the intended role of the side chain, to increasing the
solubility of the fullerene, whereas the C60 core appears
responsible for the specific packing arrangement.
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The interaction between COP and the fullerene group involves
non-polar contacts (Supplementary Fig. 7a), with C60 fitting
perfectly into a symmetric hydrophobic cavity created by helices
of two adjacent COP tetramers. The dominant contact appears to
be the p–p aromatic stacking between C60 and Tyr9, donated by
each tetramer, while several aliphatic carbons line the pocket to
further support the bound pose (Supplementary Fig. 7a; Fig. 1f,g).
Interestingly, the conformation of COP itself is largely unchanged
between the protein-only and protein/fullerene structures
(Fig. 2a). Indeed, the Ca root mean squared deviation (r.m.s.d.)
between the two tetramers is only 0.68 Å (over 120 atoms;
Fig. 2a,b), the full-backbone r.m.s.d. is 0.75 Å (over 600 atoms),
and the two structures represent coiled coils with essentially
identical Crick parameters30 (see Methods; Supplementary
Table 1). On the other hand, there is considerable difference in
the arrangement of COP tetramers in the corresponding crystals:
COP alone assembles into a body-centered cube, while C60Sol–
COP has a honeycomb structure with parallel hexameric channels
(Fig. 2c,d). This, together with the fact that neither of the crystals
exhibit what would appear to be strong protein–protein
interactions between tetramers, argues that the C60 group is
chiefly responsible for driving the assembly of COP tetramers
into the pattern observed in the co-crystal. In fact, in the fullerene
bound structure, no contacts between adjacent COP tetramers
occur outside of the C60-binding site. Furthermore, the three
different COP–C60Sol co-crystals obtained under different
conditions (see Methods) all produced effectively identical

binding interfaces and assembly geometries, arguing that
fullerene may have a strong preference for the observed
coordination geometry.

Helix–helix motif expected to bind fullerene tightly. We next
ask whether the helix(Tyr)–C60–helix(Tyr)-binding mode could
serve as a general co-organizer of proteins and fullerene. A
necessary (but not sufficient) condition for this is that the motif
would need to provide sufficient binding energy to drive
assembly into a variety of desired arrangement. So we sought to
quantify the affinity of C60 for the identified binding site.
Direct equilibrium measurement of C60–protein association is
complicated by the exceedingly low solubility of C60 in aqueous
solution. Even the C60Sol derivative has limited water solubility,
hampering binding studies. We thus turned to explicit-solvent
molecular dynamics simulations to characterize the strength of
COP–C60 association. The observed binding mode is a ternary
interaction between two COP tetramers and one fullerene. To
simplify the analysis, we concentrated on one half site of the
symmetric binding pocket, looking to characterize the affinity of
one C60 for one COP. Using the crystal structure as the starting
bound configuration, thermodynamics of binding was char-
acterized using a modification of the double-decoupling
method31 in conjunction with the free energy perturbation
(FEP) approach32 (see Methods; Supplementary Fig. 8). A total
simulation time of 336 ns permitted accurate monitoring of
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Figure 1 | Protein/C60 super-assembly. (a) COP, a stable tetramer in isolation, interacts with C60 moieties by means of a surface-binding site that includes

Tyr residues (other aromatic side chains also likely admissible), and further self-assembles into a co-crystalline array with fullerene. (b) Ultraviolet absorption

spectra of a C60/COP suspension and COP alone demonstrate that primitive fullerene (green) dissolves in the aqueous phase in the presence of protein.

(c) SEC traces of COP alone or in association with C60 or C60Sol. Top and bottom plots show absorbances at 340 and 220 nm, respectively. The lower-

retention peaks arising due the addition of C60 or C60Sol are consistent with the molecular weight of a COP octamer (for example, dimer of tetramers;

Supplementary Fig. 10). (d) Each COP tetramer in the C60Sol–COP crystal is associated with four fullerenes (one per chain), each fullerene being wedged

between two adjacent COP tetramers, for an overall stoichiometry of two fullerenes for one COP tetramers. (e) Omit map (2Fo� Fc, contoured at 1.2s) showing

electron density of the C60 group (orange sticks) sandwiched via p–p stacking between Tyr residues from adjacent COPs. (f) Residues involved in C60

coordination are shown with sticks and labelled. (g) Surface representation of the C60 coordination site, coloured by relative in vacuo electrostatic potential (red

to blue corresponds to negative-to-positive relative potentials).
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convergence, with the standard-state free energy of C60–COP
binding estimated at � 9.8±0.3 kcal mol� 1. This corresponds
to a dissociation constant in the range of 40–100 nM,
confirming the suspicion that C60 binding provides substantial
energy to drive the assembly of COP units. In fact, the true
energetic contribution of C60 is likely even larger as some
positive cooperativity between the two motif half sites would
be expected due to direct (albeit not extensive) favourable
protein–protein interactions. Interestingly, we find that the p–p
stacking between C60 and Tyr9 is not sufficient to explain the
strong interaction, as the affinities of C60 for an isolated
Tyr residue (acetylated and methylamidated at the N- and
C termini, respectively) or a Tyr side-chain analogue
(p-methylphenol) are estimated to be in the mM range
(Supplementary Fig. 8b,c). Thus, additional aliphatic contacts
in the binding pocket are essential for the collective binding
mode and the high affinity.

Fullerene-binding motif composed of designable elements.
Another necessary property of a generic protein–fullerene
organizing motif is that it must be ‘designable’ in the context of
a multitude of protein lattices—that is, the required geometry
should be easily achievable with natural amino-acid sequences.
Using the structural search engine MASTER33, we found that
all of the interfaces involved in the motif are indeed highly
abundant in nature (and are thus necessarily designable),
with emergent sequence preferences in agreement with the
corresponding region of COP (Methods; Supplementary Fig. 7b).
Further, even the entire binding motif, composed of four disjoint
helical segments that account for all contacts with C60 in the
supercrystal, has precedence in PDB lattices. In fact, within a
homology/redundancy-pruned subset of the PDB (13,400
entries), we found 180 unique instances of matching geometries
(below 1.9 Å backbone r.m.s.d., computed over 112 atoms) within
21 unique lattices (Supplementary Fig. 7c). That is, B0.15% of

Table 1 | Statistics on data collection and refinement of C60Sol–COP complex.

Data set:* C60Sol–COP-1 C60Sol–COP-2 C60Sol–COP-3

Crystallization conditions 17 mM LiSO4

85 mM Tris-HCl
25.5% PEG 4,000

pH 8.5

0.1 M ADA
1 M NH4H2PO4

pH 6.5

0.2 M CH3CO2NH4

0.1 M HOC(COONa)
(CH2COONa)2 � 2H2O

30% PEG 4,000
pH 5.6

Data collection statistics
Beam line 24IDE,NE-CAT Home sourcew PLS,BL-7A
Wavelength (Å) 0.97919 1.54178 1.00000
Space group P62 P62 P62

Cell dimensions
a, b, c (Å) 41.71, 41.71, 66.81 41.71, 41.71, 67.23 42,15, 42.15, 66.79
a, b, g (�) 90, 90, 120 90, 90, 120 90, 90, 120

Resolution (Å)z 50.0–2.35 (2.48–2.35) 50.0–1.76 (1.86–1.76) 50–1.67 (1.73–1.67)
Rmerge 0.135 (0.709) 0.050 (0.309) 0.066 (0.188)
I/s(I) 15.3 (4.2) 15.6 (2.4) 30.9 (10.9)
Completeness (%) 100 (100) 94.6 (69.1) 95.9 (99.7)
Multiplicity 13.7 (14.1) 5.1 (1.8) 16.3 (11.3)
Total/unique reflections 38460/2799 31977/6255 336749/7862

Refinement statistics
Resolution (Å) 36.13–2.35 24.61–1.76 15.0–1.67
Number of reflections 5421 6235 7489
Twin fraction (a), estimated and

refined
0.478 (S(H) plot), 0.447 (Britton plot),

0.5 (refined)
Rwork/Rfree 0.2019/0.2338 0.2027/0.2391 0.2181/0.2444
Number of atoms 512 526 535

Proteins 446 446 446
Ligand/ion 60 60 60
Water 6 20 29

B-factors (Å2)
Average B-factors (Å2) 30.8 27.0 22.5

Proteins 30.6 26.3 21.3
Ligand/ion 31.8 29.5 27.5
Waters 30.6 34.4 30.5

r.m.s.d.’s
Bond lengths (Å) 0.007 0.007 0.008
Bond angles (�) 0.808 0.828 0.893

Ramachandran regions (%)
Most favourable: 100 100 100
Additional allowed 0.0 0.0 0.0
Generously allowed 0.0 0.0 0.0

r.m.s.d.’s, root mean squared deviations.
Rwork¼S||Fobs|� |Fcalc||/S|Fobs|, where Fobs and Fcalc are calculated observed and calculated structure factor amplitudes, respectively, Rfree was calculated as Rwork using 10.0% of the randomly selected
unique reflections that were not included in structure refinement.
*Structures of the same complex determined under different condition in different resolutions.
wHome source, CCMB (Center for Cellular and Molecular Biology), Hyderabad, India.
zHighest resolution shell is shown in parenthesis.
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proteins in the PDB already exhibit backbone geometries similar
to the one housing a bound C60 in the co-crystal, suggesting that
it may be possible to engineer a variety of fullerene/protein
co-assemblies by perturbing sequences of existing parent proteins.
Supplementary Fig. 7c shows examples of such putative
co-assemblies, where C60 is computationally placed into existing
lattices matching the binding motif, giving diverse C60-to-C60

distances and lattice arrangements. Of course, the design of such
assemblies will involve not only the placement of a C60-binding
motif, but also any appropriate accommodating changes to
surrounding amino acids. Further, there is no guarantee that
the crystal form will not change upon these perturbations. Still,
that our identified motif appears ‘canonical’ in terms of its
constituent protein–protein interfaces is encouraging for future
design applications.

Fullerene–protein crystal has emergent electronic properties.
The honeycomb structure of C60Sol–COP is intriguing from the
perspective of its electronic properties. Within the helical
arrangement of fullerenes, inter-C60 distances appear sufficiently
close for potential long-range electronic transfer, especially given
the organized nature of the surroundings34,35 (Fig. 3a–c). For this
reason, we sought to characterize the electrical conductance of
the co-crystal. Current–voltage (I–V) characteristic of disordered
C60 films showed high electrical resistance of 2.24� 1011O
(Fig. 3d and Supplementary Fig. 9). In addition, COP-alone
crystals or crystal buffer similarly showed high resistance, with
only 5–10 pA of currents measured with up to 20 V of voltage
sweep. On the other hand, C60Sol–COP supercrystals (of similar
dimension as protein-alone crystals) exhibited high electrical
conductance (1.40� 10� 7 S, corresponding to resistance of
7.14� 106O) with at least four orders of magnitude higher

currents than in any of the controls (Fig. 3d). We speculate that
the periodic arrangement of fullerene groups in the co-crystal
may facilitate electron wave delocalization over the assembly.
This would promote coherent electron transport through the
structure with the carrier mobility expected to be several orders of
magnitude higher than in disordered systems characterized by
hopping transport36. Inter-fullerene nearest-neighbour distances
in the C60Sol–COP supercrystal alternate between 1.2 and 1.7 nm
(Fig. 3c). For comparison, strong electron wave delocalization was
previously observed when the nearest-neighbour distance
approached B1.5 nm in one-dimensional fullerene wires37.
An alternative explanation of the observed conductive property
is that the hexameric channels in the co-crystal may contain
unattached/disordered fullerene moieties that are free to diffuse in
the channel and can shuttle electrons between ordered in-lattice
fullerenes. In either case, as shown in Fig. 3d (yellow dots),
destruction of crystalline order (by placement in vacuum) results
in very high electrical resistance. In fact, the current measured
here is even lower than that of the disordered C60 film. This
indicates that the high conductivity of the C60Sol–COP
supercrystal is not a trivial property of crystal dimension
and/or molecular composition, but rather originates from
specific electronic coupling/delocalization in the assembly.

Discussion
The aim of programmable self-assembly is to anticipate and
harness unique collective properties that arise from precisely
organized molecular building blocks. To this end, achieving
atomic-level precision is crucial. This work demonstrates the
first atomic resolution structures of a fullerene–protein assembly,
establishing the feasibility of creating such objects, and further
suggests a possible design principle for engineering such
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assemblies in general. How robust the discovered C60-binding
motif is towards designing novel assemblies will need to be
tested through a number of future design studies. However, the
straightforward manner in which self-organization arose in our
case, the simplicity of the C60-organizing motif in the lattice,
together with its high affinity and the ubiquity of associated
interfaces in natural protein lattices, are certainly promising with
respect to the general applicability of the design principle.
Our work also demonstrates the potential utility of exploring
C60/protein co-organization, as derived supercrystals already
showed synergistic charge conductance properties. Taken
together, these results point to an exciting direction of inquiry
towards generating protein–fullerene assemblies for the study and
design of novel properties.

Methods
Peptide synthesis and purification. Peptides were synthesized by CEM Discover
microwave synthesizer using Fmoc chemistry at 100-mmol scales. The Fmoc
protecting group was removed by piperidine/dimethylformamide solution (20/80 v/v);
at each coupling step reactants were added with the amino acid:HBTU:DIEA:resin
ratio of 5:4.9:10:1. Products were cleaved from the H-Rink Amide-ChemMatrix
(PCAS, 0.53 mmol g� 1 loading) in a cleavage cocktail solution (trifluoroacetic acid
(TFA)/triisopropyl silane/deionized water, 95/2.5/2.5 v/v) for 2 h and the remaining
solution was vapourized with N2 gas. Peptide was precipitated with cold diethyl ether
(Aldrich) and dried in vacuum. After dissolving the peptides in DI H2O, purification
proceeded by preparative reverse-phase high-performance liquid chromatography
(Waters prep 150 LC System) using preparative C4 column (XBridge BEH300 Prep
C4 5 um) and a linear gradient of buffer A (99.9% H2O and 0.1 % TFA) and buffer B
(90% acetonitrile, 9.9% H2O and 0.1 % TFA). Molecular mass of the peptide was
confirmed by matrix-assisted laser desorption/ionization-time of flight mass
spectrometry (Bruker Ultraflex III). Products had over 95 % purity.

Preparation of peptide/fullerene solutions. Samples were prepared with
8 mg ml� 1 protein solution (COP) in 25 mM Tris pH 8.0 buffer solution and 1 mg
C60 or C60 pyrrolidine Tris-acid (Aldrich). Fullerene powder was mixed with
pre-made 0.2 ml of 8 mg ml� 1 protein solution in 25-mM Tris pH 8.0. The sample
was then tip-sonicated (QSonica, Q125, 1/8th inch tip) on an ice bath for 5 min to be
saturated of fullerene. Ice-bath cooling was to prevent excessive sample heating and
destabilization of protein structure. The sonicated samples were warmed up to room
temperature and centrifuged at 14,500g for 10 min (Eppendorf, Centrifuge 5430R).

Ultraviolet–visible absorption spectroscopy. Ultraviolet absorption spectra of
the COP alone and C60/COP were recorded using a Hewlett Packard 8453
spectrometer in 1 cm Hellma Quartz SUPRASIL (QS) cells. The COP and C60/COP
were prepared in a buffer of 20 mM sodium phosphate, 100 mM NaCl and pH 7.5.
Ultraviolet–visible spectra of C60/COP and COP were used to roughly estimate
the concentration of solubilized fullerene by absorbance at 340 nm (the molar
absorptivity of 49,000 M� 1 cm� 1 was used for C60, (ref. 28). The resulting molar
concentration of solubilized C60 in the C60/COP solution was 6.22 mM (compared
with COP at 585mM in the same solution).

Size-exclusion chromatography. Size-exclusive gel filtration elution profiles were
obtained using a Superdex 75 10/300 GL column with a GE Healthcare fast
performance liquid chromatography (FPLC) system (Amersham Pharmacia
Biosystems). Peptides (at 200 mM) were prepared in a buffer of 20 mM sodium
phosphate, 100 mM NaCl and pH 7.5 at room temperature. 200 ml of each sample
were loaded and eluted with the same buffer. The column was equilibrated in
20 mM sodium phosphate, 100 mM NaCl and pH 7.5 with a mobile phase flow rate
of 0.5 ml min� 1, and absorbance at 220, 280 and 340 nm was recorded. Calibration
curves were obtained using the molecular-weight standard kit, MWGF70
6,500–66,000 (Supplementary Fig. 10).

Analytical ultracentrifugation. Oligomerization states of COP and C60Sol–COP
were determined by equilibrium sedimentation performed at 25 �C using a
Beckman XL-I analytical ultracentrifuge. Both solutions were prepared in a buffer
of 25 mM Tris pH 8.0. Equilibrium radial concentration gradients at four different
rotor speeds (25, 30, 35 and 40 K r.p.m.) were acquired as absorbance scans at
340 nm for C60Sol with COP and 280 nm for COP peptide alone. Data were
globally fit to single-species or two-species models of equilibrium sedimentation by
a nonlinear least-squares method using IGOR Pro (Wavemetrics), and the
best-fitting model was accepted38. Supplementary Figure 4 shows sedimentation
equilibrium profiles of C60Sol–COP along with corresponding species distribution
plots consistent with a tetramer–octamer equilibrium, whereas COP alone appears
as a tight tetramer. This is consistent with results from SEC, shown in Fig. 1c and
Supplementary Fig. 2.

Crystallization, data collection and processing. The first X-ray diffraction
quality crystal (C60Sol–COP-1) was obtained by the hanging-drop vapour diffusion
technique at 291 K, over a period of 15 days in a 2 ml drop consisting of 1:1 v/v
mixture of 1 mgml� 1 protein solution in 20 mM sodium phosphate/100 mM NaCl
pH 7.5 buffer and a reservoir solution of 17 mM lithium sulfate monohydrate,
85 mM Tris-hydrochloride sodium pH 8.5, 25.5% polyethylene glycol (PEG) 4,000,
25% v/v glycerol (Hampton Research sparse matrix). The crystal was flash-frozen,
and diffraction data were collected at the 24-ID-E NE-CAT beamline at the
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Figure 3 | Assembly of fullerenes endows crystal with electronic transport capabilities. (a) Three views of the C60Sol–COP crystal lattice. (b) C60

groups are arranged in a helical manner along parallel inner channels in the assembly. (c) A side view of the channel showing nearest-neighbor inter-C60

distances. (d) Semi-logarithmic current–voltage characteristic of C60Sol–COP supercrystal (red dots) and disordered C60Sol–COP (orange diamonds).

Disordered C60 film dried from a bare C60/toluene solution (green squares), crystal buffer solution (blue triangles) and a COP-alone protein crystal (violet

open circles) were also characterized as controls.
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Argonne National Laboratory. Data sets were indexed and integrated with
MOSFLM39,40, and scaled using SCALA3 (Collaborative Computational Project,
Number 4, 1994)41. Diffraction data were recorded to a maximum resolution of
2.35 Å (Table 1).

Subsequent crystallization attempts were performed with higher concentrations
of the C60Sol/COP suspension, using commercially available sparse-matrix screens
from Hampton Research and the hanging-drop vapour diffusion method at 295 K.
Diffraction-quality crystals of C60Sol–COP (C60Sol–COP-3) were obtained by
mixing equal volumes of the C60Sol–COP mixture at 8 mg ml� 1 in 25 mM Tris
pH 8.0 and reservoir solution consisting of 0.2 M ammonium acetate, 0.1 M sodium
citrate tribasic dihydrate pH 5.6, 30% w/v polyethylene glycol 4,000. Microcrystals
grew within 24 h, with larger oval-shaped crystals appearing in several days
(Supplementary Fig. 5). Crystals were cryoprotected using reservoir solution
supplemented with an additional 30% (v/v) glycerol and were flash-cooled in liquid
nitrogen. Diffraction data, extending to 1.67 Å resolution, were collected at 100 K
on beamline 7A equipped with an ADSC Quantum 270 CCD detector at Pohang
Accelerator Laboratory (PAL, Pohang, Korea). The C60Sol–COP complex crystal
belonged to space group P62, with unit cell parameters a¼ b¼ 42.1, c¼ 66.7 Å,
a¼b¼ 90.0 and g¼ 120.0�. Data were processed and scaled using the
programs DENZO and SCALEPACK from the HKL-2000 program suite42. The
Matthews coefficient43 for C60Sol–COP was 2.54 Å3 Da� 1 and the estimated
solvent content was 51.5%; there were two COP molecules and one C60Sol in an
asymmetric unit.

In addition to the above, diffraction-quality crystals were also obtained in three
other conditions (1.5 M ammonium sulfate, 0.1 M Tris pH 8.5, 12% v/v glycerol;
0.1 M HEPES–Na pH 7.5, 0.8 M potassium sodium tartrate tetrahydrate; and 0.1 M
N-(2-acetamido)iminodiacetic acid, N-(carbamoylmethyl)iminodiacetic acid
(ADA) buffer pH 6.5, 1 M ammonium phosphate dibasic), in each case yielding
identical unit cell and space group, thus showing the same assembly geometry.
Crystals grown under the latter condition diffracted to 1.76 Å at a home source
(C60Sol–COP-2).

Structure solution and refinement. For all the data sets, structure determination
was carried out by molecular replacement using the programme PHASER44. The
Matthews coefficient suggested a dimeric helix in the asymmetric unit. Molecular
replacement calculations were performed using the dimeric unit of a polyalanine
model obtained from coordinates of previously solved crystal structure 3S0R as the
search probe. The solution model was subjected for rigid body refinement followed
by iterative model building and restrained refinement protocols implemented in
Auto Build module of PHENIX45. All side chains were traced in the electron
density map. During the course of map tracing, electron density for fullerene was
clearly visible and modelled for refinement.

During data analysis, it was found that the crystal (C60Sol–COP-1) was
merohedrally twinned. The H-test results, |H|¼ 0.024 (0.50 for untwinned and
0.0 for 50% twinned) and H2¼ 0.001 (0.33 for untwinned and 0.0 for 50%
twinned), were indicative of merohedral twinning with the twin law (h, -h-k, -l),
where H¼ |I1� I2|/|I1þ I2|, I1 and I2 are twin-related acentric reflections. The
cumulative distribution of H46,47 and Britton plots48,49 estimated twin domain
fraction (a) to be 0.478 and 0.447, respectively.

As the estimated twin fraction was close to 0.5, the data were not detwinned for
further refinement. Instead, the refinement was carried out by refining both
parameters of the model and twin fraction. The PHENIX45 refinement protocol,
which implements this option, was used.

The PHENIX refinement protocol was used. Upon converging, the refinement
strategy produced model with good Rwork/Rfree statistics in each case (Table 1).
Model building was further carried out manually using COOT50. Structure figures
were created using the programme PyMOL (Schrödinger, LLC). Crystallographic
data statistics are summarized in Table 1.

Coiled-coil parameter fitting. Parameter fits were performed using CCCP
(http://grigoryanlab.org/cccp) via the ‘global symmetric’ fit option, where ideal
symmetry (in this case D2) is assumed30. The apo and C60-bound structures fit
within 0.6 and 0.4 Å, respectively, indicating that they both closely resembled an
ideal coiled coil. Key parameters are listed in Supplementary Table 1. Detailed
parameter definitions and information on the fitting procedure can be found in
reference30.

Binding free-energy calculation. The NAMD 2.10 software package, developed
by the Theoretical and Computational Biophysics Group in the Beckman
Institute for Advanced Science and Technology at the University of Illinois at
Urbana-Champaign51, in conjunction with CHARMM22 force field52 was used for
this study. A new atom type was created for the C60 carbon (CA60), which was
identical to the aromatic carbon atom type in CHARMM22 (type CA) in all aspects
except for the equilibrium CA60–CA60 bond length, which was set to 1.4392 Å to
match the experimentally observed average bond length in C60 (ref. 53). All
simulations were performed in explicit TIP3P water; a padding of 8 Å was used for
initial solvation, with sodium/chloride counterions added to achieve charge
neutrality as necessary. Periodic boundary conditions were applied and all
simulations were performed in the NTP ensemble at 298.15 K and 1 atm. Explicit

calculation of long-range interactions was cutoff at 10 Å, with a switching function
starting at 6 Å. Particle Mesh Ewald method was used to correct for long-range
electrostatics54 and an analytical correction was used to capture long-range van der
Waals interactions55. Pande and co-workers have shown that with these
corrections, the 6/10 Å non-bond cutoff schedule performed as well as longer
cutoffs in free energy of solvation calculations56.

To compute the free energy of C60–COP association, we followed the
double-decoupling framework outlined by McCammon and co-workers31. In this
approach, one seeks to compute the free energy of decoupling the ligand (here C60)
from the rest of the system when it is either bound to the receptor (here COP) or
solvated by itself. The standard-state free energy of binding is then related to the
difference between the two decoupling free energies, appropriately corrected for the
standard-state concentration31. We sought to use the method of FEP to compute
individual decoupling free energies, but the direct application of the method to C60

exhibited very strong hysteresis between forward and reverse simulations
(that is, decoupling C60 and coupling it back, respectively). Because C60 is hollow,
with enough space inside for several water molecules, as the molecule is decoupled,
water rushes in to occupy the available space. However, during the reverse
simulation, as C60 is coupled back to the system, water molecules tend to
remain trapped inside the fullerene, leading to a very different end state. Note that
use of the soft-core van der Waals scaling55, implemented in NAMD, does not
resolve this issue as there is little to encourage water molecules to escape the core
of fullerene as it is coupled back. This very large hysteresis meant that we could not
claim good convergence (and hence accuracy) of either forward or reverse
simulations.

To resolve this issue, we introduced an intermediate step in the C60

decoupling/coupling transformation, designed to provide reversibility, slightly
adjusting the double-decoupling framework. The idea was to introduce an artificial
atom, with a size to roughly match the radius of C60, which could be used to ‘make
room’ for C60 before the molecule is coupled to the system. A new atom type was
created, called C60D (for C60 ‘dummy’), with a van der Waals radius of 4.5 Å and a
Lennard-Jones well depth of � 1.0 kcal mol� 1. Because C60D is a single atom, and
not hollow-like C60, the soft-core van der Waals potential will indeed gradually
repel water molecules as C60D appears. Thus, the two decoupling transformations
were altered as follows:

COP � C60watþC60Dgas

step1

Ð COP � C60DwatþC60gas

step2

Ð COPþC60gas þC60Dgas

ð1Þ

C60watþC60Dgas

step1
Ð C60gas þC60Dwat

step2
Ð C60gas þC60Dgas ð2Þ

where subscripts wat and gas indicate that the corresponding molecule is either fully
coupled to the system (that is, in water) or fully decoupled from it (that is, in the gas
phase), respectively. The initial state of transformation 1 involves the complex
between COP and C60 (COP � C60wat) and a decoupled C60D (C60Dgas) overlapping
the fullerene. The first step of the transformation involves decoupling C60 from the
system, while C60D is coupled, such that the intermediate step has C60 in the gas
phase (C60Dgas) while C60D is fully interacting with the system, occupying the
fullerene-binding site (COP � C60Dwat). The second step of the transformation then
decouples C60D as well, such that the end state involves COP in solvent alone with
both C60 and C60D in the gas phase. Because gaseous C60D is present in both end
states, its contribution to the total free-energy difference cancels, such that the net
transformation still represents just the decoupling of C60. On the other hand, the
presence of C60D and the intermediate state address the reversibility of the
transformation. Because the first step in the reverse direction involves coupling of
C60D, room is created in the solvent before C60 is reintroduced and C60D is once
again decoupled in the second step. To prevent C60D from diffusing away from the
binding site at any point in the simulation, harmonic restraints were applied between
C60D, and Cg, Ce1 and Ce2 atoms of the binding site Tyr (residue 9), with
equilibrium distances of 6.7, 6.7 and 7.0 Å, respectively (taken from the crystal
structure by initially placing C60D in the geometric centre of the bound C60), and a
force constant of 10 kcal mol� 1 Å� 2. Note that these restraints do not contribute to
the FEP calculation (since their energy is independent of the coupling parameter)
and their presence fully cancels between end states of the transformation. Another
restraint was needed to make sure C60 does not diffuse far from the binding site
when decoupled, which would create convergence difficulties. A harmonic restraint
was applied between the centre of mass of C60 and C60D, with an equilibrium
distance of zero and a force constant that increased from 0 to 10 kcal mol� 1 Å� 2 as
C60 was decoupled from the system. Specifically, if l is the FEP coupling parameter
for the current window (with 0 and 1 corresponding to C60 being fully coupled and
decoupled, respectively), the force constant used was 10 � l2 kcal mol� 1 Å� 2. The
energy of this restraint was accounted for in FEP calculations, so that the final
free-energy change for transformation 1 represented the difference between a state
where C60 is fully coupled and bound to COP and one where C60 is decoupled from
the system, but harmonically restrained to remain in the vicinity of the binding site.
To remove the influence of this restraint and correct for the standard state, this
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free-energy change was corrected by RTln Co 2pRT=kð Þ3=2
h i

, where Co is the

standard-state concentration and k is the force constant of the C60 restraint in the
decoupled state (that is, 10 kcal mol� 1 Å� 2)31,57.

Transformation 2 is similar to transformation 1, but with no protein. In the first
step, C60 is decoupled from solvent as C60D is coupled, whereas the second step
decouples C60D. As with transformation 1, the influence of C60D cancels between
the two end states, with the total free-energy difference corresponding to that of
decoupling C60 from solvent. However, the intermediate step again renders the
path reversible. As with transformation 1, here it was important for C60 and C60D
to be approximately coincident throughout the simulation (so that, for example, in
the first step of the reverse simulation coupling of C60D creates a cavity in the right
location within the solvent for C60 to couple into later). For this reason, a harmonic
restraint was introduced between the centroid of C60 and C60D, with equilibrium
distance of zero and a force constant of 10 kcal mol� 1 Å� 2. Note that the
contribution of this constant restraint cancels between the two end states (so the
total free-energy change of transformation 2 is still that of decoupling C60 alone),
and its energy does not influence FEP calculations.

Since C60 remains decoupled (and restrained to C60D) throughout step 2 of
both transformations, it does not contribute to the free-energy change associated
with these steps. For this reason, C60 need not be explicitly present in simulations
of these steps and was omitted for simplicity.

FEP details and results. NAMD’s alchemical transformation module
(in conjunction with the FEP method) and the collective variable module (for
introduction of restraints) were used to implement the above transformations. The
soft-core van der Waals radius-shifting coefficient (parameter alchVdwShiftCoeff)
was set to 8 Å2 in the first step of both transformations and to 20 Å2 in the second
step of both transformations (values were chosen to produce smooth transitions in
short FEP test runs). All four steps were carried out using 20 FEP windows,
with the coupling parameter varying uniformly from 0 to 1. Each window
involved 10 ps of equilibration followed by 190 ps of data collection. At the start
of each simulation, the system (upon being minimized for 1,000 steps) was
pre-equilibrated for 200 ps. Each step of both transformations was run 10 times in
both forward and reverse directions, using different random seeds. Thus, a total of
336 ns of simulation was performed. The final results are summarized in
Supplementary Fig. 8a, where values for reverse transformations have been negated
to represent free energies in the decoupling direction. Error bars represent s.e.’s of
the cumulative free-energy difference, computed over the 10 simulations run for
each step/direction combination. Clearly, all steps exhibit excellent convergence
and reversibility. The standard-state free energy of C60–COP binding was
computed as:

DGI
1 þDGI

2 � DGII
1 þDGII

2

� �
þRTln Co 2pRT=kð Þ3=2

h i
ð3Þ

where DGK
i is the free-energy change of the ith step of transformation K. The final

estimate amounted to � 9.8±0.3 kcal mol� 1, where the uncertainty was calculated
by error propagation using s.e.’s emergent from combining all simulations of each
step (both forward and reverse).

Association of fullerene with individual aromatic groups. An analogous
approach was also used to calculate the affinity of C60 for a disembodied Tyr
residue (acetylated and methyl-amidated on the N- and C termini, respectively)
and a Tyr side-chain analogue (p-methylphenol). The only difference was that in
these cases an additional constant harmonic restraint, between the centre of mass
of C60 and C60D, was added throughout step 1 of transformation 1. This restraint,
with a force constant of 1.0 kcal mol� 1 Å� 2 and equilibrium distance of 0 Å,
prevented C60 from dissociating from the bound molecule in the initial FEP
window, which otherwise occasionally occurred in some trajectories and limited
the amount of useful sampling. The effect of this restraint was removed from the
final estimate by applying the standard importance sampling formula58 to adjust
the expectation computed in FEP59. The final standard-state binding free-energy
estimates were � 1.76±0.15 for C60 and isolated Tyr, and � 1.53±0.07 for
C60 and p-methylphenol (Supplementary Fig. 8b–c). These correspond to
dissociation constants in the mM range, meaning that the affinity is expected to
be extremely weak.

Designability analysis. To estimate the natural abundance of structural motifs
surrounding the C60-binding site, search engine MASTER33 (grigoryanlab.org/
master) was used to search a highly non-redundant subset of the PDB. Specifically,
the weekly BLASTclust-based clustering60 of all PDB chains was downloaded on
22 October 2014, and the first chain from each cluster selected, filtering for X-ray
structures resolved to 3 Å or below. The asymmetric unit of each of the entries was
then downloaded and the crystallographic lattice generated, keeping all images that
were reasonably close to the initial unit (defined as having at least three atoms
within 16 Å of any atom in the initial unit). The resulting lattices were then
combined into a MASTER database of 13,400 entries. All searches were performed
using the full-backbone setting of MASTER, which provably finds the closest
matches to the query in terms of the heavy-atom backbone r.m.s.d. (that is, N, CA,
C and O). The full C60-binding motif was defined as residues 2–9 on one pair of
chains and 19–24 on the opposing pair, with individual interfaces of this motif
defined accordingly (Supplementary Fig. 7b). Sequence logos in Supplementary

Fig. 7b were generated by considering all matches within 0.3 Å and discarding
those with identical sequences (although the database is highly non-redundant,
matches of identical sequence are still possible when multiple-matching instances
are found within the same lattice).

Measurement of electrical conductance. Current versus voltage curves were
obtained using the variable temperature microprobe system from MMR
technologies coupled with HP 4145B semiconductor parameter analyser. The
samples were deposited on a degenerately doped silicon substrate with 200The
thermal oxide, which was photolithographically pre-patterned with Au/Cr (45 nm/
5 nm) electrodes. The channel length and width were 10 and 6,000 mm,
respectively.
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