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In silico identification of  
anti-cancer compounds and  
plants from traditional Chinese 
medicine database
Shao-Xing Dai1,2, Wen-Xing Li1,3, Fei-Fei Han1,2, Yi-Cheng Guo1,4, Jun-Juan Zheng1,2,  
Jia-Qian Liu1,2, Qian Wang1,2, Yue-Dong Gao5, Gong-Hua Li1,2 & Jing-Fei Huang1,2,6,7

There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional 
Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. 
In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by 
using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 
346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% 
of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted 
anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified 
plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer 
drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs 
based on the above results. The network highlighted the supportive role of the predicted plant in the 
development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the 
plants. Our study suggests that the predicted compounds and plants from TCM database offer an 
attractive starting point and a broader scope to mine for potential anti-cancer agents.

Cancer, also known as a malignant tumor, is a group of diseases involving abnormal cell growth with the poten-
tial to invade or spread to other parts of the body. The hallmarks of cancer comprise six biological capabilities 
to support the development of human tumors, which include sustaining proliferative signaling, evading growth 
suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion 
and metastasis1,2. Cancer is one of the major causes of death worldwide where the number of cancer patient is in 
continuous rise. There are over 100 different known cancers that affect humans, and each is classified by the type 
of cell that is initially affected3. In 2012 about 14.1 million new cases of cancer occurred globally (not including 
skin cancer other than melanoma). It caused about 8.2 million deaths or 14.6% of all human deaths4. By 2030, it is 
predicted that there will be 26 million new cancer cases and 17 million cancer deaths per year5.

Today, despite considerable efforts, cancer still remains an aggressive killer worldwide. The most common 
and highly effective methods of cancer treatment are surgery, chemotherapy and radiotherapy6. However, these 
therapies have numerous limitations and drawbacks7. Most cancer patients are diagnosed too late to undergo 
surgery because of poor diagnosis and other factors. Chemotherapy and radiotherapy have serious side effects 
and complications such as fatigue, pain, diarrhea, nausea, vomiting, and hair loss7. Furthermore, chemotherapy 
and radiotherapy can result in gradual resistance of cancer cells against treatment8.
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Therefore there is a constant demand to develop new, effective, and affordable anti-cancer drugs9. Medicinal 
plants constitute a common alternative for cancer treatment in many countries around the world10–13. There are 
more than 2000 plants used in the traditional Chinese medicine (TCM) according to the TCM database@taiwan 
(http://tcm.cmu.edu.tw/)14. These medicinal plants were used for treatment of various diseases include cancer for 
thousand years in China15–19. Many TCM-derived anti-cancer products have been used in western medicine20–28. 
These include vinblastine, vincristine, paclitaxel, camptothecin, epipodophyllotoxin and so on. Vinblastine and 
vincristine, as the bisindole alkaloids isolated from Catharanthus roseus, are the first agents to advance into clini-
cal use for treatment of spleen cancer, liver cancer and childhood leukemia. Paclitaxel, originally isolated from the 
bark of Taxus brevifolia, has also been found in Taxus chinensis. It was launched in 1992 and was the best-selling 
anti-cancer drug in the USA in 20028. Another important class of anti-cancer drugs (topotecan, irinotecan, belo-
tecan, 9-Nitrocamptothecin, and gimatecan) are derived from camptothecin which was isolated from the Chinese 
ornamental tree Camptotheca acuminate8,29. Epipodophyllotoxin is also an important class of natural product for 
development of anti-cancer drugs. Etoposide, teniposide and etopophos are semi-synthetic derivatives of epipo-
dophyllotoxin8. They are approved for treatment of choriocarcinoma, lung cancer, ovarian and testicular cancers, 
lymphoma, acute myeloid leukemia, and bladder cancer6.

TCM is undoubtedly a valuable resource for identifying novel anti-cancer agents30. Regrettably, only a small 
portion of medicinal plants in the TCM database has been fully phytochemically investigated. It is interest to 
systematic explore and evaluate the anti-cancer potential of all the plants in the TCM database. However, it is a 
tedious, expensive and time-consuming process because that it involves screening of large molecular library by 
experiment. Therefore, the time and money-saving way is that the plants in the TCM database are firstly filtered 
by the computational analysis of the anti-cancer potential, then evaluated by experiment. The aim of the current 
investigation is to analyze the anti-cancer potential of all the plants in the TCM database by using cheminfor-
matics, and then identify the anti-cancer compounds and plants from the TCM database in silico. We started 
with the TCM Database@Taiwan, which is currently the world’s largest non-commercial TCM database14. The 
database contains the relationship between more than 20,000 pure compounds and more than 2000 plants. We 
first predicted anti-cancer compounds in the database by using our previously published method termed Cancer 
Drug (CDRUG)31. We then determined the anti-cancer plants by performing the anti-cancer activity enrichment 
analysis (ACEA)32. Each of the anti-cancer plants was significantly enriched with anti-cancer compounds. Thus, 
the identified anti-cancer plants provide important clues and direction for the development of anti-cancer drugs.

Results
Prediction of anti-cancer compounds from TCM Database@Taiwan.  A total of 21334 compounds 
from 2402 plants were downloaded from TCM Database@Taiwan. The anti-cancer activity of these compounds 
was predicted using CDRUG. Finally, a total of 5278 compounds were predicted as anti-cancer compounds 
(P <  0.05), which is accounting for 25% (5278/21334) of all compounds in the database. Further careful observa-
tion, we found the top 346 compounds were identical to those compounds which have been proven active in the 
60 cell lines test reported by NCI-60 DTP project33. Most of the top 346 compounds have the inhibition rate of 
growth > 50% at less than the dose of 10−5 mol/L. The mean logGI50 value (the 50% growth inhibition concen-
tration) of the top 346 compounds is −5.73 with standard deviation 0.89. Among the top 346 compounds, two 
compounds paclitaxel and homoharringtonine have already been approved for the treatment of various cancers. 
The logGI50 values of drugs paclitaxel and homoharringtonine are −7.74 and −7.152, respectively.

Similarity of the predicted anti-cancer compounds with the anti-cancer drugs.  Since the com-
pounds identified above were predicted to have anti-cancer activity, we performed a systematic analysis of the 
similarity between these compounds and the anti-cancer drugs in preclinical, clinical and approved stages from 
the database of Thomson Reuters Integrity. We got 127, 425 and 219 anti-cancer drugs in preclinical, clinical and 
approved stages, respectively (Dataset1 Table S2). Then the similarities of the 5278 compounds against all the 
anti-cancer drugs of the three types were calculated (see Methods). Two compounds are considered structurally 
similar if their fingerprints have a Tc of 0.70 or greater. We found that 4025 (76%) of the 5278 compounds have 
similarity (Tc 0.70, MACCS fingerprint) with the anti-cancer drugs in preclinical stage. Similarly, 4406 (83%) and 
3952 (75%) of the 5278 compounds have similarity with the anti-cancer drugs in clinical and approved stages, 
respectively. These results demonstrate the power of CDRUG for prediction of anti-cancer compound. It also 
shows the importance of these plant-derived compounds in the development of anti-cancer drugs.

Structural characteristics of the predicted active compounds.  Orally administered drugs are more 
likely in areas of chemical space defined by a limited range of molecular properties which were encapsulated 
in Lipinski’s ‘rule of five’34. Lipinski’s rule states that, historically, 90% of orally absorbed drugs had fewer than 
5 H-bond donors, less than 10 H-bond acceptors, molecular weight of less than 500 daltons and AlogP values 
of less than 5. To compare the predicted active compounds with cancer drugs, the four properties and other 
important properties (number of rotatable bonds, rings, aromatic rings) were calculated in our study (Fig. 1). 
The distributions of AlogP and molecular weight for the two classes of compounds are highly similar and over-
lapped (Fig. 1A). In total, 73% of the predicted active compounds have AlogP less than 5 compared with 85% for 
cancer drugs. In contrast, only 50% and 57% of molecules have a molecular weight less than 500 daltons for the 
predicted active compounds and cancer drugs, respectively. It suggests the molecules with a molecular weight 
of more than 500 daltons are also suitable to develop anti-cancer drugs. The major differences between the two 
classes of compounds emerge when the number of rings and aromatic rings is considered (Fig. 1B,C). 40% of the 
predicted active compounds have five or more rings compared with 18% for the cancer drugs. Conversely, only 
6% of the predicted active compounds have two or more aromatic rings compared with 40% for the cancer drugs. 
The ratios of the number of rings and aromatic rings are 8.39:1 and 1.67:1 for the predicted active compounds 
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and cancer drugs, respectively. The predicted active compounds tend toward a high ratio of the number of rings 
and aromatic rings compared with the cancer drugs. The distributions of the other three molecular properties 
(number of H-bond donors, H-bond acceptors and rotatable bonds) are similar between the two classes of com-
pounds (Fig. 1D–F).

To further compare the two classes of compounds, the most common fragments and their frequency for 
these molecules were analyzed. The top 20 common fragments in the cancer drugs were shown in the Fig. 1G. 
The frequency of these fragments is very different between the two classes of compounds. The frequency of most 
fragments in the predicted active compounds is less than that in the cancer drugs. For example, the frequency 
of pyridine, pyrimidine, imidazole, pyrrole and pyrrolidine in the predicted active compounds is extremely low. 
It is noteworthy that the fragments piperazine, pyrazole, trifluoroethane and morpholine are even absent in the 

Figure 1.  Structural characteristics of the predicted active compounds and cancer drugs. (A) Scatter plot of 
molecular weight against ALogP. (B) Histogram plot of the number of rings. (C) Histogram plot of the number 
of aromatic rings. (D) Histogram plot of the number of H-bond acceptors. (E) Histogram plot of the number of 
H-bonds donors. (F) Histogram plot of the number of rotatable bonds. (G) The bar plot of the top 20 common 
fragments and their frequency (F1-F20). In all plot, the cancer drugs and predicted active compounds were 
colored by blue and red, respectively.
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predicted active compounds. Only six fragments cyclohexane, cyclohexene, tetrahydropyran, tetrahydrofuran, 
cyclopentane and methyl acetate have higher frequency in the predicted active compounds. The analysis of 
molecular properties above suggested the predicted active compounds tended toward a high ratio of rings and 
aromatic rings. This tendency also emerges in the fragments analysis. 73% of the cancer drugs have unsaturated 
rings benzene. In contrast, 67% of the predicted active compounds have saturated ring cyclohexane. The number 
of unsaturated rings in the predicted active compounds is far less than that in the cancer drugs. And the number 
of saturated rings in the predicted active compounds is far more than that in the cancer drugs.

Identification of anti-cancer plants.  We have predicted thousands of compounds with anti-cancer activ-
ity above. It is worth to identify the plant which is enriched with anti-cancer compounds. The identification 
of anti-cancer plants is of great value in the introduction, utilization and protection of medicinal plants. It is 
also important in the development of anti-cancer drugs. Therefore, based on the predicted anti-cancer com-
pounds, we identified 57 anti-cancer plants (P_adj <  0.05) (Table 1) using the method named ACEA. These plants 
belong to 46 genera and 28 families. Detailed information concerning the anti-cancer plants can be found in 
Supplementary Dataset1 Table S3. When checked the family distribution of these plants, we have noticed that the 
anti-cancer plants were more frequent from the families Araliaceae, Asteraceae, Boraginaceae, Ranunculaceae 
and Rosaceae. For example, there are 8 anti-cancer plants belonged to family Araliaceae. They are Panax bip-
innatifidum Seem., Panax japonicus, Panax notoginseng, Panax quinquefolium L., Panax ginseng, Aralia elata, 
Oplopanax elatus Nakai, Aralia taibaiensis. These plants have potential ability to kill cancer cells due to the enrich-
ment of anti-cancer compounds. To verify this result, we performed literature survey using Thomson Reuters 
Web of Science database. We found that many of these plants have been reported to have anti-cancer activity in 
several studies, such as Salvia miltiorrhiza, Paris polyphylla, Gynostemma pentaphyllum, Panax ginseng, Panax 
notoginseng, Brucea javanica, Platycodon grandiflorum. Of these plants, Salvia miltiorrhiza is the most studied 
plant for cancer treatment. There are 84 predicted anti-cancer compounds derived from Salvia miltiorrhiza. These 
compounds showed potent activities against various types of cancer including esophageal cancer, gastric cancer, 
colon cancer, liver cancer, prostate cancer and breast cancer35–39. Another more studied plant is Paris polyphylla 
Smith which contains 13 predicted anti-cancer compounds. Paris polyphylla Smith has been studied for the treat-
ment of breast cancer, gastric cancer and lung cancer40–43. Notably, there are 24 identified anti-cancer plants which 
were little studied before. These new identified anti-cancer plants are worthy of further studies and provide more 
chances for the development of cancer drug.

Network of predicted anti-cancer plants and anti-cancer drugs.  To show how extend the predicted 
anti-cancer plants to support the development of anti-cancer drugs, we constructed a network of predicted 
anti-cancer plants and anti-cancer drugs based on the results above using Cytoscape v3.2. The network connects 
plant and drug if the compounds in this plant show similarity with this drug (Tc 0.70, MACCS fingerprint). It 
generated a network which contains 57 plants and 67 anti-cancer drugs (Fig. 2). This network highlights the 
supportive role of these plants in the development of cancer drugs. All the predicted anti-cancer plants associate 
with the development of cancer drugs. Some of them appear to be more important and closely related to the 
development of anti-cancer drugs, such as Salvia miltiorrhiza, Panax ginseng C. A. Mey, Brucea javanica, and 
Achyranthes bidentata. Salvia miltiorrhiza connected 6 approved drugs, 10 clinical drugs and 8 preclinical drugs. 
The six approved drugs are 4-Hydroxyandrostenedione, prednisolone, 17-Methyltestosterone, megestrol acetate, 
methylprednisolone sodium succinate and bexarotene. These drugs have been used for treatment of breast can-
cer, lymphoma. Bexarotene is being developed in clinical phase II for treating non-small cell lung cancer. Panax 
ginseng C. A. Mey connected 6 approved drugs, 9 clinical drugs and 6 preclinical drugs. One of the clinical drugs, 
clinical35 is identical to Ginsenoside K (TC =  1) which exist in Panax ginseng C. A. Mey. Ginsenoside K is a 
steroidal saponin in phase I clinical studies at IL-HWA for the treatment of cancer. Similarly, Brucea javanica 
connected 5 approved drugs, 4 clinical drugs and 6 preclinical drugs. Achyranthes bidentata connected 4 approved 
drugs, 6 clinical drugs and 5 preclinical drugs.

Surprisingly, two isolated sub-networks were found in the overall network. The two sub-networks are 
involved in different drugs, thus maybe different molecular mechanism of anti-cancer. The smaller sub-network 
contains three plants (Corydalis incisa, Amaryllis belladonna, and Thalictrum minus L) and two approved drugs 
(approved144: homoharringtonine and approved149: bosutinib). Homoharringtonine was originally isolated 
from Chinese tree Cephalotaxus harringtonia44. The three plants and Cephalotaxus harringtonia are distributed 
in different family and order. The diversity of plants and compounds suggests the three plants may provide an 
alternative resource for discovery of new compounds with activity similar to homoharringtonine. Further studies 
should be performed to screen the three plants.

Discussion
With the aim of systematic explore and evaluate the anti-cancer potential of all the plants in the TCM database, 
we identified 5278 anti-cancer compounds in this study. The predicted anti-cancer compounds account for 25% 
(5278/21334) of all compounds in the database. After calculating similarity, 3952 (75%) of the 5278 compounds 
have similarity with the approved anti-cancer drugs (Tc 0.70, MACCS fingerprint). It suggests the great value of 
these predicted anti-cancer compounds. Some new similar drugs may be discovered from these compounds. As 
natural products, these compounds show less side effects compared with synthetic compound. These compounds 
can be a ready and effective anti-cancer molecular library. Further experiments should design to screen the library 
to found the drugs with more active but less side effects.

The compounds which have similarity with the approved anti-cancer drugs can be used to develop me-too 
drugs. And its opposite, the innovative drugs are developed by using structurally dissimilar compounds and 
different molecular mechanism. There are about 25% of the 5278 compounds have no similarity with all the 
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Plant_name Family compound P_adj literature

Gynostemma pentaphyllum Cucurbitaceae 36 3.91E-48 39

Platycodon grandiflorum Campanulaceae 11 2.69E-28 15

Panax japonicus C. A. Mey. Araliaceae 8 3.65E-26 3

Panax bipinnatifidum Seem. Araliaceae 42 3.65E-26 0

Panax notoginseng Araliaceae 14 4.33E-25 28

Annona muricata L. Annonaceae 39 4.41E-19 10

Pulsatilla chinensis Ranunculaceae 12 1.70E-14 2

Salvia miltiorrhiza Lamiaceae 8 6.12E-13 63

Panax quinquefolium L. Araliaceae 13 1.72E-12 4

Prunella vulgaris Lamiaceae 13 5.62E-12 13

Polygonatum kingianum Asparagaceae 50 2.26E-11 0

Patrinia scabiosaefolia Caprifoliaceae 50 4.69E-11 0

Campsis grandiflora Bignoniaceae 94 1.05E-10 0

Albizia julibrissin Fabaceae 32 2.75E-10 0

Gleditsia sinensis Fabaceae 76 6.61E-10 9

Bupleurum scorzonerifolium Apiaceae 15 1.07E-08 3

Ardisia japonica Primulaceae 12 1.68E-08 2

Achyranthes bidentata Amaranthaceae 8 4.17E-08 4

Sanguisorba officinalis Rosaceae 27 4.99E-07 14

Cimicifuga foetida Ranunculaceae 36 7.99E-07 7

Arnebia guttata Boraginaceae 14 7.99E-07 0

Diphylleia sinensis Li Berberidaceae 16 1.88E-06 0

Erysimum cheiranthoides L. Brassicaceae 11 1.88E-06 0

Cimicifuga dahurica Ranunculaceae 14 6.07E-06 0

Asparagus curillus Asparagaceae 9 7.63E-06 0

Rubus chingii Rosaceae 8 7.63E-06 0

Podophyllum emodll Berberidaceae 15 1.15E-05 0

Lithospermum erythrorhizon Boraginaceae 18 1.70E-05 2

Strophanthus divaricatus Apocynaceae 22 2.32E-05 0

Panax ginseng C. A. Mey. Araliaceae 15 3.09E-05 31

Aralia elata (Miq.) Seem. Araliaceae 15 1.46E-04 8

Potentilla chinensis Rosaceae 17 1.51E-04 1

Nerium indicum Mill. Apocynaceae 9 2.04E-04 1

Paris polyphylla Smith Melanthiaceae 16 3.33E-04 47

Annona reticulata L. Annonaceae 66 3.33E-04 1

Phytolacca Americana Phytolaccaceae 28 5.42E-04 2

Boehmeria nivea Urticaceae 36 7.12E-04 1

Conyza blinii Levi. Asteraceae 31 7.75E-04 0

Cestrum nocturnum Solanaceae 104 2.53E-03 0

Brucea javanica Simaroubaceae 84 2.55E-03 22

Kochia scoparia Amaranthaceae 53 3.34E-03 2

Baileya multiradiata Asteraceae 14 4.70E-03 0

Arnebia euchroma Boraginaceae 9 4.70E-03 2

Thalictrum minus L. Ranunculaceae 13 6.24E-03 0

Inula japonica Thunb. Asteraceae 18 8.21E-03 2

Akebia quinata Lardizabalaceae 19 8.21E-03 10

Onosma paniculatum Boraginaceae 41 8.21E-03 2

Lilium brownii Liliaceae 37 8.30E-03 0

Eupatorium semiserratum Asteraceae 25 8.30E-03 0

Corydalis incisa Papaveraceae 14 8.30E-03 0

Eriobotrya japonica Rosaceae 14 1.22E-02 3

Oplopanax elatus Nakai Araliaceae 36 1.55E-02 1

Bupleurum falcatum Apiaceae 17 2.62E-02 1

Aralia taibaiensis Araliaceae 16 2.62E-02 0

Amaryllis belladonna Amaryllidaceae 40 3.36E-02 0

Eupatorium rotundifolium Asteraceae 66 3.36E-02 0

Bupleurum smithii Wolff Apiaceae 15 3.36E-02 0
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anti-cancer drugs in preclinical, clinical and approved stages from the database of Thomson Reuters Integrity. 
With the frequent use of anti-cancer drugs and increased duration of treatment, cancer cell may be resistant to 
the drugs. The problem of drug resistance can be shoveled by developing new and effective anti-cancer drugs. 
Therefore, these structurally dissimilar compounds are promising molecules and can be used to develop innova-
tive drugs.

Lipinski’s rule is often used to determine if a chemical compound with a certain pharmacological activity 
has properties that would make it a likely orally active drug in humans. The rule evaluates drug-likeness by 
using four molecular properties (ALogP, molecular weight, H-bond acceptors, and H-bonds donors). The anal-
ysis of molecular properties revealed that the distributions of ALogP, molecular weight, H-bond acceptors, and 
H-bonds donors are very similar and overlapped between the predicted active compounds and cancer drugs. 
The distribution of rotatable bonds is also similar between the two classes of compounds. These results suggested 
that most of the predicted active compounds have a good drug-likeness. However, we found that the frequency 
of most common fragments is very different between the two classes of compounds. Both fragment analysis and 
molecular property analysis revealed that the ratio of rings and aromatic rings tended to become smaller from the 
predicted active compounds to cancer drugs. Saturated rings are enriched in the predicted active compounds and 
unsaturated rings are enriched in the cancer drugs. Generally, unsaturated compounds are more reactive than 
saturated compounds45. Therefore, the reactivity of the predicted active compounds may be lower compared with 
the cancer drugs. As the degree of reactivity links the level of toxic side effect46, our results suggested the lower 
toxicity of the predicted active compounds. In addition, trifluoroethane fragment, a toxic substance, is common 
in the cancer drugs but absent in the predicted active compounds. It also suggested the lower toxicity of the pre-
dicted active compounds.

In our study, we identified 57 anti-cancer plants using the ACEA method which based on the enrichment of 
anti-cancer compounds in corresponding plant. Literature survey showed that many of these plants have been 
reported to have anti-cancer activity in several studies, such as Salvia miltiorrhiza, Paris polyphylla, Gynostemma 
pentaphyllum, Panax ginseng, Panax notoginseng, Brucea javanica, Platycodon grandiflorum. Notably, there are 
24 identified anti-cancer plants which were little studied before. Of these plants, 14 plants belong to the families 
in which many species have already been reported as anti-cancer plants. In contrast, the other 10 plants belong 

Table 1.   The predicted anti-cancer plants. The third column represents the number of compounds with 
anticancer activity in this plant. The last column represents the number of literature and patent whose titles 
contain both words “the name of plant” and “cancer”.

Figure 2.  Network of predicted anti-cancer plants and anti-cancer drugs . The network connects plant and 
drug if the compounds in this plant show similarity with this drug (Tc 0.70, MACCS fingerprint). Two isolated 
sub-networks were shown in the figure. The red rectangle, green circle, light blue circle and gray circle represent 
predicted anti-cancer plant, approved drug, clinical drug and preclinical drug, respectively. The lines link the 
approved drug, clinical drug and preclinical drug are color as green, light blue and gray, respectively. The node 
size is proportional to the number of connections.
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to the families in which only a few species have been studied as anti-cancer plants, such as caprifoliaceae, solan-
aceae, bignoniaceae, brassicaceae. The identified plants are widely distributed in 46 genera and 28 families. The 
identification of these genera and families provides a broader scope and vision for the screening of anti-cancer 
drugs. These new identified anti-cancer plants are worthy of further studies and provide more chances for the 
development of cancer drug. Our results may contribute to decision-making in the process of introduction, pro-
tection and utilization of medicinal plants. This information of the anti-cancer plants can improve the rationality 
of decision-making about introduction of medicinal plants.

The prediction of anti-cancer plants requires the annotation information of plant and the compounds in cor-
responding plant. Incomplete information may affect the results of prediction. For example, there are close to half 
of 2402 plans which have less than 5 compounds annotated in corresponding plant. Therefore, these plants can 
not be identified using the ACEA method. Our study mainly based on the TCM Database@Taiwan, which is cur-
rently the world’s largest and most comprehensive TCM database. With the increasing information in database, 
the predicted results will be more accurate.

After generation of the plants-drugs network, we found two isolated sub-networks in the overall network. 
The two sub-networks may be involved in different molecular mechanism of anti-cancer due to connecting dif-
ferent drugs. The smaller sub-network contains two approved drugs (approved144: homoharringtonine and 
approved149: bosutinib). The bigger sub-network contains 16 approved drugs. In order to probe the molecular 
mechanisms, we got the target information of these drugs from DrugBank. We found the drugs in the smaller 
network can bind to the ribosome and inhibit polypeptide chain elongation, thus inhibit protein synthesis. In 
contrast, the drugs in the bigger network are mainly involved in two molecular mechanism. One is regulation of 
nuclear receptors and estrogen-related signal. The other is inhibition of DNA replication. Therefore, this result 
suggests that medicinal plants may exert anti-cancer activity by different molecular mechanism. The plants-drugs 
network can be used for exploration of molecular mechanism of anti-cancer.

With the accumulation of biological data and increase of the variety and complexity of data types, bioinfor-
matics and cheminformatics play an important role in the integration of these data. Until now, there are two types 
of data are useful and available for data-mining biologically active compound. One is experimental biological 
activity data including high-throughput chemical biology screening datasets in Pubchem database47, such as 
anti-cancer biological activity data, anti-HIV biological activity data and anti-tuberculosis biological activity data. 
The other is the curated data about TCM plants and their derived ingredients in several TCM database. The two 
types of data offer a new opportunity to mine for potential compounds with various activities by using bioinfor-
matics and cheminformatics48–50. Salma et al. identified anti-tubercular compounds from TCM by integrating 
anti-tuberculosis biological activity data and TCM related data50. Kenneth et al. identified quinone subtypes effec-
tive against melanoma and leukemia cell by data-mining the GI50 values of the NCI cancer cell line compound51. 
Thomas et al. used random forest to virtual screen Chinese herbs for potential inhibitors against several thera-
peutically important molecular targets52.

In summary, our analysis suggests that the predicted compounds and plants from TCM database offer an 
attractive starting point and a broader scope to mine for potential anti-cancer agents. We hope that this study 
would accelerate in-depth analysis and discovery of anti-cancer agents from TCM.

Methods
To infer anti-cancer plants, we first collected the information concerning the plants and the plant-derived com-
pounds from the TCM Database@Taiwan. The relationship of the pant and its derived compounds was also 
collected. All compounds were downloaded as mol2 (3D) format. The format was converted to SMILES string53 
by the Open Babel toolbox54. A total of 2402 plants and 21334 compounds were collected and downloaded for 
further study. Detailed information concerning the plants and all compounds can be found in Supplementary 
Dataset1 Table S1.

The anti-cancer activities of all the compounds were predicted using CDRUG, which was developed by our 
laboratory31. CDRUG uses a novel molecular description method (relative frequency-weighted fingerprint) and 
a hybrid score to measure the similarity between the query and the active compounds. Then a confidence level 
(P-value) is calculated to predict whether a compound has anti-cancer activity. The performance analysis shows 
that CDRUG has the area under curve of 0.878 and can hit 65% positive results at the false-positive rate of 0.05. 
Thus CDRUG is effective to predict anti-cancer activity of the chemical compounds. In this study, we used the 
default (P <  0.05) cutoff in CDRUG to screen the 21334 compounds in the TCM Database@Taiwan.

After anti-cancer activity prediction of the 21334 compounds, we measured whether a plant has potential 
ability to kill cancer cells using the method named ACEA32. ACEA is based on the results of anti-cancer activity 
prediction and uses a hypergeometric distribution to perform enrichment analysis. The P-value of each plant can 
be calculated using the following equation:

∑= −
=

−
−
−( )

( )
( )

P 1
(1)i

k
m
i

N m
n i

N
n0

1

Here, N and n are the total number of compounds and the total number of anti-cancer compounds in the TCM 
Database@Taiwan, respectively; m and k represent the number of compounds and the number of anti-cancer 
compounds in a plant, respectively. Both n and k are calculated using CDRUG. Because multiple tests (2402 
plants) were performed, the Bonferroni correction method was used to adjust the P-value determined by ACEA:

_ = ×P adj p Ng (2)
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Here, P_adj is the adjusted P-value of ACEA, P is the P-value of ACEA (without Bonferroni correction) and 
Ng is the number of plants in the TCM Database@Taiwan. Only plants with P_adj <  0.05 were retained.

In order to compare the similarity of the predicted anti-cancer compounds with the anti-cancer drugs in the 
different development stages, we got the information concerning the anti-cancer drugs in preclinical, clinical 
and approved stages from the database of Thomson Reuters Integrity (www.thomsonreutersintegrity.com). The 
molecular properties of the predicted active compounds and anti-cancer drugs were calculated using the proto-
col ‘Calculate Molecular Properties’ in Pipeline Pilot v8.555. The calculated properties include ALogP, molecular 
weight, and the number of rotatable bonds, rings, aromatic rings, H-bond acceptors, and H-bonds donors, and 
so on. Detailed information and molecular properties for the predicted active compounds and anti-cancer drugs 
can be found in Supplementary Dataset1 Table S2. The most common fragments and their frequency were calcu-
lated using the protocol ‘Most Frequent Fragments’ Pipeline Pilot v8.5. These fragments and their frequency are 
available in Supplementary Dataset1 Table S4. The structural similarity was measured by Tanimoto coefficient 
(Tc)56. Tc is defined as Tc =  C(i, j)/U(i, j), where C(i, j) is the number of common features in the fingerprints of 
molecules i and j and where U(i, j) is the number of all features in the union of the fingerprints of molecules i and 
j. The fingerprint MACCS implemented in the Pybel57 were generated for each structure and used to calculate 
TC. Two compounds are considered structurally similar if their fingerprints have a Tc of 0.70 or greater58,59. After 
calculation, the similarity network was visualized using Cytoscape v3.260.
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