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Hepatocellular carcinoma: thyroid 
hormone promotes tumorigenicity 
through inducing cancer stem-like 
cell self-renewal
Tao Wang1,*, Lei Xia2,*, Sicong Ma1, Xingxing Qi1, Qigen Li2, Yun Xia2, Xiaoyin Tang1, Dan Cui1, 
Zhi Wang1, Jiachang Chi1, Ping Li1, Yu-xiong Feng1, Qiang Xia2 & Bo Zhai1

Cancer stem-like cells (CSCs) play a key role in maintaining the aggressiveness of hepatocellular 
carcinoma (HCC), but the cell-biological regulation of CSCs is unclear. In the study, we report that 
thyroid hormone (TH) promotes cell self-renewal in HCC cells. TH also increases the percentage 
of CD90 + HCC cells and promotes drug resistance of HCC cells. By analyzing primary human HCC 
samples, we found that TRα transcript level is significantly elevated in primary liver cancer and portal 
vein metastatic tumor, compared to that of adjacent normal liver tissue. Knocking down TRα not 
only inhibits HCC self-renewal in vitro but also suppresses HCC tumor growth in vivo. Interestingly, 
treatment of TH leads to activation of NF-κB, which is required for the function of TH on inducing HCC 
cell self-renewal. We also found TRα and p65 cooperatively drive the expression of BMI1 by co-binding 
to the promoter region of BMI1 gene. In summary, our study uncovers a novel function of TH signaling 
in regulating the CSCs of HCC, and these findings might be useful for developing novel therapies by 
targeting TH function in HCC cells.

Hepatocellular carcinoma (HCC) is currently the second most common cause of cancer-associated death world-
wide1. In the past decade, the incidence of HCC has been increasing, with nearly 800,000 new cases reported 
every year. HCC is notoriously aggressive, as a diversity of malignant features, including vast capacity of tumor 
expansion, intrinsic multi-drug resistance, and extraordinary tumor seeding and metastatic potential, usually 
appear concomitantly in HCC cells2. The involvement of cancer stem-like cells (CSCs) has been proposed to play 
a key role in maintaining the aggressiveness of HCC, since it is known that cancer stem-like cells contribute to 
multiple features above in many types of cancer3. However, to date it remains largely unknown how CSCs of the 
liver cancer are maintained and regulated, albeit some cell-surface markers to enrich CSCs have been discovered. 
It has been shown that CD90 positive (CD90+ ) and EpCAM positive cancer cells function as cancer stem-like 
cells in liver cancers4,5.

Hormone and nuclear receptor (NR) signaling pathways are essential in regulating gene expression6. NRs are a 
group of transcriptional factors. Once activated by their cognate ligands, NRs activate the transcription of the tar-
get genes, which in turn modulate various cell-biological and developmental processes. Recently studies demon-
strated that many NRs are involved in regulating stem cell self-renewal and proliferation in various types of tissue 
during development7. Although the roles of NRs in many types of cancer development are established, it is not 
clear whether NRs are important in regulating CSCs activity. Latest studies showed that estrogen and estrogen 
receptor ERα  expand a pool of functional breast CSCs cells through a paracrine FGC/FGFR/Tbx3 signaling path-
way8. Testicular receptor (TR4) promotes prostate cancer initiation in peroxisome proliferator-activated receptor 
gamma deleted prostate cells9. These all suggest that NRs could affect cancer progression via regulating CSCs.

The function of TH in cancer development has been known long ago10. Recent studies indicated that subclin-
ical hyperthyroidism might increase the risk of certain solid tumors11, while spontaneous hypothyroidism may 
delay onset or reduce aggressiveness of cancers. However, how TH plays a role in liver cancer remains unknown. 
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In this study, we found that TH significantly increased cell self-renewal in HCC cells. TH also increases the num-
ber of CD90 +  HCC cells and promoted drug resistance in HCC cells. The function of TH was clearly through 
its receptor alpha (TRα ). Loss-of-function experiments revealed that decreasing TRα  expression significantly 
suppressed both in vitro cell self-renewal and in vivo tumor growth of HCC cells. Interestingly, by analyzing pri-
mary human HCC samples, we found that TRα  transcript level was significantly elevated in primary liver cancer 
and portal vein metastatic tumor, compared to that in adjacent normal liver tissue. Furthermore, we found that 
the function of TH signaling co-operatives with NF-κ B in HCC cells. TRα  interacts with NF-κ B subunit p65 and 
co-occupies the promoter region of oncogene BMI1 in TH-treated HCC cells. In summary, our study demon-
strated a critical role of TH signaling in self-renewal of liver CSCs.

Materials and Methods
HCC cDNA samples and cell lines.  The HCC normal/primary tumor (PT)/portal vein tumor thrombosis 
(PVTT) cDNA samples were obtained from Renji Hospital, Shanghai Jiao Tong University. Informed consent was 
obtained from all patients. Tissue biopsy was approved by the Institutional Review Board of the Renji Hospital, 
Shanghai Jiao Tong University. All the experiments using human tissue samples were carried out in accord-
ance with the guidelines approved by the Institutional Review Board of the Renji Hospital, Shanghai Jiao Tong 
University. The CSQT-2 cell was prepared from an in vitro culture of a PVTT-1 xenograft that was established 
previously12, and were cultured in DMEM, supplemented with 10% fetal bovine serum, 10 units/ml penicillin, 
and 10 units/ml streptomycin, at 37 °C in a humidified atmosphere containing 5% CO2.

Reagents and plasmids.  All 24 small molecules used in the screen (supplemental table 1) were pur-
chased from Sigma. Anti-human CD90, CD133, and EpCAM antibodies for flowcytometry analysis were from 
BD Biosciences. Methylcellulose was from R&D Systems. pLKO-shTHRA and pLKO-shTHRB constructs were 
from Sigma. shRNA sequences: THRA shRNA-1 5′ -GTCAGGGTATATCCCTAGTTA; THRA shRNA-2 5′  
CAAACACAACATTCCGCACTT; THRB shRNA-1: 5′  GCCTGTGTTGAGAGAATAGAA; THRB shRNA-2: 5′  
CCACTTGGACTAGCTCAATAT; p65 (RELA) shRNA GCCTTAATAGTAGGGTAAGTT;

Immunoprecipitation.  Immunoprecipitation was conducted as previously described14. Briefly, whole 
cell lysates were prepared from 5 x 107 CSQT-2 cells treated by T4 for 96 hrs using RIPA lysis buffer with pro-
tease inhibitor cocktail. Nuclear fraction of protein from CSQT-2 Cell lysates was harvested. The lysates were 
pre-cleared by incubating with protein A-Sepharose for 1 h at 4°C and centrifugation. The supernatant was 
immunoprecipitated with 1 μg rabbit IgG or anti-p65 antibody overnight at 4°C. Immune complexes were col-
lected by incubation with protein A-Sepharose for 4 hrs at 4°C and washed for 5 times at 4°C with lysis buffer. 
The immune complexes adsorbed to the beads were centrifuged and the supernatant was removed. 50 μL of 1x 
loading buffer was added to the samples and boiled at 95°C for 5 minutes. Proteins were resolved by SDS-PAGE 
and immunoblotted by antibodies indicated in figures.

In vitro colony formation assay.  1000 liver cancer cells were seeded in 3.5 cm dish with 2 ml of culture 
media, and cultured for up to 5 days. Cell-colony forming was measured by crystal violet staining at day 515. The 
data was analyzed by the ImageJ software.

In vitro self-renewal assay.  1,000 liver cancer cells were seeded with DMEM containing 20% methylcel-
lulose (Stemcell Technologies) in ultra-low attachment plate (Corning) for a period of 7 days13. Chemicals were 
added into the culture media at 10 μ M the same day when cells were seeded. The number and size of colonies 
formed were quantified at day 7. The data was analyzed using the software Image-J.

In vivo tumorigenicity assay.  Male NOD/SCID mice were housed under standard conditions. The animal 
protocols were done in agreement with Renji Hospital Guide for the Care and Use of Laboratory Animals and 
approved by Animal Care and Use Committee, Renji Hospital. Six-week-old male NOD/SCID mice were subcu-
taneously injected at two flanks and/or the back with 103, 104, 105, or 106 liver cancer cells per sites. The resulting 
tumors were measured with calipers every 7 days, and tumor volume (mm3) was calculated using the standard 
formula: length ×  width ×  height ×  0.5236. Tumors were harvested from ether-anesthetized mice. All the animal 
protocols were reviewed and approved by the Experimental Animal Research Committee of the Renji Hospital, 
Shanghai Jiao Tong University. Stem cell frequency in the tumor was analyzed by Extreme Limiting Dilution 
Analysis (http://bioinf.wehi.edu.au/software/elda/).

Statistical analysis.  All data were expressed as mean ±  SEM. For comparison of two different groups, 
Student’s t test was used. Differences between groups were considered significant at p <  0.05.

Results
Identification of thyroid hormone as a potent factor promoting cancer stem-like cell pheno-
types in HCC.  To identify hormone signaling that affects cancer stem-like cells of HCC (HCC-CSCs), we con-
ducted a tumor spheroid-based screening on CSQT-2 cell. CSQT-2 is a highly aggressive HCC cell line originated 
from a specimen of portal vein tumor thrombus (PVTT)12. We have reported that CSQT-2 manifests many fea-
tures of advanced HCC, including potent self-renewal capacity, multi-drug resistance, and vasculature metastatic 
potential12. In a non-adherent stem-cell culture condition, CSQT-2 cells were treated with a set of 24 agonists or 
antagonists of nuclear receptors, and the number and size of tumor spheroids in each condition were measured 
at day 7 (Supplemental Table 1). Most of the compounds lead to a fold-change within two standard deviations 
of the changes across all treatments (Fig. 1A). Interestingly, only one molecule, T4 (Thyroxine), a ligand of the 
thyroid hormone receptor signaling, caused an increase over two standard deviations for both number and size 
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of spheroids formed (Fig. 1A), strongly indicating that T4 was a potent factor promoting the self-renewal of 
HCC-CSCs. In contrast, ATRA, a known factor that differentiates HCC-CSCs, was able to suppress the sphere 
formation, indicated by decreased size of spheroids formed (Fig. 1A).

We then validated the function of T4 in another HCC cell line, MHCC97-H, and revealed that treatment 
of T4 promoted the sphere formation in both CSQT-2 and MHCC97-H cells (Fig. 1B). In addition, we also 

Figure 1.  TH stimulates self-renewal and enhances drug-resistance in HCC cells. (A) CSQT-2 cells 
were seeded in 96-well ultra-low attachment plates with DSMO or 24 different hormone-related chemicals 
(see methods and supplementary table 1 for details) for 7 days. The spheroid-genesis in each condition was 
measured by spheroid counts per bright-field area as well as the size of spheroids. The range of two standard 
deviations was indicated. The number of spheroids in 10 fields per condition was counted, and the size of 20 
spheroids in each condition was measured. (B) CSQT-2 and MHCC97-H cells were seeded in 6-well ultra-
low attachment plates, and treated with DMSO and 10 μ M T4 (3, 3′ , 5′ -Triiodo-L-thyronine) for 7 days. 
Representative images and quantification of spheroid counts were shown. (C) CSQT-2 and MHCC97-H cells 
were seeded in 6-well cell culture plates (500 cell per well), and treated with DMSO or T4 for 5 days. The 
number of colonies formed was measured at day 5. (D) Flow cytometry analyses of CSQT-2 cells treated with 
indicated concentrations of T4 for 96 hours, and the fold change of CD90+  cells were plotted (The percentage 
of CD90+  cells in DMSO-treated condition was set to be “1”). (E) Flow cytometry analyses of CSQT-2 cells 
treated with 10 μ M T4 for indicated period of time, and the fold change of CD90+  cells were plotted (The 
percentage of CD90+  cells in DMSO-treated condition was set to be “1”). (F,G) CSQT-2 cells were treated with 
a series doses of Doxorubicin or 5-Fluorouracil in the presence or absence of 1 μ M T4 for 3 days. Cell survival 
was measured using the CellTiter-Glo assay (Promega). IC50 was simulated using Prism 5. Error bars represent 
mean ±  SEM from three biological replicates, unless otherwise indicated. (*p <  0.05, **p <  0.01, ***p <  0.001).
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examined the effect of T4 on the self-renewal of HCC-CSC using a 2D colony-forming assay. As expected, T4 
led to a two-fold increase of the number of colonies in both HCC cells (Fig. 1C). Consistently, treatment of T4 
dramatically induced the percentage of CD90 + HCC cells in a dose and time dependent manner (Figs 1D,E 
and S1). As controls, we tested the function of three different agonists targeting other NR receptors: peroxi-
some proliferator-activated receptor gamma (PPARγ ), farnesoid X receptor (FXR) and liver X receptor (LXR), on 
induction of CD90+  cells. These three receptors are highly expressed in liver cells and closely regulate the func-
tion in both normal and tumor liver cells. However, none of these agonists increased the percentage of CD90+  
CSQT-2 cells (Fig. S1). Since heightened drug resistance is another hallmark of cancer stem-like cells16, we next 
investigated whether TH increases the drug resistance of HCC cells. By use of doxorubicin and 5-fluorouracil, 
two common chemotherapeutic agents in treating HCC, we found that presence of T4 significantly increases the 
drug resistance of CSQT-2 cells, elevated by ~8 fold and ~2 fold for Doxorubicin and 5-fluorouracil respectively 
as determined by IC50 (Fig. 1F,G).

TH signaling in HCC is through nuclear receptor TRα.  TH transduces signaling events through 
interacting with its cognate nuclear receptors. There are two types of TH receptors: TRα  and TRβ , encoded by 

Figure 2.  TH signaling in HCC is through receptor TRα. (A) Real-time qPCR to quantify expression of 
THRA and THRB in HCC patient samples. PT, primary tumor; PVTT, portal vein tumor thrombus. Each dot 
represents one patient sample. (B) Lentivirus encoding shRNA targeting LacZ (control), TRα  (THRA), or TRβ  
(THRB) was transduced into CSQT-2 cells, and the knockdown efficiency for THRA and THRB was measured 
by qPCR. (C) Flow cytometry analysis measuring CD90 +  CSQT-2 cells were performed 72 hours after shRNA 
transduction in (B). (D) Lentivirus encoding shRNA targeting LacZ (control) or TRα  (THRA) was transduced 
into CSQT-2 and MHCC97-H cells, and cells were seeded in ultra-low attachment plates in the presence of 
1 μ M T4 for 7 days. Spheroid-genesis was measured by spheroid counts at day 7. (E) 500 Cells from (D) were 
seeded in cell culture plate for 5 days, and number of colonies formed was counted. (F) CSQT-2 cells from  
(B) were treated with a series doses of Doxorubicin or 5-Fluorouracil in the presence of 1 μ M T4 for 3 days. Cell 
survival was measured using the CellTiter-Glo assay (Promega). IC50 was simulated using Prism 5. Error bars 
represent mean ±  SEM. from three biological replicates. (*p <  0.05, **p <  0.01, ***p <  0.001).
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THRA and THRB respectively in mammals17. While TRβ  is highly expressed in hepatocytes and mediates thy-
roid hormone-regulated lipogenesis, the function of TRα  in liver is largely unclear18. We next decided to test the 
expression pattern of TH receptors in different tissue samples from HCC patients’ liver biopsy samples, including 
paired normal liver, primary tumor and PVTT of HCC tissue samples. Our qPCR data showed that although TRα  
expression was low in normal liver tissues, its expression was much higher in primary tumors. Most importantly, 
the highest TRα  expression, ~32-fold increase compared to that in normal tissue, was detected in PVTT tissues 
(Fig. 2A). TRβ  expression is also induced in primary tumors and PVTT tissues, but to a much less extent com-
pared to that of TRα  expression (Fig. 2A). We further confirmed the cellular function of TRα  in TH-mediated 
CSCs self-renewal. Knocking down TRα  reduced the number of tumor spheres counts in CSQT-2 cells and 
MHCC97-H cells by 2 to 3-fold compared to that in control cells with T4 (Fig. 2B,C). Likewise, TRα  knockdown 
led to a significant reduction in the colony forming capabilities of CSQT-2 cells and MHCC97-H cells (Fig. 2D). 
In contrast, we did not observe any significant changes in sphere formation and colony formation by knocking 
down TRβ  (data not shown). Knocking down TRα  but not TRβ  also reduce the percentage of CD90 +  CSQT-2 
cells induced by T4, which further confirms the function of TRα  in regulating HCC cell self-renewal (Figs 2E 
and S2). As expected, knocking down TRα  significantly increased the sensitive of HCC cells to treatment of 
Doxorubicin and 5-fluorouracil, which suggests TRα  is essential for TH-promoted drug resistance in HCC cells 
(Fig. 2F,G).

TRα is essential for tumor initiation and growth in vivo.  We next determined whether TRα  signaling 
is essential for HCC tumor growth in vivo. We applied the serial dilution injection assay, the golden standard 
in stem cell biology, to test if TRα  signaling affects the percentage of tumor-initiating cells in HCC. Upon TRα  
knock-down, the abundance of tumor-initiating cells of CSQT-2 cells were only 1/5 compared to the control cells 
(Fig. 3A). Remarkably, while both cells could initiate tumors when 106 cells were implanted, the control cells 
initiated tumors much more rapidly than the cells with TRα  knockdown, as gauged by tumor volume along time 
(Fig. 3B). Consequently, mice implanted with TRα  knockdown HCC cells had a marked decrease in tumor bur-
den compared to that in control mice as determined by tumor size and weight (Figs 3C and S3). Taken together, 
our results suggest TH signaling mediated by TRα  receptor is important for HCC tumor growth in vivo.

Figure 3.  TRα is essential for tumor initiation and growth in vivo. (A) CSQT-2 cells were transduced by 
lentivirus encoding LacZ (control) or TRα  (THRA) shRNAs, and transplanted into NOD/SCID mice at day 
3 post-transduction. The number of cells injected was indicated, and the percentages of animals that formed 
tumors were quantified. The incidence of stem-like cells in the overall population was estimated. For the 
group of mice injected with 106 cells, the tumor volume (B) and tumor weight (C) were measured. (*p <  0.05, 
**p <  0.01, ***p <  0.001).
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Figure 4.  TRα cooperates with NF-κB to regulate stem cell genes expression in HCC cells. (A) CSQT-2 
cells were treated with DMSO or 1 μ M T4, and the expression of CD44, MYC, BMI1, NOTCH1, HIF1A, and 
JUNB was measured by qPCR. (B) Lentivirus encoding shRNAs targeting LacZ (control), or TRα  (THRA) 
was transduced into CSQT-2 cells and treated with DMSO or 1 μ M T4, and the expression of CD44, BMI1, and 
HIF1A was measured by qPCR. (C) Quantitative ChIP analysis of TRα  and p65 occupancy at BMI1 promoter 
region in CSQT2 cells following the indicated treatments. Units are arbitrary; signals using rabbit IgG are 
represented by grey dot lines across the plots. (D) Co-immunoprecipitation (IP) measuring interaction between 
TRα  and NF-κ B subunit p65 in CSQT2 cells after treated with T4 for 72 hrs. (E) Western blot showing the 
knockdown effect of p65 in CSQT-2 cells transduced with shp65 hairpins. (F) Lentivirus encoding shRNA 
targeting LacZ (control), p65, or TRα  was transduced into CSQT-2 cells treated with DMSO or T4. Flow 
cytometry analyses measuring CD90 and CD326 were performed at 72 hours after transduction. (*p <  0.05, 
**p <  0.01, ***p <  0.001).
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NF-κB cooperates with TRα in regulating gene expression in HCC cells.  We next sought to 
understand the molecular mechanism by which TH signaling promotes HCC self-renewal. Although the exact 
mechanism of cancer stem-like cell self-renewal is not clear, a set of essential markers or regulators are known, 
including CD44, BMI1, MYC, NOTCH1, HIF1A, and JUNB4,19,20. Our quantitative PCR analyses showed that T4 
significantly induces expression of some of these stem cells genes, such as CD44, BMI1, NOTCH1 and HIF1A, 
in CSQT-2 cells (Fig. 4A). Markedly, knocking down TRα  impaired the expression of CD44, BMI1 and HIF1A 
(Fig. 4B), suggesting that TRα  was involved in the regulation of these gene expression in HCC cells.

Previous studies have demonstrated that NF-κ B is usually hyper-activated in HCC and is highly associated 
with cancer progression21. We hypothesized that NF-κ B might cooperate with TRα  in regulating gene expres-
sion in HCC cells. Previous studies have showed that overexpression of BMI1 in tumor-initiating cells is essen-
tial for cancer cell chemo-resistance22–24. BMI1 cooperates with other oncogenic signaling pathways to promote 
hepatic carcinogenesis. Since BMI1 expression is up-regulated by T4 and down-regulated by TRα  knockdown, 
we decided to specifically investigate whether TRα  cooperates with NF-κ B at BMI1 genomic locus. Our motif 
enrichment analysis identified that there were multiple canonical half-sites of thyroid hormone responsive ele-
ments (TREs, “AGGTCA”) and a NF-κ B binding motif surrounding within 2 kb of BMI1 transcription start site 
(TSS). Our ChIP-PCR data demonstrated that while the occupancy of both TRα  and NF-κ B were low at pro-
moter region of BMI1 in untreated CSQT-2 cells, the occupancy of both transcription factors were significantly 
increased in T4-treated CSQT-2 cells (Fig. 4C). In consistency, our immunoprecipitation data suggested that 
TRα  interacted with p65 in T4-treated CSQT-2 cells (Fig. 4D), suggesting TRα  might cooperate with NF-κ B to 
regulate gene expression essential for HCC self-renewal. To evaluate the function of NF-κ B on TH signaling in 
CSQT-2 cells, we specifically knocked down p65 gene expression (Fig. 4E). As expected, knocking down p65 in 
CSQT-2 cells significantly decreases the percentage of CD90+  cells promoted by T4 (Fig. 4F), suggesting that ele-
vated NF-κ B signaling is critical in the TH-mediated regulation of HCC CSCs. Taken together, our results highly 
suggested TRα  and NF-κ B cooperate with each other to regulate gene expression in TH-treated HCC cells, which 
in turn enhance the self-renewal of HCC cancer stem-like cells.

Discussion
In this study, we set out to investigate the function of TH in regulating the CSCs of hepatocellular carcinoma, and 
revealed that TH can induce HCC cell self-renewal, increase the percentage of CD90 +  HCC cells, and promotes 
drug resistance of HCC cells. These findings were in consistency with recent discoveries that TH plays a part in 
stem/progenitor cell physiology in other context25. We found that this function of TH was, at least in part, via the 
NF-κ B pathway by TH receptor TRα . We also demonstrated that the co-operation between TRα  and NF-κ B was 
essential for inducing BMI1 gene expression in HCC cells (Fig. S4).

HCC is known to be very heterogeneous, yet the mechanism to maintain this intra-tumor complexity is 
unclear. Our findings suggest a potential role for TH, as a potent extracellular factor, in sustaining or expanding 
the heterogeneity of HCC cells. Recent studies have shown that increased heterogeneity in liver CSCs results in 
the heightened chemo-resistance of tumor cells26. Indeed, HCC cells appeared to be more resistant to chemother-
apy when the TH signaling is active. In consistency with these, our results suggested that TH might specifically 
promote CD90 +  HCC cells and enhance the self-renewal of HCC cells, which subsequently contribute to HCC 
drug resistance. In the clinical point of view, identifying environmental or genetic factors contributing to cancer 
heterogeneity is essential for developing efficient therapies to treat liver cancer. Therefore, it will be interesting to 
investigate the detailed function of TH on liver CSCs heterogeneity on certain liver cancer mouse models in the 
future.

Although conflicted results have been reported, the notion that TH is involved in liver tumorigenesis is unam-
biguous10. High frequency of somatic point mutations of TRα  (65%, 11/17) and TRβ  (76%, 13/17) is identified in 
human HCC10,27. The function of these mutations has not been verified individually. However, some mutations 
have been predicted to alter TH receptor DNA binding capability, which in turn will affect their transcriptional 
activities10. Our data suggests a previously unappreciated role of TRα  in the self-renewal of HCC both in vitro 
and in vivo. Yen et al. previously showed that overexpressing TH receptors in HepG2, a non-aggressive cell line in 
the presence of T3 inhibits cell growth28. This could suggest that in the early stage of HCC, TH could have certain 
anti-proliferation role; however, along with HCC progression, TH could function as an important mediator of 
aggressiveness and malignancy. This notion could be very well supported by the step-wise increase of expression 
of thyroid hormone receptor in normal liver, primary tumor, to PVTT. To better understand the role of TH in 
HCC cells of various genetic background, single-cell based analysis will be required to examine the function of 
wild type and mutated TH receptors in different tissues, and how they contribute to the disease progression.

Recent studies have revealed the role of NF-κ B in CSCs25,29,30. NF-κ B has been shown to be activated in ovar-
ian cancer stem cells, where it can inhibit apoptosis, stimulate cell proliferation and tumor growth and resistance 
to chemotherapy31,32. In liver CSCs, Cao et al. reported that osteopontin promotes a cancer stem-like phenotype 
in HCC cells through an integrin- NF-κ B- HIF1α  pathway and up-regulates the expression of HIF1α  down-
stream gene BMI1, which is essential for mediating the maintenance of the stem-like phenotypes33. In our studies, 
we found NF-κ B was activated in TH-treated HCC cells and contributed to the cancer stem-like phenotypes in 
HCC cells. We further found that TH receptor TRα  interacted with NF-κ B subunit p65 and co-occupied the 
promoter region of BMI1 in TH-treated HCC cells. Since the cooperation between NF-κ B and nuclear receptors 
including TH receptors is important in regulating hormone-mediated gene expression34,35, our studies elucidate 
a key mechanism underlying the self-renewal of HCC induced by TH and potentially useful for developing ther-
apies to treat HCC.
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