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A B S T R A C T

To be able to predict reversed phase liquid chromatographic (RPLC) retention times of contaminants is an asset in
order to solve food contamination issues. The development of quantitative structure–retention relationship
models (QSRR) requires selection of the best molecular descriptors and machine-learning algorithms. In the
present work, two main approaches have been tested and compared, one based on an extensive literature review
to select the best set of molecular descriptors (16), and a second with diverse strategies in order to select among
1545 molecular descriptors (MD), 16 MD. In both cases, a deep neural network (DNN) were optimized through a
gridsearch.

1. Introduction

Contaminants and especially pesticides in food are of growing
concern as the general public is increasingly aware about their health
effects (Dashtbozorgi et al., 2013). Depending on their concentrations,
toxicity, and frequence of detection in food and in the environment,
pesticides may lead to health impairment, disease and even death
(Colosio et al., 2017). Detecting and quantifying these compounds helps
to guarantee compliance of imported goods with the laws and regulations
of the importing country (Chiesa et al., 2016).

The high accuracy and mass sensitivity of high-resolution mass
spectrometry (HRMS) instruments hyphenated to liquid (LC) or gas (GC)
chromatography make it possible to observe thousands of chemical fea-
tures in food and environment samples. These features include mono-
isotopic exact mass, chromatographic retention time (RT), abundance,
isotope profiles and MS2 fragmentations. However, data processing and
chemical characterization remain difficult despite recent developments.
Chemical reference standards and spectral data enable us to confirm the
structure of observed characteristics, but reference standards, especially
metabolites and by-products, are rarely available for thousands of char-
acteristics in non-target analysis (NTA) and suspect screening analysis
(SSA) (McEachran et al., 2018), and having these thousands of standards
can also represent a considerable cost.

Since the appearance of HRMS, the interest in improving confidence
in the identification of small molecules increase, such as pesticides, from
putative positive samples based on detection to confirmation (Bade et al.,

2015a; Schymanski et al., 2014). SSA studies are those in which observed
but unknown features are compared against a database of chemical
suspects to identify plausible hits. NTA studies are those in which
chemical structures of unknown compounds are postulated without the
aid of suspect lists (Sobus et al., 2018). In both cases, confirming the
identification of a contaminant requires its standard, which may be un-
available, expensive, or time-consuming to obtain in the case of food
poisoning. This is especially true for pesticides where there are a few
thousand analytes, metabolites and by-products. In order to increase
confidence in the tentative identification of compounds, especially in
SSA, it is conceivable to predict their chromatographic retention time
(RT) (Bade et al., 2015b; Barron and McEneff, 2016; Parinet, 2021;
Randazzo et al., 2016).

To predict RT, different strategies using various molecular descriptor
(MD) sets and multiple machine-learning algorithms have been tested
and published (Aalizadeh et al., 2019; Bade et al., 2015a; Barron and
McEneff, 2016; Gory�nski et al., 2013; McEachran et al., 2018; Munro
et al., 2015; Noreldeen et al., 2018; Parinet, 2021; Randazzo et al., 2016).
These strategies range from the use of logKow models (Bade et al.,
2015b) to more complex in silico approaches based on quantitative
structure-retention relationship (QSRR) modeling, including artificial
neural networks (ANNs), support vector machines (SVMs), random forest
(RF), partial least squares regression (PLS-R), and multilinear regression
(MLR) (Ghasemi and Saaidpour, 2009; Munro et al., 2015; Parinet,
2021).
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In the first part of this study, two different approaches were tested and
compared in order to build an effective QSRR model dedicated specif-
ically to predicting pesticide RTs analyzed by reversed-phase liquid
chromatography (RPLC) (C18) in SSA or NTA. The first approach was
based on an exhaustive literature review in order to find the best MD set
to predict pesticide RTs. The second approach had no preconceived ideas
as to which MDs that should be selected among 1545 MDs to feed the
QSRR. Indeed, in this second approach, various strategies using the Lasso
regression, a Pearson correlation feature selection (Pearson), a recursive
feature elimination (RFE) and the use of principal components analysis
(PCA) have been used in order to select among the entire MD available,
sixteen MD. In both cases, a deep learning algorithm was retained and
optimized (a multilayer perceptron (MLP)) in order to predict RTs of
pesticides, and a comparison was done between the two approaches in
order to select the best one.

2. Materials and methods

2.1. Dataset

Initially, the dataset included 843 RTs of pesticides collected from the
article of Wang et al. (2019). Ultra-high-performance liquid chroma-
tography (UHPLC) gradient conditions, column temperatures, mobile
phases, columns, and instruments used to generate the data presented in
detail in Wang et al. (2019).

Three free software applications have been used in order to compute
the pesticide's MD. These applications are free, can calculate a large
number of descriptors and are widely available. The ACD software
(Advanced Chemistry Development, Toronto, ON, Canada) was used to
calculate LogP and LogD. The Toxicity Estimation Software Tool (TEST,
Cincinnati, OH, USA) was used to compute Hy, Ui, IB, BEHp1, BEHp2,

GATS1m, and GATS2m. The rest of the molecular descriptors (1834 MD)
were calculated using the ChemDes online platform (http://scbdd.com/
chemdes/).

Once the MDs were computed, the dataset was cleaned in order to
remove constant and missing values (Figure 1). Indeed, constant values
are useless in order to develop QSRR models and missing values make
learning and prediction impossible. The missing values are due to the
softwares and their inability to generate, depending on themolecules, the
MD. At the end of this curation process, 792 pesticides, their RTs, and
1545 MDs remained in the final dataset. The dataset containing the MDs
for each pesticide was then ready to build QSRR models (Table S1).

2.2. QSRR model development

The dataset constituted previously and containing the pesticides
(792), their MDs (1545), and RTs was used in order to select among them
the best MDs inherited from the literature review (Model 1). Importantly,
in order to find the best set of MDs, a literature review was done by
selecting themost recent and pertinent papers with the following criteria:
the prediction of retention times measured by RPLC and for pesticides or
similar compounds (pharmaceuticals, veterinary drugs). At the end of
this literature review, seven articles, their MDs, andmodels were selected
(shown in Table 1 with their performances) and compared in term of
performance measured principally through the percentage of error, which
is the ratio between the root mean square error (RMSE) divided by the
maximum retention timemeasured on the last eluted compound. In order
to pursue the no a priori approach on which MD to select (Model 2 to Model
8), diverse strategies were used and compared in order to select among
the 1545 MD, the best sixteen MD. Sixteen MD were retained in order to
be able to compare the performances of the models (Model 2 to 8) to the
model inherited from the literature review (Model 1). Hence, the Lasso

Figure 1. QSRR model development and evaluation of performances.
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regression, a regularized linear regression that aims to constrain the
coefficients to be close to 0 or equal to zero, thus allowing an automatic
selection of the characteristics/MD, here 16 MD (ATS8m, ATS5i, iedm,
SRW10, ATS5v, VR2_Dt, VR1_D, VR1_Dt, VR2_D, ATS8i, ATS7i, ATS3i,
ATSC3m, ATS0m, ATS0v, ATS4v). The second strategy was based on the

Pearson correlation between the 1545 MD and the output (pesticides
RTs), and the larger the relationship and more likely the feature/MD
should be selected for modeling, then sixteen MD were selected based on
this strategy (LogP, BEHm4, CrippenLogP, ALOGP2, ALOGP, XLOGP2,
XLOGP, ATS6p, ATS5p, ATS4p, ATS3p, ATS1p, ATS6v, BEHm8, BEHm5,

Table 1. QSRR models selected from the literature review.

References Type of
contaminant

Number of
contaminants

MDs selected Best machine
learning algorithms
used

RT max
measured
(min)

R2

test
set

RMSE
test set
(min)

Percentage
of error

Aalizadeh
et al. (2019)

Emerging
contaminants

1830 LogDa, CIC1b, SeigZc, RDF020pd, AlogPe SVM 14.4 0.88 1.04 7%

McEachran
et al. (2018)

Environmental
contaminants

97 LogPf, LogD, molecular weight,
molecular volume, polar surface areag,
molar refractivityh, H_donorsi,
H_acceptorsj

ACD
/ChromGenius®

40.8 0.92 2.66 6.5%

Bade et al.,
2015a, b

Emerging
contaminants

544 nDBk, nTBl, nCm, nOn, nR04-nR09o, UIp,
Hyq, MlogPr, AlogP, logP, logD

MLP 16.5 0.91 0.89 5.4%

Munro et al.
(2015)

Pharmaceuticals 166 nDB or nTB, nC or nO, nR04-nR09, UI,
Hy,
MlogP, AlogP, LogD, nBnzs, pKat

GRNN 23.2 0.88 1.39 5.9%

Noreldeen
et al. (2018)

Veterinary drugs 95 ACDlogPu, ALOGP, ALOGP2v, Hy, Ui,
ibw, BEHp1x, BEHp2y,GATS1mz,
GATS2ma2.

MLR 9.3 0.95 0.62 6.6%

Bride et al.,
2021

Environmental
contaminants

274 logD, DBEa3, nO, nC, nH, molecular
weight, H_donors, logSwa4

MLR 14.7 0.76 1.36 9.2%

Yang et al.,
2020

Pharmaceuticals 133 XlogPa5, BCUTp.1ha6, AATS1ia7,
AATS3ia8, GATS1ea9, ALogP,
AATSC0pa10,
ETA_EtaP_Ba11, AATS4ia12, AATS5ia13

MLR 15.0 0.63 1.42 9.4%

a logD is the measure of hydrophobicity for the ionizable compounds.
b CIC1 is the Complementary Information Content index (neighborhood symmetry).
c SeigZ is the eigenvalue sum from a Z weighted distance matrix of a Hydrogen-depleted Molecular Graph.
d RDF020p is radial distribution function weighted by atomic polarizabilities.
e AlogP is logP estimated by the Ghose–Crippen method.
f LogP or LogKow, LogP is equal to the logarithm of the ratio of the concentrations of the test substance in octanol and water. This value allows apprehending the

hydrophilic or hydrophobic (lipophilic) character of a molecule.
g defined as the surface sum over all polar atoms or molecules, primarily oxygen and nitrogen, also including their attached hydrogen atoms.
h is a measure of the total polarizability of a mole of a substance.
i the number of H-bond donor as descriptors of the H-bonding property.
j the number of H-bond acceptor groups as descriptors of the H-bonding property.
k number of double bonds.
l number of triple bonds.
m number of Carbon.
n number of Oxygen.
o the number of 4–9 membered rings.
p unsaturation index.
q hydrophilic factor.
r Moriguchi logP.
s number of benzen groups.
t equilibrium constant of the dissociation reaction of an acid species in acid-base reactions.
u ACDlogPa molecular properties octanol-water partitioning coefficients.
v ALOGP2 molecular properties Ghose-Crippen octanol water coefficient squared.
w Ib information indices information bond index.
x BEHp1 burden eigenvalue descriptors highest eigenvalue n. 1 of burden matrix/weighted by atomic polarizabilities.
y BEHp2 burden eigenvalue descriptors highest eigenvalue n. 2 of burden matrix/weighted by atomic polarizabilities.
z GATS1mb 2D autocorrelation descriptors Geary autocorrelation-lag 1/weighted by atomic masses.
a2 GATS2mb 2D autocorrelation descriptors Geary autocorrelation-lag 2/weighted by atomic masses.
a3 the double-bond equivalent descriptor is the number of unsaturations present in a organic molecule.
a4 the water solubility described by the logarithm of water solubility in mg/L at 25 �C.
a5 XlogP is the constitutional descriptors-describe hydrophobic/hydrophilic properties.
a6 BCUTp.1h is the BCUT descriptor/nlow highest polarizability weighted BCUTS.
a7 AATS1i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 1/weighted by first ionization potential.
a8 AATS3i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 3/weighted by first ionization potential.
a9 GATS1e is the autocorrelation descriptor/Geary autocorrelation - lag 1/weighted by Sanderson electronegativities.
a10 AATSC0p is the autocorrelation descriptor/average centered Broto-Moreau autocorrelation - lag 0/weighted by first ionization potential.
a11 ETA_EtaP_B is the extended topochemical atom descriptor/branching index EtaB relative to molecular size.
a12 AATS4i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 4/weighted by first ionization potential.
a13 AATS5i is the autocorrelation descriptor/average Broto-Moreau autocorrelation - lag 5/weighted by first ionization potential.
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BEHm7). The third strategy, a recursive feature elimination (RFE), was
based on an iterative selection of features/MDmade by initially selecting
all the MD, then a model is built (here a multi-linear regression), then the
least important characteristic is rejected and this process is done until a
model with 16 MD is obtained (maxtsC, MWC2, MWC03, MWC4, MWC5,
nN, k2, MDEN-23, MDEN-33, MDEO-11, MDEO-12, MDEC-34, MDEC-44,
MAXDP2, MDEN-22, ieadjmm). Finally, the fourth strategy was based on
principal component analysis (PCA) and declined under four sub strate-
gies (PCA1 to PCA4). For the four sub strategies, the same PCA was used.
Hence, a PCA was done on the 1545 MD and measured on the 792 pes-
ticides. The MD were normalized (reduced and centered) before doing
the PCA and 16 principal components (PC) were retained; PCA1 strategy
was based on the selection of the MD most correlated to each PC, thus 16
MD were selected (TWC, CIC1, ETA_Epsilon_2, AATS1p, icyce, MLFER_E,
MATS2v, nCl, AATSC3p, R, JGI3, StsC, nHCHnX, ATSC6e, MATS6i,
MATS6m). The PCA2 strategy was based on the selection of the 16 MD
most correlated to PC1, as PC1 was the PC the most correlated to RT
(TWC, Zagreb, nBonds, nBO, MWC01, SRW02, MPC01, ZM1, WTPT-1,
SRW04, CID, nHeavyAtom, MPC2, nSK, SRW01, BID). The PCA3 strat-
egy was based on the selection of the 16 MD most correlated to PC1 (8
MD) and PC4 (8 MD) as PC1 and PC4 were the most correlated to RT
(TWC, Zagreb, nBonds, nBO, MWC01, SRW02, MPC01, ZM1, AATS1p,
AATS0p, AATS4p, Mp, ETA_AlphaP, AATS3p, AATS5p, AATS2p). Finally,
the PCA4 strategy was based on the selection of the 16 PC and their
corresponding scores used as input (PC1 to PC16).

Regardless of the MD dataset used, the following procedure was used.
The MD datasets, and the corresponding values of pesticide RTs, were
divided into three subsets: a training, a test and a validation dataset
(Figure 1). The training dataset was composed of 445 pesticides chosen
randomly, their corresponding MD (input) and experimentally measured
pesticide RTs (output). The test dataset was composed of 148 pesticides
chosen randomly, their corresponding MD (input) and experimentally
measured pesticide RTs (output). The training and a test set have a size
ratio of three to one, respectively. The validation dataset was composed
of 198 randomly chosen pesticides never used before, their correspond-
ing MDs, and experimentally measured pesticide RTs.

Initially, the training dataset was used to train the DNN, here an MLP,
by tuning the hyper-parameters through a gridsearch and a cross-
validation process, where the training dataset was divided in five equal
size sub-datasets (cv ¼ 5). The hyper-parameters tuned were:

- Number of hidden layers constituted each by a number of neurons
equal to the number of MD used as inputs Geron (2017): from 1 to 5
hidden layers constituted each by 16 neurons

- The activation function among: ReLu, tanh and logistic
- The alpha value: 10 or 1
- The solver function among: Adam, SGD and Lbfgs.

The data were standardized (mean-centered) in order to accelerate
and enhance the training and the predictions, and also to simplify
interpretation of the importance of the features/MDs.

All the models were developed with Python 3.8 from the Python
Software Foundation and available at http://www.python.org. In order
to optimize and develop the DNN, the Scikit-learn library (https://scikit-
learn.org) was used and in particular the sklearn.neural_networkmodule.

2.3. Model validation

The validation of QSRR models is probably the most significant and
critical part of model evaluation in order to prevent overfitting in
particular. For this reason, we carried out the validation step using the
validation dataset never used for the training and testing parts (Nor-
eldeen et al., 2018) (Figure 1).

The coefficient of determination (R2) and the RMSE were used to
evaluate and compare the models extracted from the literature review
and were measured on the test set (Table 1). These parameters were also

used for the models developed in this study in order to determine the
error between the experimental and predicted RTs in the QSRR models,
especially in terms of their ability to be generalized to new pesticide
substances with unknown RTs. The lower the RMSE and the higher the R2

value, the better the model. The R2 and RMSE were measured, in the case
of the models developed in this present study, on the training set (n ¼
445 pesticides), on the test set (n¼ 148 pesticides), and on the validation
set (n ¼ 198 pesticides) (Table 2).

The percentage of error was used to compare the models. Of note, the
gradient durations are not the same between the different studies
mentioned in the literature review (Table 1), and an RMSE of 1 min does
not have the samemeaning for a gradient of 10min or for a gradient of 40
min. For this reason, the maximum chromatographic retention time (RT
max) was systematic recorded (Tables 1 and 2). The RT max, displayed in
Table 2, corresponds to the elution time of the last compound analyzed.

The following statistics were calculated using Python Software
(Version 3.8) for model validation and comparison (McEachran et al.,
2018):

� The coefficient of determination (R2) between predicted and experi-
mental RTs was calculated as follows (Eq. (1)):

R2 ¼1�
Pn

i¼1ðyi � byi Þ2Pn
i¼1ðyi � yiÞ2

(1)

where byi and yi are the predicted and experimental RTs, respectively, and
yi is the mean experimental RT.

� The root mean square error (RMSE) between predicted and experi-
mental RTs was calculated as follows (Eq. (2)):

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � byiÞ2
n

s
(2)

where byi and yi are the predicted and experimental responses,
respectively.

� The percentage of error (% error) was calculated as follows (Eq. (3)):

Percentageof error¼ðRMSE validation set �RTmaxmeasuredÞ�100
(3)

2.4. Structure of the DNN

DNN is a computer program inspired by the biological neural network
and designed in order to modelize complex, non-linear problems (clas-
sification or regression). A typical DNN is composed of a number of
neurons from a few to millions, which are arranged in a series of layers
(Zhong et al., 2020). A neuron is a computational unit that has one or
more weighted input connections, a transfer function that combines the
inputs in some way, and an output connection. The input neurons in the
input layer are designed to receive the data, such as the MDs used here,
and the output neurons in the last layer are the final predictions made by
the DNN, which will be used to compare with the true target data, such as
RTs of pesticides. Between the input layer and the output layer are hid-
den layers, often more than one layer (Zhong et al., 2020) in case of DNN.
The input data go into the DNN through the input layer, are then trans-
formed in the hidden layers, and finally become the predictions in the
output layer. The values in all neurons in the hidden and output layers
are calculated by the application of an activation function on the sum of
the values in the previous neurons�weight þ bias calculation, in which
weights and biases can be updated based on the errors between the
predictions and the target until the errors reach a minimum value. Up-
date of the weights and biases is done through back-propagation of the
errors between the target (RT experimental) and the prediction (RT
predicted). This process is the “learning” process of DNN. DNNs have two
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main hyperparameters: the number of neurons per layer, and the number
of layers. The number of layers and neurons is also called the “depth” and
“width” of DNN, respectively. Larger numbers of layers and neurons
mean deeper and wider DNNs, which often have more powerful fitting
ability and can achieve better accuracy on the prediction. However, too
many layers and neurons can lead to an overfitting problem, which is an
accurate prediction on the training set but poorer prediction on the test
set. It is crucial for the DNN to be able to generalize on a dataset never
seen before. For this last reason, we split the dataset into a training, test
and validation datasets, in order to evaluate the capacity of the DNN to
generalize. The model development process is hence to develop an op-
timum architecture of the DNN with an appropriate fitting ability. In this
study, our DNN was composed of an input layer, several hidden layers,
and an output layer. In each layer, there are numerous neurons accepting
values from the neurons of the neighboring layer. In the input and hidden
layers, the number of neurons was equal to the number of MDs selected.
For instance, if the number was 16 MDs, then there were 16 neurons in
the input and in each hidden layer, as suggested by Geron (2017). The
number of neurons in the output layer was 1 because there was only one
RT for each pesticide. The number of neurons in the hidden layers was set
manually before the learning process began. Here, we focused on the
following hyperparameters: the number of hidden layers, the activation
function, the alpha value, and the solver used. We investigated their ef-
fects on the performance of the DNN through a gridsearch and a
cross-validation (cv ¼ 5) process done on the training set. The R2 and
RMSE values were calculated to evaluate the effects of the hyper-
parameters on the performances of the models developed and on over-
fitting. A detailed description of the theory behind DNNs has been
adequately provided elsewhere (Zhong et al., 2020). Model training was
stopped after 1000 epochs (iterations).

3. Results and discussion

For a DNN, prediction accuracy is highly related to its structure, the
number of layers, neurons, other hyperparameters (activation function,
solver for weight optimization, etc.), and even more to the inputs
retained, in our case the MDs.

3.1. Comparison of published QSRR models

One of the main bottlenecks in designing QSRR models is selecting
the MDs (May et al., 2011; Parinet, 2021; Scotti et al., 2016). The se-
lection of the most suitable MDs, among several thousand, can follow
various strategies (May et al., 2011); this step is particularly complicated
because there are many molecular descriptors that can be calculated and
used (Aalizadeh et al., 2019; Bade et al., 2015a, 2015b; McEachran et al.,

2018; Munro et al., 2015; Noreldeen et al., 2018) and many strategies to
select the MDs.

Here, to develop the most accurate QSRR dedicated to pesticides, we
used two different approaches. The first approach was based on an
extensive literature review on the prediction of RPLC retention times of
compounds similar in their structures and properties to pesticides, such
as pharmaceuticals and veterinary drugs. Based on this literature re-
view, seven articles emerged (Table 1). In order to select the best set of
MDs among the seven research papers, a study of the QSRR models
developed was carried out. In order to do this, the performances of the
QSRR models were documented and compared (Table 1). The number
of contaminants used to build and optimize the QSRRmodels was found
to be between 95 and 1830 compounds, the number of MDs selected
was between 5 and 16, and the RT max values measured were between
9.3 and 40.8 min. The machine learning algorithms used were SVM,
DNN (MLP and general regression neural networks (GRNN)), and MLR.
The performances measured on the test set are for the R2 between 0.63
and 0.95, and for the RMSE between 0.62 and 1.42 min. Nevertheless,
the gradients are not similar, reflected by the different RT max mea-
surements. The RMSE and the R2 alone are not sufficient to determine
which MD set and QSRR model is the most efficient. For this reason, we
calculated the percentage of error (Eq. (3)), which was not done in the
recent article of Parinet (2021) where all the references selected, and
their corresponding MD datasets were applied directly on the pesticides
dataset in order to make the prediction of RT. The percentage of error
was between 5.4% and 9.4%. The lowest value for the percentage of
error was obtained for the QSRR developed by Bade and colleagues
(2015) on 544 emerging contaminants and by the use of 16 MDs (nDB,
nTB, nC, nO, nR04-nR09, UI, Hy, MLogP, ALogP, LogP, LogD) and a DNN
(MLP). Based on these results, we retained for our QSRR development,
the Bade and colleagues (2015) MD set and the MLP as the best ML
algorithm to use (model 1) with a percentage of error equal to 5.4%.
Then, we used the MD listed by Bade and colleagues (2015) on our
dataset and through a MLP (Bade-MLP –Model 1) as described before in
the text. By this approach we got a R2 on the training and test set equal
to 0.95 and 0.90, respectively (Table 2, Figure S1A & S1B). The RMSE
obtained on the training and test set were equal to 0.43 and 0.63. On the
validation set, never used for the learning and optimizing process, the
R2 was equal to 0.82 and the RMSE equal to 0.67 (Table 2, Figure S1C).
These past results are similar to those obtained by Parinet (2021) with
the McEachran 3 MDs, on the validation dataset, and by the use of SVM
and MLP as machine learning algorithms where the R2 were between
0.85-0.89 and the RMSE between 0.64-0.69, respectively. The per-
centage of error obtained thanks to these molecular descriptors and
with a MLP was around 6%, which is close to the 5.4% got by Bade and
colleagues (2015) on their compounds.

Table 2. Performances of QSRR models applied to the pesticide dataset.

N�

Model
Number of
molecular
descriptors

Name of the
Model

Internal set Validation set DNN Optimized

Training set Test set

R2 RMSE R2 RMSE R2 RMSE Percentage of
error

Number of neurons
per hidden layers

Activation
function

Solver Alpha

1 16 Bade-MLP 0.95 0.43 0.90 0.63 0.82 0.67 6% 16-16-16-16-16 ReLu Adam 10

2 16 Lasso-MLP 0.60 1.19 0.50 1.27 0.49 1.36 12% 16 tanh SGD 1

3 16 Pearson-MLP 0.79 0.86 0.79 0.83 0.78 0.88 8% 16–16 ReLu SGD 10

4 16 RFE-MLP 0.69 1.04 0.60 1.15 0.63 1.16 10% 16-16-16-16-16 ReLu SGD 10

5 16 PCA1-MLP 0.75 0.94 0.61 1.12 0.64 1.14 10% 16 tanh Adam 1

6 16 PCA2-MLP 0.42 1.44 0.34 1.47 0.38 1.50 13% 16 tanh Adam 1

7 16 PCA3-MLP 0.61 1.18 0.53 1.24 0.56 1.26 11% 16-16-16 ReLu SGD 10

8 16 PCA4-MLP 0.82 0.79 0.75 0.91 0.76 0.93 8% 16-16-16-16 ReLu SGD 10
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3.2. Comparison between QSRR models developed thanks to the literature
review and to the no a priori approaches

To develop the most efficient QSRR model specifically for pesticides,
we compared the performances obtained for Model 1 (Bade-MLP) with
those of Model 2 to 8 (no a priori approach).

The performances of Model 2 (Lasso-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.60 and 0.50,
respectively (Table 2, Figure S2A & S2B). The RMSE obtained on the
training and test set were equal to 1.19 and 1.27. On the validation set,
the R2 was equal to 0.49 and the RMSE equal to 1.36 (Table 2,
Figure S2C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 12%, which is twice as much as
Model 1 (Bade-MLP) with 6% on the same compounds.

The performances of Model 3 (Pearson-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.79 and 0.79,
respectively (Table 2, Figure S3A & S3B). The RMSE obtained on the
training and test set were equal to 0.86 and 0.83. On the validation set,
the R2 was equal to 0.78 and the RMSE equal to 0.88 (Table 2,
Figure S3C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 8%, which is less good asModel 1
(Bade-MLP) with 6% on the same compounds but much better thanModel
2.

The performances of Model 4 (RFE-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.69 and 0.60,
respectively (Table 2, Figure S4A & S4B). The RMSE obtained on the
training and test set were equal to 1.04 and 1.15. On the validation set,
the R2 was equal to 0.63 and the RMSE equal to 1.16 (Table 2,
Figure S4C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 10%, which is less good asModel
1 (Bade-MLP) with 6% on the same compounds, and less good asModel 3.

The performances of Model 5 (PCA1-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.75 and 0.61,
respectively (Table 2, Figure S5A & S5B). The RMSE obtained on the
training and test set were equal to 0.94 and 1.12. On the validation set,
the R2 was equal to 0.64 and the RMSE equal to 1.14 (Table 2,
Figure S5C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 10%, which is less good asModel
1 (Bade-MLP) with 6% on the same compounds, and quite similar to
Model 4.

The performances of Model 6 (PCA2-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.42 and 0.34,
respectively (Table 2, Figure S6A & S6B). The RMSE obtained on the
training and test set were equal to 1.44 and 1.47. On the validation set,
the R2 was equal to 0.38 and the RMSE equal to 1.50 (Table 2,
Figure S6C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 13%, which is less good asModel
1 (Bade-MLP) with 6% on the same compounds, and the worst model
developed with performances quite similar to Model 2.

The performances of Model 7 (PCA3-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.61 and 0.53,
respectively (Table 2, Figure S7A & S7B). The RMSE obtained on the
training and test set were equal to 1.18 and 1.24. On the validation set,
the R2 was equal to 0.56 and the RMSE equal to 1.26 (Table 2,
Figure S7C). The percentage of error obtained thanks to these molecular
descriptors and with a MLP was around 11%, a little better than Model 5
but which is less good as Model 1 (Bade-MLP) with 6% on the same
compounds.

The performances of Model 8 (PCA4-MLP) applied on our pesticide
dataset gave R2 on the training and test set equal to 0.82 and 0.75,
respectively (Table 2, Figure S8A & S8B). The RMSE obtained on the
training and test set were equal to 0.79 and 0.91. On the validation set,
the R2 was equal to 0.76 and the RMSE equal to 0.93 (Table 2,
Figure S8C). The percentage of error obtained thanks to these molecular

descriptors and with a MLP was around 8%, better than all the models
developed thanks to the PCA approach and similar in term of perfor-
mances to Model 3, but still less good as Model 1 (Bade-MLP).

Whatever the strategy used, the model which offers the best perfor-
mances, is the Model 1 (Bade-MLP) inherited from the literature review.
Nevertheless, the no a priori approach offers two models (Model 3 and
Model 8) with effective performances. Among all the models developed
thanks to the PCA approach, the Model 8 offers the best performances,
and then comes next theModel 5 and 7 and finally theModel 6 that is the
worst one.

3.3. Optimization of the hyperparameters

The QSRR models were optimized using an MLP through a gridsearch
process. Nevertheless, the number of neurons per hidden layers was set
manually and was determined by applying the recommendations of
Geron (2017). Importantly, Geron mentions that the common practice of
sizing the hidden layers to form a funnel, with an ever-decreasing
number of neurons at each layer is no longer as common, and instead
we can simply give the same size to all the hidden layers, resulting in only
one hyperparameter to adjust instead of one per layer. Nonetheless, it is
more useful, still according to Geron (2017), to increase the number of
layers rather than the number of neurons per layer. For this reason, the
number of hidden layers used by the gridsearch was between 1 to 5
layers, irrespective of the QSRR.

Once the number of neurons per hidden layer and the number of
hidden layers are set, there remains a large number of hyperparameters
to optimize. Nevertheless, some of them are more important than others,
such as the activation function and the solver used. For this reason, the
gridsearch for the activation function was done among the following
functions: ReLu, tanh, and logistic. A gridsearch was also carried out to
select the best solver among three possible choices (Adam, SGD and
Lbfgs). The last hyperparameter to optimize through the gridsearch was
the alpha value, which is a regularization parameter (L2 regularization);
alpha value was comprised between 0.01 and 100 (Table 2). All the ar-
chitecture of DNN and theire hyperparameters retained through the gird
search for the models 1 to 8 are listed in Table 2. Hence, the number of
layers are comprised between 1 to 5, two activation functions among
three were used (ReLu and tanh) and the logisitic function was never
retained by the gridsearch, two solver (Adam and SGD) among three
were used. Finally, despite the amplitude values of alpha, two alpha
values were retained: 1 and 10.

4. Conclusions

We compared a literature review approach to a no a priori approach in
order to select, by diverse strategies, the best set of molecular descriptors
among 1545 MD in order to predict, through a QSRR model, the RPLC
retention times of 792 pesticides. The literature review approach yielded
the best results when DNN was used as the ML algorithm, with an R2 of
0.82 and an RMSE of 0.67 min (Model 1) on the validation set. However,
it could be useful in future research to test some other no a priori selection
strategies in order to determine new MD datasets and also to consider
reducing the number of MD with the goal to simplify the models while
obtaining good predictions.
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