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Abstract: Co-culture models have become mandatory for obtaining better insights into bone home-
ostasis, which relies on the balance between osteoblasts and osteoclasts. Cigarette smoking (CS) has
been proven to increase the risk of osteoporosis; however, there is currently no proven treatment for
osteoporosis in smokers excluding cessation. Bisphosphonates (BPs) are classical anti-osteoclastic
drugs that are commonly used in examining the suitability of bone co-culture systems in vitro as well
as to verify the response to osteoporotic stimuli. In the present study, we tested the effects of BPs on
cigarette smoke extract (CSE)-affected cells in the co-culture of osteoblasts and osteoclasts. Our results
showed that BPs were able to reduce CSE-induced osteoporotic alterations in the co-culture of os-
teoblasts and osteoclasts such as decreased matrix remodeling, enhanced osteoclast activation, and an
up-regulated receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin (OPG)
ratio. In summary, BPs may be an effective alternative therapy for reversing osteoporotic alterations
in smokers, and the potential mechanism is through modulation of the RANKL/OPG ratio.
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1. Introduction

Bone tissue maintains its integrity by continuously regenerating itself tissue [1]. In gen-
eral, approximately 10% of the mineralized bone is renewed every year. A balance between
the bone-forming cells and the bone-resorbing cells is crucial to bone homeostasis. Os-
teoblasts as the bone-forming cells not only play a dominant role in bone formation but
also regulate osteoclast differentiation through soluble factors and cognate interactions,
which result in bone resorption [2]. The mechanisms regulating communication between
osteoblasts and osteoclasts are demanding to the field of bone cell biology. Therefore, when
trying to decipher the mechanisms underlying bone homeostasis, it is insufficient to study
osteoblasts and osteoclasts separately. Co-culture models become mandatory in order to
obtain better insight into the interactions between osteoblasts and osteoclasts [3]. However,
certain technical challenges relating to co-culture models remain to be conquered, such as
cell line compatibility, distinguishing between cell types, and selecting proper readouts [4].
It is of great value to optimize co-culture models of osteoblasts and osteoclasts to better
understand the pathogenesis of bone diseases and explore potential treatments [5].

Cigarette smoking (CS) is commonly known as an indispensable risk factor for osteo-
porosis and osteoporotic fracture [6,7]. In our previous studies, cigarette smoke extract
(CSE) has been proven to induce the risk of osteoporosis partially via disruption of trans-
forming growth factor beta (TGF-β) signaling, increased oxidative stress, and, consequently,
impaired osteogenesis of mesenchymal stem cells [8–10]. However, the specific mechanisms
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by which cigarettes affect mature osteoblasts and osteoclasts are still unclear. In theory,
more osteoclast-mediated bone resorption than osteoblast-mediated bone formation leads
to osteoporotic bone alterations [11]. The alterations may occur as direct or indirect effects
of CS constituents on osteoblastic bone formation, and/or osteoclastic bone resorption,
resulting in an imbalance between osteoblasts and osteoclasts [12]. It has been shown that
patients with osteoporosis who smoke have more complex pathology compared to the
general population of osteoporotic patients [13]. Thus, the comprehensive effects of CSE
on the co-culture of bone cells need to be further clarified, and potential treatments for
smoking-induced osteoporosis are specifically worth discovering. With regard to osteo-
porosis in smokers, current management strategies including smoking cessation, exercise,
and dietary therapy are not complied by most patients [14]. Antioxidants, such as resver-
atrol, have been shown to potentially reduce the adverse effects of CS upon bone health,
but they have not been used clinically [15]. Thus, there is wide demand for a feasible
and flexible in vitro cell culture model that allows the user to stimulate osteoporotic-like
alterations in smokers while screening potential therapies. Bisphosphonates (BPs), the most
clinically used and effective anti-resorptive medication, are commonly examined in mono-
culture and co-culture models in order to verify a response to stimuli [16]. Zoledronate and
alendronate are among the most prescribed nitrogen-containing BPs in clinical practice,
which have been proven to inhibit enzymes in mevalonic acid metabolism in osteoclasts
to achieve anti-osteoporotic effects [17]. It is of great interest to explore whether BPs have
a therapeutic effect for osteoporotic smokers.

In the present study, we first established an in vitro supplement-free co-culture system
of osteoblasts and osteoclasts using human cell lines. Then, we evaluated the effects of
BPs (zoledronate and alendronate) on CSE-affected cells using our co-culture model and
analyzed the mechanisms involved.

2. Results
2.1. Co-Cultures of Osteoblasts and Osteoclasts Were More Stable Than Mono-Cultures, and
Co-Cultures Showed More Pronounced Effects from the Investigated Substances Than
Mono-Cultures Did

We first compared the co-culture system with mono-cultures of human osteosarcoma
cell line (SaOS-2) and human monocytic leukemia cell line (THP-1)cells. Cells in the co-
culture model survived up to 14 days, while cell viability in mono-culture was significantly
decreased after 7 days (Figure 1A). Tartrate-resistant acid phosphatase (TRAP) 5b activ-
ity, which is an important osteoclastic marker, was significantly higher in the co-cultures
than that in the mono-culture (Figure 1B). According to fluorescence staining microscopy,
we found multinucleated osteoclasts in the co-culture, proving that osteoclastic differentia-
tion was successfully induced by osteoblast secretions in our co-culture system. Moreover,
cells were unable to remain viable in mono-cultures after 10 days, whereas cell viability
was maintained in co-cultures (Figure 1B).
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of co-cultures of SaOS-2 and THP-1 cells and THP-1 cell mono-cultures. Data are represented the mean ± SEM, and the 

significance was determined as ** p < 0.01 and *** p < 0.001 (N = 3, n = 3). (C) Representative actin ring/nuclei staining in 

co-cultures/SaOS-2 mono-culture/THP-1 mono-culture on day 10. Osteoclasts were determined by the presence of actin 

ring formation and the presence of at least two nuclei, while osteoblasts were identified by actin filament structures and 

one nucleus. 
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In order to evaluate the negative effects of CSE on our co-culture model, the system 

was exposed to CSE concentrations ranging from 0% to 10%. CSE showed a negative effect 

on co-culture cell viability in a dose-dependent manner (Figure 2A). CSE at a concentra-

tion of 10% was so toxic that the cell count fell by more than 50% on day 4 and 100% on 

day 7. CSE at a concentration of 5% also produced significant negative effects on co-cul-

tures, although the cells did survive up to 14 days. Immunofluorescent staining confirmed 

the reduction in total cell numbers in co-cultures exposed to CSE (Figure 2B). 

Figure 1. Comparison of SaOS-2 and THP-1 mono-culture and co-culture. (A) Sulforhodamine B
(SRB) staining of co-cultures of SaOS-2 and THP-1 cells/THP-1 mono-culture/SaOS-2 mono-culture
on day 4, 7, 10, and 14. (B) TRAP 5b activity of co-cultures of SaOS-2 and THP-1 cells and THP-1
cell mono-cultures. Data are represented the mean ± SEM, and the significance was determined
as ** p < 0.01 and *** p < 0.001 (N = 3, n = 3). (C) Representative actin ring/nuclei staining in
co-cultures/SaOS-2 mono-culture/THP-1 mono-culture on day 10. Osteoclasts were determined by
the presence of actin ring formation and the presence of at least two nuclei, while osteoblasts were
identified by actin filament structures and one nucleus.

2.2. CSE Had a Dose-Dependent Negative Effect on Cell Viability in Co-Cultures of Osteoblasts
and Osteoclasts

In order to evaluate the negative effects of CSE on our co-culture model, the system
was exposed to CSE concentrations ranging from 0% to 10%. CSE showed a negative effect
on co-culture cell viability in a dose-dependent manner (Figure 2A). CSE at a concentration
of 10% was so toxic that the cell count fell by more than 50% on day 4 and 100% on day
7. CSE at a concentration of 5% also produced significant negative effects on co-cultures,
although the cells did survive up to 14 days. Immunofluorescent staining confirmed the
reduction in total cell numbers in co-cultures exposed to CSE (Figure 2B).
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(B) The representative actin ring/nuclei staining of co-cultures of SaOS-2 and THP-1 cells exposed 

to different CSE concentrations on day 10. The white arrows indicate actin rings which are formed 

by mature osteoclasts. 
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[20]. The Alizarin red results showed that 5% CSE exposure had a significant negative 

effect on matrix remodeling in co-cultures (Figure 3C,D). Therefore 5% CSE was selected 

to use in the subsequent experiments. 

Figure 2. The effect of cigarette smoke extract (CSE) concentrations on cell viability in the co-culture
of SaOS-2 and THP-1 cells. (A) SRB staining of co-cultures of SaOS-2 and THP-1 cells with exposure
to CSE concentrations on day 4, 7, 10, and 14 (N ≥ 3, n = 3). Data are represented as the mean ±
SEM, and the significance was represented as * p < 0.05, and *** p < 0.001 vs. 0% CSE group. (B) The
representative actin ring/nuclei staining of co-cultures of SaOS-2 and THP-1 cells exposed to different
CSE concentrations on day 10. The white arrows indicate actin rings which are formed by mature
osteoclasts.

2.3. CSE Induced Osteoporotic-Like Alterations in Co-Cultures of Osteoblasts and Osteoclasts by
Up-Regulating Osteoclastic Function

CA II is in characteristic for the early stage of osteoclastic differentiation and bone
resorption [18]. Therefore, only results of CA II activity in the early time points (day 4
and day 7) are shown. TRAP 5b activity is utilized as a biochemical marker of osteoclast
function [18] as well as a marker for the degree of bone resorption [19]. CSE at a con-
centration of 5% significantly up-regulated CA II and TRAP 5b activity in co-cultures
(Figure 3A,B). Bone remodeling is associated with the resorption of mineralized bone by
osteoclasts, followed by bone matrix formation by osteoblasts, which subsequently become
mineralized [20]. The Alizarin red results showed that 5% CSE exposure had a significant
negative effect on matrix remodeling in co-cultures (Figure 3C,D). Therefore 5% CSE was
selected to use in the subsequent experiments.
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the mature osteoclastic function of co-culture of SaOS-2 and THP-1 cells on day 10 and day 14. (C) Alizarin red staining of 

co-culture of SaOS-2 and THP-1 cells on day 10 and day 14 (N ≥ 3, n = 3). (D) The representative microscopic representative 

images showed Alizarin red staining of 0% CSE (control group) and 5% CSE group on day 10 (N ≥ 3, n = 3). Data are 

representing the mean ± SEM. Significance was determinated as * p < 0.05, and *** p < 0.001 vs. 0% CSE group. 
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Figure 3. The effects of CSE concentrations on cell function and matrix mineralization in the co-
culture of SaOS-2 and THP-1 cells. (A) CA II assay representing the osteoclastic differentiation of
co-cultures. (B) TRAP 5b activity representing the mature osteoclastic function of co-culture of SaOS-2
and THP-1 cells on day 10 and day 14. (C) Alizarin red staining of co-culture of SaOS-2 and THP-1
cells on day 10 and day 14 (N ≥ 3, n = 3). (D) The representative microscopic representative images
showed Alizarin red staining of 0% CSE (control group) and 5% CSE group on day 10 (N ≥ 3, n = 3).
Data are representing the mean ± SEM. Significance was determinated as * p < 0.05, and *** p < 0.001
vs. 0% CSE group.

2.4. BPs (Zoledronate and Alendronate) Counteracted the Effects of CSE on Co-Cultures of SaOS-2
and THP-1 Cells

BPs are commonly used as anti-osteoporotic drugs, since they down-regulate osteo-
clast activity [21]. Due to the fact that increased osteoclastic activity is seen in CSE-exposed
cells, we tested the possibility that BPs affected the negative outcomes regarding CSE-
induced cellular damage in our co-culture setup [22]. As depicted in Figure 4, CSE (5%)
significantly reduced bone matrix formation. In contrast, co-incubation with CSE and
either alendronate or zoledronate resulted in significant improvements in matrix degra-
dation compared to co-culture setups solely exposed to CSE. Additionally, zoledronate
and alendronate reduced the TRAP 5b activity elevated by CSE, indicating that BPs could
reverse the CSE-induced osteoclastic function on co-cultures.
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alendronate or zoledronate on day 10. (C) TRAP 5b activity results of the co-cultures exposed to the same experimental 
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and *** p < 0.001 (N = 3, n = 3). 
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Figure 4. The effects of bisphosphonates (BPs) on CSE-affected cells in the co-culture of SaOS-2 and
THP-1 cells. (A) Alizarin red staining of co-cultures exposed to 5% CSE with or w/o alendronate
or zoledronate on day 7, 10, and 14. (B) A representative microscopy image showing Alizarin red
staining of 0% CSE (Crl group) and 5% CSE group with or w/o alendronate or zoledronate on day
10. (C) TRAP 5b activity results of the co-cultures exposed to the same experimental set-up as for
7A and/B on day 7. Data are shown as the mean ± SEM, and the significance was set as * p < 0.05,
** p < 0.01 and *** p < 0.001 (N = 3, n = 3).

2.5. CSE Exposure Enhanced Gene Expression of Osteoclastic Markers by Increasing the
RANKL/OPG Raio, and BPs May Conteract the Effects of CSE on Co-Cultures

The gene expressions of OPG, RANKL, and NFATC1 were determined using PCR mea-
surements. The receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin
(OPG) ratio is an important determinant of bone mass and skeletal integrity, which is piv-
otal in the regulation of osteoclast differentiation [23], and an elevated RANKL/OPG ratio
suggests enhanced osteoclast activity [24]. In our experiments, β-actin was used as a house-
keeping gene. CSE at a concentration of 5% down-regulated OPG gene expression; however,
it increased NFATC1 gene expression in the co-culture. Co-incubation with BPs counter-
acted the effects of CSE on OPG and NFATC1 gene expression in co-cultures. Moreover,
the RANKL/OPG ratio was significantly increased under CSE exposure, and co-incubation
with zolendronate significantly reduced this up-regulation (Figure 5).
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RANKL/OPG ratio of gene expression in co-cultures on day 4. (D) PCR of NFATC1 gene expression in co-cultures exposed 

to CSE with or w/o zoledronate and alendronate on day 4. Data are shown as the mean ± SEM, and the significance was 
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Figure 5. The effect of BPs on CSE-affected gene expression of osteoblastic and osteoclastic
markers in the co-culture. (A) PCR of OPG gene expression in co-cultures exposed to CSE
with or w/o zoledronate and alendronate on day 4. (B) PCR of RANKL gene expression in
co-cultures exposed to CSE with or w/o zoledronate and alendronate on day 4. (C) The
RANKL/OPG ratio of gene expression in co-cultures on day 4. (D) PCR of NFATC1 gene
expression in co-cultures exposed to CSE with or w/o zoledronate and alendronate on
day 4. Data are shown as the mean ± SEM, and the significance was set as * p < 0.05, and
# p <0.05, ## p <0.01, and ### p <0.001 vs. Crl group (N = 3, n ≥ 2).

2.6. BPs Conteracted the Effects of CSE on Elevating Protein Expression of Osteoclastic Markers
by Increasing the RANKL/OPG Ratio in Co-Cultures

Protein levels of RANKL, OPG, and TRAP 5b were measured using dot blot measure-
ments. CSE at a concentration of 5% significantly decreased the OPG level; however, co-
incubation with zoledronate and alendronate reduced this down-regulation. No significant
difference of RANKL level was observed in all experimental groups. The RANKL/OPG
ratio was calculated accordingly and showed that zoledronate and alendronate signifi-
cantly reduced the CSE-induced up-regulation in the RANKL/OPG ratio. Moreover, CSE
significantly increased TRAP 5b level, and both BPs were able to reduce this up-regulation
caused by CSE (Figure 6).
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Figure 6. The effect of BPs on CSE-affected protein levels of osteoblastic and osteoclastic
markers in the co-culture. (A) Representative dot blot images of protein levels of OPG,
RANKL, and TRAP 5b. (B) Dot blot analysis of the OPG protein level in co-cultures
exposed to CSE with or w/o zoledronate and alendronate on day 4. (C) Dot blot analysis
of the RANKL protein level in co-cultures exposed to CSE with or w/o zoledronate and
alendronate on day 4. (D) The RANKL/OPG ratio of protein levels in co-cultures on day
4. E. Dot blot analysis of the TRAP 5b protein level in co-cultures exposed to CSE with or
w/o zoledronate and alendronate on day 4. Data are represented as the mean ± SEM, and
the significance was represented as * p < 0.05, and # p <0.05, ## p <0.01, and ### p < 0.001
vs. Crl group (N = 3, n = 3).

3. Discussion

A tight balance between bone resorption and formation is required for healthy bone
homeostasis. This balance is achieved not only by factors from the extracellular environ-
ment but also by comprehensive communications between osteoblasts and osteoclasts [25].
An imbalance in bone formation and resorption results in critical influences on bone mass
and strength [26]. Therefore, it is mandatory to implement routine co-cultures consisting of
osteoblasts and osteoclasts in order to gain better insight into the communications between
cells as well as to screen or analyze potential treatment options for bone disorders [3,25].
Generally, co-culture models are characterized by the simultaneous cultivation of multiple
cell populations, allowing for direct or indirect communication/contact between them [27].
Several studies have devoted to developing different co-culture systems of osteoblasts
and osteoclats, but limitations still remain. On the one hand, indirect co-culture models
of osteoblasts and osteoclasts such as Transwell device can not mimic the direct cell–cell
contacts [28]. On the other hand, direct co-culture models of osteoblasts and osteclasts are
able to mimic cell–cell contact; however, an effective method for distinguishing between
the two cell types has not yet fully been resolved [29]. Moreover, osteoclastic differentia-
tion induction require supplements such as RANKL and macrophage colony-stimulating
factor (MCS-F) [30]. In the present study, we established a supplement-free co-culture
model of osteoblasts and osteoclasts mimicking in vivo cell–cell contacts and applied
a gender-specific DNA quantification method to distinguish different cell types. SaOS-2
cells were selected for the osteoblast precursor based on our previous study demonstrating
advantages of maturity, matrix formation, and protein expression, while THP-1 cells were
selected for the osteoclast precursor due to better compatibility and stability in a direct
co-culture system [31]. In our study, THP-1 differentiation was directly induced by RANKL
and MCS-F, which was secreted by SaOS-2 cells. Mature osteoblasts and multinucleated
osteoclasts were observed in the co-cultures by fluorescent staining, demonstrating that
the co-culture model is capable of achieving osteogenic and osteoclastic differentiation.
The co-culture model had better cell survival and showed higher osteoclastic activity than
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the mono-cultures did. These results confirmed the priority of the co-culture model over
mono-cultures and emphasized that communication between the two cell types plays
a crucial role in cell survival and osteoclast differentiation.

CS is identified as an important risk factor for osteoporosis [32], and it has been shown
to lead to a reduction in bone mass and the activation of osteoclastic markers in clinical
studies [33,34]. In the present study, we evaluated CSE by using the co-culture model
of osteoblasts and osteoclasts to verify its detrimental effects on bone health found in
our in vivo study. In our study, CA II and TRAP 5b, which are considered biomarkers of
functional osteoclasts [35], were up-regulated by CSE exposure in co-cultures. As a com-
prehensive result of the combined action of osteoblasts and osteoclasts, matrix remodeling
was significantly decreased by CSE exposure in co-cultures. These CSE-induced changes in
the co-culture are consistent with osteoporotic-like alterations in humans [36]. Moreover,
consistent with the results described in in vivo studies [37–39], our results demonstrated
dual actions of CSE on osteoblastic and osteoclastic markers at the gene and protein level.
The down-regulated OPG expression and up-regulated osteoclastic markers induced by
CSE are also in agreement with the pathogenesis of osteoporosis [40]. Therefore, CSE is
considered a potent inducer of osteoporotic-like alterations in the co-culture of osteoblasts
and osteoclasts and highlights that the co-culture model reflects the in vivo situation well.

BPs are commonly used to treat osteoporosis, and their effectiveness has been widely
recognized [41]. Based on this, many in vitro experiments validate their cell culture system
and bone cells function response using BPs [42,43]. The effects of BPs on CS-induced
bone alterations have not been elucidated. Most studies reveal inhibitory effects of BPs
on osteoclasts using mono-culture models, [44,45]. In our co-culture model, both tested
BPs significantly mitigated the effects of CSE like decreased matrix remodeling and OPG
expression, and enhanced osteoclastic function and expression of osteoclastic markers.
Interestingly, BPs in our CSE-exposed co-culture model not only confirmed an inhibitory
effect on osteoclasts but also showed a up-regulation of osteoblastic marker (OPG), which
may be related to the interaction of the two types of cells in our co-culture system. These
results suggest a clear role for BPs in reversing the osteoporotic alterations that is not
limited to a single anti-osteoclastic effect. It has been shown that BPs affect osteoblasts by
reducing matrix mineralization in a dose-dependent manner [46], while another study has
demonstrated BPs to be promoters of osteoblast proliferation and maturation [47]. The anti-
osteoporotic mechanisms by which BPs affect bone cells remain to be explored [48].

Bone remodeling is regulated by molecular interactions between RANKL and the
decoy receptor OPG. The RANKL/OPG ratio is crucial for the regulation of osteoclast
differentiation, activation, and survival, as well as the balance between bone formation and
resorption [49]. Theoretically, a higher RANKL/OPG ratio suggests more differentiated
and functional osteoclasts in vivo [50]. In the present co-culture study, we demonstrated
that CSE had an inhibitory effect on OPG expression, leading to the significantly in-
creased RANKL/OPG ratio. Our results are consistent with clinical data showing that
long-term smokers have a significantly suppressed OPG production and an increased
RANKL/OPG ratio [51]. The inhibition of osteoclastic differentiation via the mevalonate
pathway is recognized as the main mechanism of BPs [52], but recent evidence indi-
cates that BPs also regulate essential molecules related to osteoclastogenesis, such as the
RANKL/RANK/OPG pathway [53,54]. However, the effects of BPs are still controversial
regarding the RANKL/OPG ratio during bone remodeling. Some studies have found no
obvious effects from BPs on RANKL/OPG [55,56]. One osteoblast mono-culture study
has suggested that the RANKL/OPG expression is enhanced after stimulation by BPs [57],
while a series of clinical studies have found that BPs may reduce RANKL expression
and promote OPG expression in patients with osteoporosis [54,58]. In vitro cell culture
models have also demonstrated that BPs enhance OPG expression and inhibit RANKL
expression [59,60]. Moreover, another study has shown, for the first time, that BPs act at
all three stages of bone remodeling, including modulating RANKL and OPG activity and,
subsequently, osteoclastogenesis [61]. In our co-culture study, zoledronate and alendronate
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effectively increased OPG expression suppressed by CSE, resulting in significantly lower
RANKL/OPG ratios compared to the CSE group. This could be a potential mechanism
of the inhibitory effect of BPs on the osteoclastic differentiation and function elevated by
CSE in the co-culture system. From this point of view, BPs could effectively be used for
osteoporotic smokers or smoking-induced osteoporosis. Still, the effects of BPs on smoking
patients need to be further validated in clinical trials, and particularly the adverse events
associated with BPs, including hypocalcemia, musculoskeletal pain, osteonecrosis of the
jaw, and atrial fibrillation would require close monitoring [62]. Furthermore, the details re-
garding the administration of BPs to smokers, including dosage, duration, and the necessity
for intermittent administration need to be further investigated [63,64].

4. Materials and Methods
4.1. Cell Culture
4.1.1. Culture of Cell Lines

SaOS-2 (DSMZ), which is an osteosarcoma cell line derived from the of an 11-year-
old female, was used as a representative of osteogenic cells. THP-1 (DSMZ), which is
a human leukemic cell line originated from a male patient with acute monocytic leukemia,
was used as a representative of osteoclastic precursor cells. Both cells were cultivated
in SaOS-2/THP-1 cell culture medium (RPMI 1640 Medium, 5% FCS). The medium was
changed every 3–4 days. Sub-culture of SaOS-2 cells was performed at 80–90% confluence,
and THP-1 cells were sub-cultured when the density reached 1 mio. cells/mL [65].

4.1.2. Cell Seeding

Trypsin/Ethylenediaminetetraacetic acid (EDTA) was used to detach SaOS-2 cells.
Viable SaoS-2 and THP-1 cells were stained with trypan blue and counted with a microscope.
Cells were spun down by centrifuge (600× g for 10 min) and re-suspended with SaOS-
2/THP-1 cell culture medium.

For the mono-culture of SaOS-2 cells, re-suspended cells were seeded in a 96-well
plate (1 × 104 cells per well). For the mono-culture of THP-1 cells, re-suspended cells were
seeded with 200 nM phorbol-12-myristate 13-acetate (PMA) [8] in a 96-well plate (2 × 104

cells per well).
For co-culture of SaOS-2 cells and THP-1 cells, re-suspended THP-1 cells containing

200 nM PMA were first seeded in a 96-well plate (2 × 104 cells per well) to allow full
adherence (37 ◦C, 5% CO2, humidified atmosphere). Re-suspended SaOS-2 cells were
seeded in the same well (1× 104 cells per well) after THP-1 cells were attached and washed
once with sterile PBS.

4.1.3. Osteogenic Differentiation

For SaOS-2 cell differentiation, osteogenic medium (RPMI 1640, 2% fetal bovine
serum (FCS), 5 mM β-glycerol phosphate, 200 µM L-ascorbic acid 2-phosphate, 1.5 mM
CaCl2, 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and 5 µM
cholecalciferol) was used to replace culture medium [66]. THP-1 cell differentiation was
achieved by replacing culture medium by 50% fresh and 50% conditioned medium from
well-differentiated SaOS-2 cells in a 6-well-plate (30 × 104 cells per well) and cultured in
parallel with THP-1 cells [67]. For co-cultures of SaOS-2 and THP-1 cells, the cell culture
medium was replaced by SaOS-2 osteogenic medium, and secretions from differentiated
SaOS-2 cells in the supernatant directly induced THP-1 cell differentiation.

4.2. Generation of CSE

One commercial cigarette (Marlboro, Philip Morris, New York, NY, USA) was continu-
ously bubbled through a 25 mL pre-warmed RPMI 1640 medium in a standard gas wash
bottle. Negative pressure generated by a peristaltic pump maintained the smoking process
at a speed of 95–100 bubbles/min [68]. The CSE solution was determined photometrically
(λ = 320 nm) by using a plate reader (BMG Labtech, Ortenberg, Germany). The CSE solution
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with an optical density of 0.7 was considered as 100% CSE. The CSE solution was sterilized
by a 0.22µm pore filter and diluted with SaOS-2 osteogenic medium to achieve different
concentrations. In general, 0.1% CSE is associated with smoking slightly less than 0.01 pack
cigarettes per day and 10% CSE stands for smoking 20 cigarettes per day [69].

4.3. Sulforhodamine B (SRB) Staining

SRB staining was used to determine total protein content. Cells were fixed with ethanol
at −20 ◦C for at least 60 min. Ethanol-fixed cells were washed by PBS and incubated with
0.4% SRB solution (diluted in 1% acetic acid) under light protection for 30 min at room
temperature. 1% acetic acid was used to remove unbound SRB. The bound SRB of cells
was resolved with 10 mM trisaminomethane (TRIS) solution (pH = 10.5, Sigma-Aldrich,
Darmstadt, Germany) and determined photometrically (λ = 565 nm) by using a plate reader
after [9].

4.4. Actin and Nuclei Staining

Cells were washed once with PBS and fixed with 4% formaldehyde for 10 min.
Cells were permeabilized with 0.2% Triton X-100 for 20 min and fixed with 2% formalde-
hyde for 10 min. After washing with PBS once, fixed cells were incubated with 5% BSA for
1 h to block nonspecific bindings. Osteoclast actin rings were visualized using Phalloidin-
Tetramethylrhodamine (TRITC) (1:2000 in PBS) staining. The nuclei were stained by
Hoechst 33,342 (1:1000 in PBS) staining, whereby blue fluorescence arises when intercalated
into DNA. After staining, cells were washed with PBS. Osteoclasts were identified in the
fluorescence microscope (Evos Fl, Thermo Fisher Scientific, Karlsruhe, Germany) by the
presence of actin ring formation and at least two nuclei inside. Osteoblasts were identified
by actin filament structures and one nucleus [70].

4.5. Carbonic Anhydrate II (CA II) Assay

Cells were washed with PBS and then incubated with CA II reaction buffer (12.5 mM
TRIS pH = 7.5, 2 mM 4-nitrophenylacetate, and 75 mM sodium chloride). CA II activity
was determined photometrically (λ = 405 nm) with a plate reader for 30 min continuously.
Results were normalized to relative THP-1 cell number [71].

4.6. TRAP 5b Activity

For measuring TRAP 5b activity, 30 µL supernatant of cells was incubated with 90 µL
TRAP 5b reaction buffer (pH = 5.5, 0.2% 4-nitrophenyl-phosphate, 100 mM sodium acetate,
and 50 mM sodium tartrate) for 6 h at 37 ◦C. Then, 90 µL 1 M sodium hydroxide was used
to stop the reaction. TRAP 5b activity was determined photometrically (λ = 405 nm) with
a plate reader, and an osteogenic medium without cells was considered as the background
control [72]. Results were normalized to relative THP-1 cell number.

4.7. Alizarin Red Staining

Matrix remodeling, a marker of the functional co-culture system, was measured by
Alizarin red staining, which is commonly used to identify calcium mineralization and
could reflect the comprehensive result from osteoblasts and osteoclasts function in the
co-culture system [73]. Cells were first fixed with ethanol for at least 60 min at −20 ◦C.
Cells were washed three time with tap water and incubated with Alizarin red solution
(0.5% Alizarin Red S in ddH2O, pH = 4) for 30 min. Cells were washed with tap water three
times and assessed microscopically. Cells were incubated with 100 µL 10% cetylpyridinium
chloride for 20–30 min to resolve Alizarin red dye, and the quantification was determined
photometrically (λ = 565 nm) with a plate reader after [74].

4.8. Gene Expression Analysis

Osteoprotegerin (OPG) and the receptor activator of nuclear factor (NF)-kB-ligand
(RANKL), which are secreted by osteoblasts, regulate osteoclast formation and activa-
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tion [75]. Nuclear factor of activated T cells 1 (NFATC1) is an important transcription factor
secreted by osteoclasts that modulate osteoclastic differentiation and cell function [76].

PCR measurements were used to determine the gene expression of OPG, RANKL,
and NFATC1. The total RNA of cells was isolated by Trifast reagent (0.4 mM ammonium
thiocyanate, 0.8 mM guanidine thiocyanate, 3 M sodium acetate solution, and 0.68 mM
glycerol). RNA concentration and purity check were determined by using a plate reader.
Complementary DNA (cDNA) synthesis was performed using the cDNA synthesis kit from
Thermo Fisher, and cDNA templates were diluted to 10 ng/µL in diethyl pyrocarbonate
(DEPC) water. Red HS Taq Master Mix (Biozym, Vienna, Austria) was used for PCR
reactions. In brief, a single 15 µL PCR reaction including 2 µL cDNA template, 4 µL
DEPC water, 7.5 µL Red HS Taq Master Mix, and 0.75 µL forward and reverse primer (the
information of used primers is shown in Table 1). The PCR was performed as previously
described [66]. A 1.8% agarose gel mixed with ethidium bromide was used for samples
loading (7.5 µL of each). Gel electrophoresis (85 V for 45 min) was carried out for the
separation of the gels. PCR results were measured by the intensity of bands with ImageJ
software (NIH, Bethesda, MD, USA). All the results of target genes were normalized to
housekeeping gene (β-Actin) [74].

Table 1. Primer sequences and PCR conditions for the investigated genes.

Gene Accession
Number Forward Primer (5′–3′) Reverse Primer (5′–3′)

Product
Length

(bp)

Annealing
Tempera-

ture
(◦C)

Cycles

OPG NM_002546.3 CCGGAAACAGTGAATCAACTC AGGTTAGCATGTCCAATGTG 313 60 35

RANKL NM_033012.3 TCCCAAGTTCTCATACCCTGA CATCCAGGAAATACATAACAC 245 56 35

NFATC1 NM_172390.2 TGCAAGCCGAATTCTCTGGT CTTTACGGCGACGTCGTTTC 228 64 35

β-
Actin NM_001101.3 CGACAACGGTCCGGCATGT GCACAGTGTGGGTGACCCCG 461 64 30

4.9. Protein Level Analysis

OPG, RANKL, and TRAP 5b are proteins that are secreted by osteoblasts or osteoclasts
and presents in the supernatant of cells. Dot blot measurement was performed to determine
protein levels into the supernatants. A dot blotter (Carl Roth, Karlsruhe, Germany) was
used to apply supernatants (40 µL per well) of cells onto a wet nitrocellulose membrane.
Ponceau staining was performed to confirm the transfer of proteins. 5% BSA in TBS-T
(10% TRIS buffered saline (10x) TBS and 0.1% Tween-20 solution in ddH2O) was used
to block the membranes. Membranes were washed with TBS-T and then incubated with
primary antibodies against the target proteins at 4 ◦C for 24 h. After washing with TBS-T,
the membranes were incubated with secondary antibodies (primary and secondary anti-
bodies of target proteins are summarized in Table 2) for 2 h at room temperature. For signal
development, the membranes were washed with TBS-T and then incubated with Enhanced
Chemiluminescence (ECL) substrate solution. A Chemocam imager (INTAS, Göttingen,
Germany) was used to detect the chemiluminescent signals, which were quantified by
ImageJ software [65].
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Table 2. Antibodies used in dot blot measurements.

Antibody Catalog No. Company Dilution

OPG 500-P149 Peprotech 1:1000

RANKL 500-M46 Peprotech 1:1000

TRAP 5b Sc-376875 Santa Cruz Biotech 1:1000

Goat anti-rabbit
IgG-HRP Sc-2004 Santa Cruz Biotech 1:10,000

Goat anti-mouse IgM Sc-2064 Santa Cruz Biotech 1:10,000

4.10. Total DNA Isolation and Quantification

Cells from the 96-well plate were washed once with PBS and incubated with 50 µL
pre-warmed (up to 98 ◦C) 50 mM sodium hydroxide solution for 5 min. Supernatant
was transferred to a reaction tube and incubated in thermoshaker for 30 min at 98 ◦C.
50 µL ddH2O and 5 µL 1M TRIS solution (pH = 8) was added into the reaction tube and
centrifuged at 14,000× g for 10 min at 4 ◦C. The supernatant was transferred into a fresh Ep-
pendorf safe-lock tube. For total DNA quantification, the same ratio of NaOH/ddH2O/1M
TRIS was used as control. Then, 2 µL of the undiluted DNA sample was measured using
the plate reader to obtain total DNA amount.

4.11. Cell-Type-Specific DNA Quantification for Co-Cultures

The THP-1 cell line derives from a male, while the SaOS-2 cell line is originally
from a female. Based on that, gender-specific DNA quantification was used to normalize
these two cell types in our co-culture model. As described, the THP-1 cell line derives
from a male patient, while the SaOS-2 cell line originates from a female patient. The sex-
determining region Y (SRY), which is the gene on the Y chromosome and only presents
in male mammals [77], is used to determine the amount of THP-1 cells in the co-cultures.
Samples from mono-culture of SaOS-2 cells were used as a negative control. The PCR
measurement of SRY was performed to confirm gene expression changes for co-culture
samples, and the PCR procedures were the same as mentioned above. A gradient number of
mono-culture of THP-1 cells was used to make a standard curve by its DNA quantification
and signal intensity of SRY. The relative DNA amount of THP-1 cells in co-cultures was
calculated using the SRY expression and the standard curve [78]. The relative DNA amount
of SaOS-2 cells in the co-culture was obtained by subtracting the relative DNA amount of
THP-1 cells from the total DNA amount.

4.12. Statistics

Results are presented as mean ± SEM. GraphPad Prism Software 8.0 (El Camino Real,
USA) was used for data analyses. Data were compared by non-parametric Kruskal–Wallis
test followed by multiple comparison (Dunn’s test). p < 0.05 was considered as minimum
level of significance. Biological (N) and technical (n) replicates are shown in the figure
legends.

5. Conclusions

We established an in vitro supplement-free co-culture system with the direct contact of
osteoblasts and osteoclasts using human cell lines that mimics the in vivo bone remodeling
process. BPs (zoledronate and alendronate) were capable of significantly reducing the
effects of CSE-induced osteoporotic-like alterations in the co-culture of osteoblasts and
osteoclasts, suggesting that BPs may be an effective treatment for osteoporosis in smokers.
In addition to the inhibitory effects on mature osteoclasts, a potential mechanism of BPs is
to modulate the RANKL/OPG ratio elevated by CS.
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