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ACTH = adrenocorticotropin; AVP = arginine vasopressin; CNS = central nervous system; CRH = corticotropin-releasing hormone; DHEA = de-
hydroepiandrosterone; GH = growth hormone; GR = glucocorticoid receptor; HPA = hypothalamic–pituitary–adrenal; HPG = hypothalamic–
pituitary–gonadal; HPT = hypothalamic–pituitary–thyroid; IFA = incomplete Freund’s adjuvant; IGF = insulin-like growth factor; IL = interleukin; NF-
κB = nuclear factor-κB; PBMCs = peripheral blood mononuclear cells; RA = rheumatoid arthritis; T3 = triiodothyronine; T4 = thyroxine; Th = T
helper cells; TNF = tumor necrosis factor; TRH = thyrotropin-releasing hormone; TSH = thyroid-stimulating hormone.
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Introduction
The inflammatory response is modulated in part by a bi-
directional communication between the brain and the
immune systems. This involves hormonal and neuronal
mechanisms by which the brain regulates the function of
the immune system and, in the reverse, cytokines, which
allow the immune system to regulate the brain. In a healthy
individual this bidirectional regulatory system forms a neg-
ative feedback loop, which keeps the immune system and
central nervous system (CNS) in balance. Perturbations of
these regulatory systems could potentially lead to either
overactivation of immune responses and inflammatory
disease, or oversuppression of the immune system and
increased susceptibility to infectious disease. Many lines
of research have recently established the numerous routes
by which the immune system and the CNS communicate.
This review will focus on these regulatory systems and

their involvement in the pathogenesis of inflammatory dis-
eases such as rheumatoid arthritis (RA). For other reviews
on the involvement of these regulatory pathways in RA and
other inflammatory diseases, see reviews by Eijsbouts and
Murphy [1], Crofford [2], and Imrich [3].

There are two major pathways by which the CNS regu-
lates the immune system: the first is the hormonal
response, mainly through the hypothalamic–pituitary–
adrenal (HPA) axis, as well as the hypothalamic–pitu-
itary–gonadal (HPG), the hypothalamic–pituitary–thyroid
(HPT) and the hypothalamic–growth-hormone axes; the
second is the autonomic nervous system, through the
release of norepinephrine (noradrenaline) and acetyl-
choline from sympathetic and parasympathetic nerves. In
turn, the immune system can also regulate the CNS
through cytokines.
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Abstract

Inflammation and inflammatory responses are modulated by a bidirectional communication between
the neuroendocrine and immune system. Many lines of research have established the numerous routes
by which the immune system and the central nervous system (CNS) communicate. The CNS signals
the immune system through hormonal pathways, including the hypothalamic–pituitary–adrenal axis and
the hormones of the neuroendocrine stress response, and through neuronal pathways, including the
autonomic nervous system. The hypothalamic–pituitary–gonadal axis and sex hormones also have an
important immunoregulatory role. The immune system signals the CNS through immune mediators and
cytokines that can cross the blood–brain barrier, or signal indirectly through the vagus nerve or second
messengers. Neuroendocrine regulation of immune function is essential for survival during stress or
infection and to modulate immune responses in inflammatory disease. This review discusses
neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation,
rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis.
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Conversely, cytokines released in the periphery change
brain function, whereas cytokines produced within the
CNS act more like growth factors. Thus, cytokines pro-
duced at inflammatory sites signal the brain to produce
sickness-related behavior including depression and other
symptoms such as fever [4–7]. In addition, cytokines pro-
duced locally exert paracrine/autocrine effects on
hormone secretion and cell proliferation [8,9].

The interactions between the neuroendocrine and immune
systems provide a finely tuned regulatory system required
for health. Disturbances at any level can lead to changes
in susceptibility to or severity of infectious, inflammatory or
autoimmune diseases.

Regulation of the immune system by the CNS
Hormonal pathways
HPA axis
On stimulation, corticotropin-releasing hormone (CRH) is
secreted from the paraventricular nucleus of the hypothala-
mus into the hypophyseal portal blood supply. CRH then
stimulates the expression and release of adrenocortico-
tropin (ACTH) from the anterior pituitary gland. Arginine
vasopressin (AVP) synergistically enhances CRH-stimulated
ACTH release [10,11] ACTH in turn induces the expression
and release of glucocorticoids from the adrenal glands.

Glucocorticoids regulate a wide variety of immune-related
genes and immune cell expression and function. For
example, glucocorticoids modulate the expression of
cytokines, adhesion molecules, chemoattractants and
other inflammatory mediators and molecules and affect
immune cell trafficking, migration, maturation, and differen-
tiation [12,13]. Glucocorticoids cause a Th1 (cellular
immunity) to Th2 (humoral immunity) shift in the immune
response, from a proinflammatory cytokine pattern with
increased interleukin (IL)-1 and tumor necrosis factor
(TNF)-α to an anti-inflammatory cytokine pattern with
increased IL-10 and IL-4 [14,15]. Pharmacological doses
and preparations of glucocorticoids cause a general sup-
pression of the immune system, whereas physiological
doses and preparations of glucocorticoids are not com-
pletely immunosuppressive but can enhance and specifi-
cally regulate the immune response under certain
circumstances. For example, physiological concentrations
of natural glucocorticoids (i.e. corticosterone) stimulate
delayed-type hypersensitivity reactions acutely, whereas
pharmacological preparations (i.e. dexamethasone) are
immunosuppressive [16].

Glucocorticoids exert these immunomodulatory effects
through a cytosolic receptor, the glucocorticoid receptor
(GR). This is a ligand-dependent transcription factor that,
after binding of the ligand, dissociates from a protein
complex, dimerizes, and translocates to the nucleus,
where it binds to specific DNA sequences (glucocorticoid

response elements) to regulate gene transcription [17].
GR can also interfere with other signaling pathways, such
as nuclear factor (NF)-κB and activator protein-1 (AP-1),
to repress gene transcription; it is through these mecha-
nisms that most of the anti-inflammatory actions are medi-
ated [18–21]. A splice variant of GR, GRβ, that is unable
to bind ligand but is able to bind to DNA and cannot acti-
vate gene transcription [22] (although this is still under
some dispute), has been suggested to be able to act as a
dominant repressor of GR [23,24]. Increased GRβ
expression has been shown in several inflammatory dis-
eases including asthma [25–28], inflammatory bowel
disease/ulcerative colitis [29,30], and RA [31].

HPG axis
In addition to the HPA axis, other central hormonal
systems, such as the HPG axis and in particular estrogen,
also modulate the immune system [32]. In general, physio-
logical concentrations of estrogen enhance immune
responses [33,34] whereas physiological concentrations
of androgens, such as testosterone and dehydroepiandro-
sterone (DHEA), are immunosuppressive [34]. Females of
all species exhibit a greater risk of developing many
autoimmune/inflammatory diseases, such as systemic
lupus erythematosus, RA and multiple sclerosis, ranging
from a 2-fold to a 10-fold higher risk compared with males
[35,36]. Animal models have provided evidence for the
importance of in vivo modulation of the immune system by
the estrogen receptors [37,38]. Knockout mouse models
indicate that both estrogen receptors α and β are impor-
tant for thymus development and atrophy in a gender-spe-
cific manner [39].

In contrast, immune stress, such as occurs during inflam-
mation, has an inhibitory effect on the HPG axis and thus
gonadal function is reduced in conditions associated with
severe inflammation such as sepsis and trauma. This
effect is mediated either through a direct cytokine effect
on hypothalamic neurons secreting luteinizing hormone
releasing hormone [40,41] or through other factors such
as CRH [42,43] and endogenous opioids [44]. Cytokines
also affect gonadal sex steroid production by acting
directly on the gonads [45].

Hypothalamic–growth-hormone axis
Growth hormone (GH) is a modulator of the immune system
[46,47]. The effects of GH are mediated primarily through
insulin-like growth factor-1 (IGF-1). GH and IGF-1 have
been shown to modulate the immune system by inducing
the survival and proliferation of lymphoid cells [48], leading
some to suggest that GH functions as a cytokine [49].
Thus, immune cells including T and B lymphocytes [50] and
mononuclear cells [51] express IGF-1 receptor. After
binding to these receptors, GH activates the phosphoinosi-
tide 3-kinase/Akt and NF-κB signal transduction pathways,
leading to the expression of genes involved in the cell cycle.
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The NF-κB pathway is also important in immunity, and there-
fore some of the GH effects on the immune system might
be mediated through this signal transduction pathway [49].
However, the role of GH in regulation of the immune system
is somewhat controversial. Studies in GH knockout animals
have shown that this hormone is only minimally required for
immune function [52], leading to an alternative hypothesis in
which the primary role of GH is proposed to be protection
from the immunosuppressive effects of glucocorticoids
during stress [53].

GH might also modulate immune function indirectly by
interacting with other hormonal systems. Thus, short-term
increases in glucocorticoids increase GH production [54],
whereas long-term high doses result in a decrease in the
hypothalamic–GH axis and even growth impairment [55].
Conversely, prolonged HPA axis activation and resultant
excessive glucocorticoid production, as occurs during
chronic stress, also inhibits the hypothalamic–GH axis
[56–58]. Consistent with this is the observation that chil-
dren with chronic inflammatory disease exhibit growth
retardation. During the early phase of inflammatory reac-
tions, the concentration of GH is increased. In spite of an
initial rise in GH secretion, GH action is reduced because
of GH and IGF-1 resistance induced by inflammation. IL-
1α initially stimulates GH [59], but subsequently inhibits
its secretion [60].

HPT axis
As with the interaction between the HPA axis and the
immune system, there is a bidirectional interaction
between the HPT axis and immune system [61]. The HPT
axis has an immunomodulatory effect on most aspects of
the immune system. Thyrotropin-releasing hormone (TRH),
thyroid-stimulating hormone (TSH), and the thyroid hor-
mones triiodothyronine (T3) and thyroxine (T4) all have
stimulatory effects on immune cells [62–64]. As for GH,
the role of thyroid hormones in the regulation of immunity
is somewhat controversial, and for the same reasons the
alternative hypothesis of protection from the immunosup-
pressive effects of glucocorticoids has also been sug-
gested for thyroid hormones [53]. Inflammation inhibits
TSH secretion because of the inhibitory effect of cytokines
on TRH [62]. IL-1 has been shown to suppress TSH
secretion [59], whereas IL-2 has been shown to stimulate
the pituitary–thyroid axis [65]. IL-6 and its receptor have
been shown to be involved in developing euthyroid sick
syndrome in patients with acute myocardial infarction [66].

In addition to direct effects of thyroid hormones on
immune response, there is also interaction between the
HPA and HPT axes. Hyperthyroid and hypothyroid states
in rats have been shown to alter responses of the HPA
axis, with hypothyroidism resulting in a reduced HPA axis
response and hyperthyroidism resulting in an increased
HPA axis response [67]. In agreement with this, adminis-

tration of thyroxine, inducing a hyperthyroid state, has
been shown to activate the HPA axis and be protective
against an inflammatory challenge in rats [68], and
hypothyroidism has been shown to cause a reduction in
CRH gene expression [69]. Chronic HPA axis activation
also represses TSH production and inhibits the conver-
sion of inactive T4 to the active T3 [70].

Neural pathways
Sympathetic nervous system
The sympathetic nervous system regulates the immune
system at regional, local, and systemic levels. Immune
organs including thymus, spleen, and lymph nodes are
innervated by sympathetic nerves [71–73]. Immune cells
also express neurotransmitter receptors, such as adrener-
gic receptors on lymphocytes, that allow them to respond
to neurotransmitters released from these nerves.

Catecholamines inhibit production of proinflammatory
cytokines, such as IL-12, TNF-α, and interferon-γ, and
stimulate the production of anti-inflammatory cytokines,
such as IL-10 and transforming growth factor-β [15].
Through this mechanism, systemic catecholamines can
cause a selective suppression of Th1 responses and
enhance Th2 responses [15,74]. However, in certain local
responses and under certain conditions, catecholamines
can enhance regional immune responses by inducing the
production of IL-1, TNF-α, and IL-8 [75]. Interruption of
sympathetic innervation of immune organs has been
shown to modulate the outcome of, and susceptibility to,
inflammatory and infectious disease. Denervation of lymph
node noradrenergic fibers is associated with exacerbation
of inflammation [76,77], whereas systemic sympathec-
tomy or denervation of joints is associated with decreased
severity of inflammation [77]. However, mice lacking β2-
adrenergic receptor from early development (β2AR–/–

mice) maintain their immune homeostasis [78]. Therefore,
dual activation of the sympathetic nervous system and
HPA axis is required for full modulation of host defenses
to infection [16,79].

Opioids
Opioids suppress many aspects of immune responses,
including antimicrobial resistance, antibody production,
and delayed-type hypersensitivity. This occurs in part
through the desensitization of chemokine receptors on
neutrophils, monocytes, and lymphocytes [80,81]. Mor-
phine decreases mitogen responsiveness and natural killer
cell activity [82–86]. In addition to these direct effects,
morphine could also affect immune responses indirectly
through adrenergic effects, because it increases concen-
trations of catecholamines in the plasma [87].

Parasympathetic nervous system
Activation of the parasympathetic nervous system results
in the activation of cholinergic nerve fibers of the efferent
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vagus nerve and the release of acetylcholine at the
synapses. Together with the inflammation-activated
sensory nerve fibers of the vagus nerve (discussed below)
this forms the so-called ‘inflammatory reflex’. This is a rapid
mechanism by which inflammatory signals reach the brain;
the brain responds with a rapid anti-inflammatory action
through cholinergic nerve fibers [88].

Acetylcholine attenuates the release of proinflammatory
cytokines (TNF, IL-1β, IL-6, and IL-18) but not the anti-
inflammatory cytokine IL-10, in lipopolysaccharide-stimu-
lated human macrophage cultures through the
post-transcriptional suppression of protein synthesis. This
effect seems, at least in part, to be independent of the
HPA axis, because direct electrical stimulation of the
peripheral vagus nerve does not stimulate the HPA axis
but decreases hepatic lipopolysaccharide-stimulated TNF
synthesis and the development of shock during lethal
endotoxemia [89].

Peripheral nervous system
The peripheral nervous system regulates immunity locally,
at sites of inflammation, through neuropeptides such as
substance P, peripherally released CRH, and vasoactive
intestinal polypeptide. These molecules are released from
nerve endings or synapses, or they may be synthesized
and released by immune cells and have immunomodula-
tory and generally proinflammatory effects [90–92].

Neuropeptides
The HPA axis is also subject to regulation by both neuro-
transmitters and neuropeptides from within the CNS. CRH
is positively regulated by serotonergic [93–95], choliner-
gic [96,97], and catecholaminergic [98] systems. Other
neuropeptides, such as γ-aminobutyric acid/benzodi-
azepines (GABA/BZD) have been shown to inhibit the
serotonin-induced secretion of CRH [99].

Regulation of the CNS by the immune system
Cytokines
Cytokines are important factors connecting and modulat-
ing the immune and neuroendrocrine systems. Cytokines
and their receptors are expressed in the neuroendocrine
system and exert their effects both centrally and peripher-
ally [100–102].

Systemic cytokines can affect the brain through several
mechanisms, including active transport across the
blood–brain barrier [103], through leaky areas in the
blood–brain barrier in the circumventricular organs [104]
or through the activation of neural pathways such as the
vagal nerve [105]. The blood–brain barrier is absent or
imperfect in several small areas of the brain, the so-called
circumventricular organs, which are located at various
sites within the walls of the cerebral ventricles. These
include the median eminence, the organum vasculosum of

the laminae terminalis (OVLT), the subfornical organ, the
choroid plexus, the neural lobe of the pituitary, and the
area postrema. In addition, in the presence of inflamma-
tion, the permeability of the blood–brain barrier might be
generally altered [106–108]. Moreover, circulating IL-1
can interact with IL-1 receptors on endothelial cells of the
vasculature and thereby stimulate signaling molecules
such as nitric oxide or prostaglandins, which can locally
influence neurons [109].

Cytokines signal the brain not only to activate the HPA
axis but also to facilitate pain and induce a series of mood
and behavioral responses generally termed sickness
behavior [110,111]. Cytokines, such as IL-1, IL-6, and
TNF-α, are also produced in the brain [112–114]. Thus,
these brain-derived cytokines can stimulate the HPA axis.
For example, IL-1 stimulates the expression of the gene
encoding CRH and thereby the release of the hormone
from the hypothalamus [115], the release of AVP from the
hypothalamus [116], and the release of ACTH from the
anterior pituitary [117]. IL-2 stimulates AVP secretion from
the hypothalamus [118]. IL-6 [119] and TNF-α [120] also
stimulate ACTH secretion. In chronic inflammation there
seems to be a shift from CRH-driven to AVP-driven HPA
axis response [121].

However, in contrast to these effects of peripheral
cytokines on neuroendocrine responses in the CNS,
cytokines produced within the brain by resident glia or
invading immune cells act more like growth factors pro-
tecting from or enhancing neuronal cell death. Cytokines
might therefore have a pathological consequence,
because cytokine-mediated neuronal cell death is thought
to be important in several neurodegenerative diseases
such as neuroAIDS, Alzheimer’s disease, multiple sclero-
sis, stroke, and nerve trauma [100–102]. In contrast, acti-
vated immune cells and cytokines might also protect
neuronal survival after trauma and contribute to neural
repair [122].

Vagus nerve
The vagus nerve is involved in signaling of the CNS to the
immune system. The vagus innervates most visceral struc-
tures such as the lung and the gastrointestinal tract,
where there may be frequent contact with pathogens.
Immune stimuli activate vagal sensory neurons, possibly
after binding to receptors in cells in paraganglial struc-
tures [123–126]. Administration of endotoxins and IL-1
has been shown to induce Fos expression in the vagal
sensory ganglia, and vagotomy abolishes this early activa-
tion gene response [124–126]. Vagal afferents terminate
in the dorsal vagal complex of the caudal medulla, which
consists of the area postrema, the nucleus of the solitary
tract, and the dorsal motor nucleus of the vagus. These
nuclei integrate sensory signals and control visceral
reflexes, and also relay visceral sensory information to the
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central autonomic network [127]. Subdiaphragmatic vago-
tomy inhibits activation of the paraventricular nucleus and
subsequent secretion of ACTH in response to lipopolysc-
charides and IL-1 [128,129].

Correlation between blunted HPA axis and
disease
A blunted HPA axis has been associated with increased
susceptibility to autoimmune/inflammatory disease in a
variety of animal models and human studies. In general, at
the baseline the HPA axis parameters do not differ in indi-
viduals susceptible and resistant to inflammatory disease.
However, differences become apparent with stimulation of
the axis.

Animal models
A blunted HPA axis has been associated with susceptibil-
ity to autoimmune/inflammatory diseases in several animal
models. These include the Obese strain (OS) chickens, a
model for thyroiditis [130]; MRL mice, which develop
lupus [131]; and Lewis (LEW/N) rats. A region on rat
chromosome 10 that links to the innate carrageenan
inflammation [132] is syntenic with a region on human
chromosome 17 that is known to link to susceptibility to a
variety of autoimmune diseases [133] and is also syntenic
with one of the 20 different regions on 15 different chro-
mosomes shown to link to inflammatory arthritis in other
linkage studies [134–136]. Several candidate genes
within the rat chromosome 10 linkage region are known to
have a role in hypothalamic CRH regulation as well as
inflammation, including the CRH R1 receptor, angiotensin-
converting enzyme, and STAT3 and STAT5a/5b [132].
However, these candidate genes either show no mutation
in the coding region and no differences in regulation
between susceptible and resistant strains, or show a
mutation in the coding region that does not seem to have
a role in expression of the inflammatory trait [137]. As in
most complex illnesses and traits, the genotypic contribu-
tion to variance in the trait is small: about 35%, which is
consistent with such multigenic and polygenic conditions.

Inbred rat strains provide a genetically uniform system that
can be systemically manipulated to test the role of neuro-
endocrine regulation of various aspects of immunity. Lewis
(LEW/N) rats are highly susceptible to the development of
a wide range of autoimmune diseases in response to a
variety of proinflammatory/antigenic stimuli. Fischer
(F344/N) rats are relatively resistant to development of
these illnesses after exposure to the same dose of anti-
gens or proinflammatory stimuli. These two strains also
show related differences in HPA axis responsiveness. The
inflammatory-susceptible LEW/N rats exhibit a blunted
HPA axis response, compared with inflammatory-resistant
F344/N rats with an exaggerated HPA axis response
[138–140]. Differences in the expression of hypothalamic
CRH [141], pro-opiomelanocortin, corticosterone-binding

globulin [142] and glucocorticoid expression and activa-
tion [143,144] have been shown in these two rat strains.

Disruptions of the HPA axis in inflammatory resistant
animals, through genetic, surgical, or pharmacological
interventions, have been shown to be associated with
enhanced susceptibility to, or increased severity of, inflam-
matory disease [139,145–148]. Reconstitution of the
HPA axis in these inflammatory-susceptible animals, either
pharmacologically with glucocorticoids or surgically by
intracerebral fetal hypothalamic tissue transplantation, has
been shown to attenuate inflammatory disease [139,149].

Animal models of arthritis
Several animal models exist for RA in rodents. Lewis rats
develop arthritis in response to streptococcal cell walls
[138,139], heterologous (but not homologous) type II col-
lagen in incomplete Freund’s adjuvant (IFA) [150], and
various adjuvant oils – including mycobacteria (MTB-AIA)
[109], pristine [151], and avridine, but not IFA alone
[152]. Inbred dark Agouti (DA) rats develop arthritis in
response to heterologous and homologous type II colla-
gen in IFA [153–156], cartilage oligomeric matrix protein
[109], MTB-AIA [152], pristine, avridine [157], and ovalbumin-
induced arthritis. DBA mice develop arthritis in response
to type II collagen in complete Freund’s adjuvant
[158,159]. For specific reviews on animal models for RA,
refer to reviews by Morand and Leech [160] and Joe and
Wilder [161].

A premorbid blunting of normal diurnal corticosterone
levels in both Lewis and DA rats has been shown in
animals susceptible to experimentally induced arthritis
[162]. In adjuvant-induced arthritis, chronic activation of
the HPA axis is seen 7–21 days after adjuvant injection,
together with loss of circadian rhythm [163]. This chronic
activation of the HPA axis was shown to be due to
increased corticosterone secretion due to an increase in
the pulse frequency of secretion in adjuvant-induced
arthritis [164]. During this chronic activation of the HPA
axis, rats with adjuvant-induced arthritis are incapable of
mounting an HPA axis response to acute stress (such as
noise) but are still able to respond to an acute immunolog-
ical stress [165]. Adrenalectomy or glucocorticoid recep-
tor blockade exacerbates the disease state and results in
death or disease expression in surviving animals
[139,166,167]. It has been suggested that mortality from
such shock-like responses is due to the increased
cytokine production that occurs in adrenalectomized
animals exposed to proinflammatory stimuli [166,168].

In addition to the role of HPA axis dysregulation, a dual
role for the sympathetic nervous system in animal models
of RA has been suggested. Activation of β-adrenoceptors
or A2 receptors by high concentrations of norepinephrine
or adenosine results in increased intracellular concentra-
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tions of cAMP and anti-inflammatory responses, whereas
activation of α2-adrenoceptors and A1 receptors by low
concentrations of norepinephrine or adenosine results in
proinflammatory events, such as the release of substance
P [169]. Consistent with this is the observation that β-
adrenergic agonists attenuate RA in animal models
[170,171]. Rolipram, an inhibitor of the PDE-IV phophodi-
esterase, an enzyme that degrades cAMP, has been
shown reduce inflammation in several rodent models
[170,172–174]. The effects of rolipram have also been
suggested to be mediated by catecholamines [175] or by
the stimulation of the adrenal and HPA axis [176,177].
There is also a loss of sympathetic nerve fibers during
adjuvant-induced arthritis [178]. The peripheral natural
anti-inflammatory agent, vasoactive intestinal peptide, has
been shown to reduce the severity of arthritis symptoms in
the mouse model of collagen-induced arthritis [179,180].

In addition to the sympathetic nervous system, the
parasympathetic nervous system is also important in
immune regulation. A role of the cholinergic parasympa-
thetic nervous system in an animal model of RA was sug-
gested because direct stimulation of the vagus nerve was
shown to inhibit the inflammatory response [181]. Impair-
ment of the cholinergic regulation also exacerbates an
inflammatory response to adjuvant in the knees of rats
[182].

Summary of animal model studies and therapeutic correlates
Thus, animal models for arthritis have shown a role for the
HPA axis, sympathetic, parasympathetic, and peripheral
nervous systems. They have shown the necessity of
endogenous glucocorticoids in regulating the immune
response after exposure to antigenic or proinflammatory
stimuli, and severity of inflammatory/autoimmune disease or
mortality after removal of these endogenous glucocorti-
coids by adrenalectomy or GR blockade. Animal models
have enabled genetic linkage studies, which have demon-
strated the multigenic, polygenic nature of such inflamma-
tory diseases with genes on more than 20 different
chromosomes being linked to inflammatory arthritis. Finally,
animal models have shown defects in the sympathetic and
parasympathetic nervous system in arthritis. These findings
have led to the development and testing of novel therapies
(see the penultimate section, ‘New therapies’).

Human studies
In humans, ovine CRH, hypoglycemia, or psychological
stresses have been used to stimulate the HPA axis. In
such studies, blunted HPA axis responses have been
shown in a variety of autoimmune/inflammatory or allergic
diseases such as allergic asthma and atopic dermatitis
[183–186], fibromyalgia [187–190], chronic fatigue syn-
drome [188,189,191,192], Sjögren’s syndrome [2,193],
systemic lupus erythematosus [2,194], multiple sclerosis
[195,196], and RA [1,197–202]. Conversely, chronic

stimulation of the stress hormone response, such as expe-
rienced by caregivers of Alzheimer’s patients, students
taking examinations, couples during marital conflict, and
Army Rangers undergoing extreme exercise, results in
chronically elevated glucocorticoids, causing a shift from
Th1 to Th2 immune response, and is associated with an
enhanced susceptibility to viral infection, prolonged
wound healing, or decreased antibody production in
response to vaccination [203–206].

Rheumatoid arthritis
RA is more common in women than in men, with onset
usually occurring between menarche and menopause
[207,208]. However, the incidence of RA becomes much
less gender specific in elderly men and women [207]. In
women, RA activity is reduced during pregnancy but
returns postpartum, suggesting a role for the hormones
that are fluctuating at this time (cortisol, progesterone, and
estrogen) in the regulation of RA activity [33,209–212].

Glucocorticoids have been used for therapy for RA since
the 1950s [213,214], when the Nobel Prize was awarded
for the discovery of this effect. They are effective because
of their anti-inflammatory actions in the suppression of
many inflammatory immune molecules and cells. In
patients with RA, administration of glucocorticoids
decreases the release of TNF-α into the bloodstream
[215]; however, there are many debilitating side effects
including weight gain, bone loss, and mood changes.

The HPA axis in RA. Human clinical studies are much
more difficult to perform than animal models. However,
some evidence exists supporting the involvement of the
HPA axis in RA. Alterations in the diurnal rhythm of cortisol
secretion have been documented in patients with RA
[216,217]. An association between the cortisol diurnal
cycle and diurnal variations in RA activity has been made,
although it still remains to be determined whether this is
cause or effect [218]. One of the most pertinent observa-
tions for the regulation of RA by endogenous cortisol
comes from a study in which RA was exacerbated by inhi-
bition of adrenal glucocorticoid synthesis by the 11β-
hydroxylase inhibitor metyrapone [219].

Several studies have looked for abnormalities in the HPA
axis of patients with RA. In general, these point to an inap-
propriately low cortisol response. Subtle changes in corti-
sol responses have been reported in response to
insulin-induced hypoglycemia [201]. However, another
study, also using insulin-induced hypoglycemia, described
a blunted HPA axis in patients with RA [220]. In one
study, lower cortisol responses to surgical stress were
shown in patients with RA compared with healthy controls
and an inflammatory control group, whereas normal
responses of ACTH and cortisol to ovine CRH were seen
in the same patients [198]; however, these results are
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complicated by the steroid therapy that these patients
were taking. Other studies have shown increased periph-
eral ACTH levels in patients with RA without increases in
cortisol [221–223], whereas other studies have shown a
normal HPA axis in patients with RA [200]. Some studies
have suggested that, given the inflammatory state of RA, a
normal cortisol response is in fact indicative of an under-
responsive HPA axis [224,225]. It has become generally
accepted that lower than normal cortisol responses to stim-
ulation are characteristic of RA [169,197,201,216,221,
223,225–227]. Most recently Straub and colleagues have
shown that the most sensitive indicator of blunted HPA axis
responsiveness in early, untreated PA is an inappropriately
low ratio of cortisol to IL-6 in these subjects [228].

Such defects in the stress response system are in agree-
ment with patients’ descriptions of RA ‘flare up’ during
stress [229], which are likely to be caused by imbalances
of the neuroendocrine and immune systems induced by
psychosocial stressors [230]. It is worth noting that psy-
chosocial stress is important in RA disease activity
[231–233]. However, this will not be reviewed here and
readers are referred to reviews by Walker and colleagues
[234] and Herrmann and colleagues [235].

Glucocorticoid receptors in RA. Quantification of the
numbers of GRs by ligand binding studies has produced
contrasting results. In one study, normal or even slightly
elevated numbers of GRs in peripheral blood mononuclear
cells (PBMCs) were seen in untreated patients with RA
[236], whereas other studies have shown a decrease in
the number of GR molecules in the lymphocytes of
patients with RA in comparison with controls [237]. Others
have also shown a downregulation of GR during early RA
[238,239]. Recently, Neeck and colleagues, evaluating the
expression of GR by immunoblot analysis, showed a higher
expression of GR in untreated patients with RA in compari-
son with controls but a decreased GR expression in gluco-
corticoid-treated patients with RA in comparison with
controls [202]. This has been confirmed by others [240]. A
polymorphism in the 5′ untranslated region of exon 9 of the
GR gene, which is associated with enhanced stability of
the dominant-negative spice variant, GRβ, has been shown
in patients with RA [31]. Enhanced expression of GRβ has
also been shown in the PBMCs of steroid-resistant
patients with RA [241]. A polymorphism in the CRH gene
has also been described as a susceptibility marker for RA
in an indigenous South African population [242–244].

Other hormone measures in RA. Patients with RA also
show abnormalities in other endocrine hormones. Like
other inflammatory diseases, they have been shown to
have low serum androgen levels but unchanged serum
estrogen levels [245–252]. Growth retardation is a phe-
nomenon seen in juvenile RA [253], and an impairment of
the GH axis has been shown in patients with active and

remitted RA [220,225]. An increased expression of IGF-1-
binding protein, resulting in a decreased concentration of
free IGF-1, was also observed in patients with RA
[254–256]. However, another study has attributed this dif-
ference in IGF-binding proteins to physical activity rather
than inflammation [257].

An association between thyroid and rheumatoid disorders,
such as RA and autoimmune thyroiditis, has been known
for many years [258] although little is known about the
thyroid involvement in RA. One study has shown that
patients with RA have increased free T4 levels, and conse-
quently lower free T3, than normal controls [259], although
other studies were unable to confirm low T3 levels in
patients with RA [260]. However, a higher incidence of
thyroid dysfunction has been shown in women with RA
[261,262].

Sympathetic nervous system in RA. The extent to which
the sympathetic nervous system is involved in human RA
is unclear. In one study, a decreased number of β-adreno-
ceptors in the PBMCs and synovial lymphocytes of
patients with RA was described, suggesting a shift to a
proinflammatory state [263,264]. Regional blockade of the
sympathetic nervous system in patients with RA has been
described to attenuate some of features of RA [265].
Others were unable to confirm this result but found
defects in other aspects of this signaling pathway [266].
However, as in animal models, β-adrenergic agonists have
been shown to attenuate RA in humans [267].

For the sympathetic nervous system to be able to modu-
late inflammation in RA it is necessary for the synovial
tissue to be innervated by sympathetic nerve fibers. In
patients with long-term RA there is a significant decrease
in sympathetic nerve fibers but an increase in substance
P-producing sensory nerve fibers [268,269], suggesting a
decrease in the anti-inflammatory effects of the sympa-
thetic nervous system and an increase in the proinflamma-
tory effects of the peripheral nervous system.

Peripheral neuropeptides in RA
Consistent with these changes in peripheral and auto-
nomic innervation in RA are findings of altered peripheral
neuropeptides in RA. proinflammatory CRH is locally
secreted in the synovium of patients with RA and at a
lower level than in osteoarthritis [199,270]. Human T
lymphocytes have been shown to synthesize and secrete
CRH [271]. Inflammation in chronic RA has also been
shown to be attenuated with the µ-opioid-specific agonist
morphine [272]. In animal models, infusion of substance P
into the knee exacerbated RA [273].

Summary of hormonal findings in RA
Studies of patients with RA are difficult to interpret and
some might be tainted by a prior use of glucocorticoids
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used generally in the treatment of RA. However, these
studies have generally shown a defect in cortisol secretion
after HPA axis stimulation, decreased androgen levels, a
blunted GH response, and dysregulation of the thyroid
response. In addition there is evidence of an impaired
response of the sympathetic nervous system and
enhanced levels of the peripheral proinflammatory neuro-
peptides CRH and substance P. In some cases, a
decrease in the number of GRs has been shown in RA, or
reduced glucocorticoid sensitivity has been observed due
to GRβ overexpression, which is consistent with relative
glucocorticoid resistance in some patients. Furthermore, a
polymorphism of the GRβ associated with the enhanced
stability of that receptor has also been shown in RA [31].
It still remains to be fully determined whether these alter-
ations in neuroendocrine pathways and receptors are
involved in the pathogenesis of RA or whether they are a
result of the inflammatory status of the disease.

New therapies
On the basis of the principles described above, new thera-
peutic modalities for inflammatory diseases are being
investigated. For example, recent studies have indicated a
potential therapeutic role for CRH type 1-specific receptor
antagonist (antalarmin) in an animal model of adjuvant-
induced arthritis [274], β-adrenergic agonists in both
animal models of RA and in a human study
[170,171,267], the µ-opioid-specific agonist morphine in
chronic RA [272]), and the phophodiesterase inhibitor
rolipram in several rodent models for RA [170,172–174].
Androgen replacement, DHEA therapy, could be poten-
tially therapeutic in RA, particularly in men [275], and has
proved beneficial for inflammatory diseases [276].

Conclusion
The CNS and immune system communicate through multi-
ple neuroanatomical and hormonal routes and molecular
mechanisms. The interactions between the neuroen-
docrine and immune systems provide a finely tuned regu-
latory system required for health. Disturbances at any level
can lead to changes in susceptibility to, and severity of,
autoimmune/inflammatory disease. A thorough under-
standing of the mechanisms by which the CNS and
immune systems communicate at all levels will provide
many new insights into the bidirectional regulation of
these systems and the disruptions in these communica-
tions that lead to disease, and ultimately will inform new
avenues of therapy for autoimmune/inflammatory disease.
Animal models of arthritis have shown changes in both the
HPA axis and the sympathetic nervous system during
inflammation. More importantly, these models have
demonstrated the importance of endogenous glucocorti-
coids in the regulation of immunity and the prevention of
lethality from an uncontrolled immune response. Further-
more, in both animals and humans, RA is associated with
dysregulation of the HPA, HPT, HPG, and GH axes. There

is also evidence of an impaired regulation of immunity by
the sympathetic nervous system and of defects in gluco-
corticoid signaling. These principles are now being used
to test novel therapies for RA based on addressing and
correcting the dysregulation of these neural and neuroen-
docrine pathways.
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