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Abstract The response surface methodology (RSM) was
used to optimize the conditions for total flavonoid ex-
traction from Scutellaria baicalensis Georgi. The influ-
ences of the ethanol concentration, extraction time, tem-
perature, and the liquid–solid ratio on flavonoid yield
were investigated. Based on ANOVA results, a second-
order quadratic polynomial model could be applied to
characterize the extraction process. The following opti-
mal extraction conditions were identified: ethanol con-
centration, 52.98 %; extraction time, 2.12 h; extraction
temperature, 62.46 °C; and liquid–solid ratio, 35.23.
The predicted extraction yield was 19.437 mg/g when
these optimal conditions were used. The proposed method
was successfully employed to extract flavonoids from
S. baicalensis.

Keywords Scutellaria baicalensisGeorgi . Flavonoid
extraction . Response surfacemethodology . Optimization

Introduction

Scutellaria baicalensis Georgi (Labiatae), or Chinese
Huangqin, is a widely used as herbal medicine in China and
other East Asian countries (CPM 2010; Heo et al. 2009; Park
et al. 2011). Its dried roots can treat inflammations, cancers,
hepatitis, tumors, bronchitis, allergies, and arteriosclerosis
(CPM 2010; Sun et al. 2008; Zhang et al. 2006).

S. baicalensis has been reported to contain flavonoids,
phenylethanoids, amino acids, and essential oils (Li et al.
2004; Liu et al. 2009, 2011; Sheng et al. 2009; Zhou et al.
1997). The main active components of S. baicalensis are the
flavonoids, which have recently received much attention
worldwide. These compounds have numerous reported
medicinal properties such as antioxidant, antineurotoxic,
anti-inflammation, antianxiety, antimutagenic, antiradi-
cal, anti-cancer, and anti-SARS coronavirus effects, as
well as liver protection, hearing protection, neuroprotec-
tion, and spontaneous sleep–wake regulation (Chang
et al. 2011; Chen et al. 2004; Heo et al. 2004; Himeji
et al. 2007; Hui et al. 2002; Kang et al. 2010; Kim
et al. 2009; Kimura and Sumiyoshi 2011; Lin et al.
2011; Shang et al. 2006; Wang et al. 2010; Woźniak
et al. 2004; Zhao et al. 2006).

The orthogonal design methods have been widely
applied in analytical procedures for optimizing to obtain
higher extraction yields. However, such designs cannot
measure the interactive effects among the variables (Baş
and Boyacı 2007; Sheng et al. 2013). The response
surface methodology (RSM) can overcome the disad-
vantages of the orthogonal design. RSM is a mathemat-
ical and statistical method for designing experiments,
modeling, evaluating variable effects, and optimizing
extraction conditions. This methology has been recently
used to optimize chemical and physical processes
(Najafi et al. 2012; Sheng et al. 2013; Wang et al.
2012, 2013; Xu et al. 2013; Yang et al. 2010).

In this study, the total flavonoids were extracted from
S. baicalensis. The aim of the study was to understand the
combined effect of the extraction parameters, including the
ethanol concentration, extraction time, temperature, and the
liquid–solid ratio by applying RSM. The response variables
were examined based on the flavonoid yields under different
operating conditions.
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Materials and methods

Materials

S. baicalensiswas locally purchased and verified by Professor
Tiechen Cui (School of Life Science, Zhaoqing University).
The voucher specimens were immediately deposited after the
extraction of flavonoids. Rutin (No.100080-200707) was pur-
chased from the Chinese Institute for the Control of
Pharmaceutical and Biological Products. All the reagents
were of analytical grade. The double distilled water was
used for all the experiments. Analytical grade aluminum
nitrate, ethanol, sodium hydroxide, and sodium nitrite
were purchased from the Guangzhou Chemical Reagent
Factory.

Extraction of total flavonoids

The plant samples (5.000 g) were used to extract flavo-
noids via reflux extraction by ethanol (School of
Chemistry& Chemical Engineering of Zhaoqing
University). The samples were vacuum-dried at 60 °C
for 24 h and then finely ground to sieve through a 35/
40 mesh (approximately 0.5 mm diameter). These sam-
ples were prepared in the solvent within given ranges
for the temperature (25 °C to 95 °C), extraction time
(0.5 h to 3.0 h), and liquid–solid rato (g/mL) (1:6 to
1:21) at different ethanol concentrations (0, 10 %,
30 %, 50 %, 70 %, and 90 %). The extraction solution
was centrifuged at 3,000 rpm for 5 min and passed
through a Xinhua filter (Hangzhou Xinhua Paper
Industry Co., Ltd.). The filtrate was diluted to 100 mL
prior to the measurement of the total flavonoid content.

Determination the content of total flavonoids

A standard colorimetric assay was applied to measure
the amount of total flavonoids, with slight modifica-
tions. Briefly, 1 mL of the diluted flavonoid extract,
5 mL of 60 % (v/v) ethanol, and 0.3 mL of 5 %
(w/v) sodium nitrite were mixed for 6 min, and then
0.3 mL of 10 % aluminium chloride (w/v) was added.
After another 6 min of mixing, 4 mL of 1 mol/L
sodium hydroxide was added to the extraction mixture.
A final volume of 10 mL was obtained by adding
distilled water to the extract. The solution was left to
stand for 15 min. The absorption at 507 nm was then
measured using a UV–vis 916 spectrophotometer (GBC
Scientific Equipment Pty Ltd., Australia) against the
same mixture, without using the sample as a blank.
The calibration curve ranged from 24 to 52 μg/mL

(y=11.994x+0.0298, where y is the absorbance and x
is the concentration of the sample; R2=0.9998).

Experimental design and statistical analysis

Several parameters affect the total flavonoid yield. Previous
trials showed that the ethanol volume, extraction temperature,
extraction time, and liquid–solid ratio have significant effects
on the yield of total flavonoid extraction (Liu et al. 2009).
Given the preliminary results, a central composite rotatable
design (CCRD) was used to investigate the effects of four
independent variables, namely, the ethanol volume (X1), extrac-
tion time (X2), temperature (X3), and the solid–liquid ratio (X4)
on the yield of flavonoids (Y). The independent variables were
designated as “+1,” “0,” and “−1” for high, intermediate, and
low values, respectively. The coded and corresponding uncod-
ed levels of the independent variables used in the CCRD design
are listed in Table 1. The complete design consisted of 29
experimental runs, including 5 replications of the center points.

A second-degree polynomial model was used to explain
the behavior of the system based on the experimental data.
The nonlinear computer-generated quadratic model is stated
in the following equation:

Y ¼ β0 þ
X

i¼1

4

βiXi þ
X

i¼1
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βiiX
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i þ

X
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4 X
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βijXiXj ð2Þ

where Y is the response and β0 is a constant. βi, βii, and βij are
the linear, quadratic, and interactive coefficients, respectively;
Xi and Xj are the levels of the independent variables.

The Design-Expert software (trial version 8.0.4, Stat-
Ease Inc., Minneapolis, USA) was utilized to perform
this operation for the experimental design, multiple re-
gression analysis (R2), ANOVA, and the numerical op-
timization of the response surface regression (RSREG)
procedure. The practical yield was obtained under the
optimal conditions.

Table 1 Independent variables and their levels used in the RSM design

Levels

−1 0 1

Ethanol concentration (%) (A) 50 60 70

Extraction time (h) (B) 1.5 2 2.5

Extraction temperature (°C) (C) 50 60 70

liquid–solid ratio (mL/g) (D) 20 30 40
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Results and discussion

Single factor analysis method

Effect of ethanol concentration on the total flavonoid yield

Different concentrations of ethanol solutions (40 %, 50 %,
60%, 70%, and 80%) were used to study the effect of ethanol

on extraction performance. The procedures were conducted at
60 °C for 2 h with a liquid-material ratio of 30:1 (mL/g).

The flavonoid yields were significantly affected by the
ethanol concentrations (Fig. 1a). The yield was highest when
60 % ethanol was used as the extraction solvent. The yield
increased with the increasing ethanol solutions concentration
when the concentration of ethanol was less than 60 %.
However, the yield decreased within the range of 60 % to

Fig. 1 Response surface (3D)
showing the effect of different
extraction parameters (X1:
ethanol concentration, %; X2:
extraction time, h; X3: extraction
temperature, °C; X4: liquid–solid
ratio, mL/g) added on the
response
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100% ethanol. Therefore, 60% ethanol was used as the center
point for the RSM experiment.

Effect of extraction time on the total flavonoid yield

The extract yield for the total flavonoids increased with the
increasing extraction time of 0.5 h to 2.0 h (Fig. 1b). The yield
peaked at 2.0 h before it significantly decreased. Therefore,
the optimal extraction time was determined to be 2.0 h.

Effect of temperature on the total flavonoids yield

The extraction yield gradually rose with the increasing tem-
perature, reached a maximum at 60 °C, and finally dropped at
the range from 60 to 90 °C (Fig. 1c). However, much higher
temperatures could cause activity loss, promote the

degradation of thermosensitive compounds, and increase the
solubility of impurities. Therefore, the optimal temperature
was considered to be 60 °C.

Effect of the liquid–solid ratio on the total flavonoid yield

The liquid–solid ratio is an important variable.
Flavonoids cannot be completely extracted if this ratio
is too high, whereas the process costs would increase if
the ratio is too low. The effect of varying the ratio of
liquids to solids (20:1, 30:1, 40:1, 50:1, and 60:1) was
investigated (Fig. 1d). The extraction yield was greatly
increased when this ratio increased from 20:1 to 30:1
but subsequently decreased with higher liquid–solid ra-
tios. Therefore, we chose a liquid–solid ratio of 30:1 as
the center point for the RSM experiment.

Table 2 Central composite de-
sign for independent variables
and their response

Runs A

(Ethanol
concentration (%))

B

(Time (h))

C

(Temperture (°C))

D

(Liquid–solid ratio
(mL/g)

Yield

(mg/g)

1 1 0 0 1 13.950

2 0 1 0 −1 17.746

3 0 0 0 0 18.649

4 1 1 0 0 15.243

5 0 1 −1 0 15.488

6 −1 1 0 0 17.984

7 1 −1 0 0 14.842

8 0 0 −1 −1 15.583

9 1 0 0 −1 13.494

10 0 0 1 1 17.147

11 0 0 0 0 18.354

12 0 −1 0 1 16.689

13 0 0 0 0 19.180

14 −1 0 −1 0 17.899

15 −1 0 0 −1 15.466

16 −1 0 1 0 18.354

17 0 1 1 0 17.329

18 0 −1 0 −1 17.104

19 0 0 0 0 19.90

20 −1 0 0 1 20.396

21 0 −1 −1 0 15.618

22 0 −1 1 0 17.289

23 0 0 −1 1 16.727

24 −1 −1 0 0 15.688

25 1 0 1 0 14.892

26 0 0 0 0 16.733

27 0 0 1 −1 18.951

28 1 0 −1 0 14.962

29 0 1 0 1 16.542
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Analysis of the model

The extraction yield of the total flavonoids from
S. baicalensis was optimized with the RSM approach
based on the single-factor experiment values. The ex-

periments were randomized, as described in detail in
Table 2. Given the multiple regression analysis of the
experimental data, the coefficients of the independent
variables produced the following second-order polyno-
mial stepwise equation:

Y ¼ 18:56−1:53X 1 þ 0:26X 2 þ 0:64X 3 þ 0:26X 4−0:47X 1X 2−0:13X 1X 3−1:12X 1X 4

þ 0:042X 2X 3−0:20X 2X 4−0:74X 3X 4−1:61X 1
2−1:06X 2

2−0:73X 3
2−0:78X 4

2 ð3Þ

where X1, X2, X3, and X4 are the coded values of the ethanol
concentration, extraction time, temperature, and the liquid–
solid ratio, respectively.

ANOVA was applied to evaluate the significance of the
regression coefficients of the response surface quadratic poly-
nomial model. If a model has a significant regression and a non-
significant lack of fit, it is said to be well fitted to the experi-
mental results. The lack of fit (p>0.05) was not significant
(Table 2). Thus, few unknown factors can affect the experiment
results. The model with R2>0.75 was considered acceptable
(Yang et al. 2010). The polynomial model (p<0.05) and the
correlation coefficient (R2>0.75) demonstrated that the regres-
sion model was suitable for the actual situation. A relationship
between the flavonoid yield and the studied extraction condi-
tions was revealed. Therefore, the obtained regression model

could optimize and satisfactorily predict the conditions for max-
imum yield. A, A2, and B2 significantly affected the extraction
yield, which demonstrated that the influence factors did not have
a simple linear or quadratic relationship (Table 3). However, the
analysis showed that the studied factors influence the total
flavonoid yield in the following order: ethanol concentration >
extraction temperature > liquid–solid ratio > extraction time.

Analysis of response surface

The extraction yield can also be predicted from the three-
dimensional (3D) response surface and two-dimensional
(2D) contour plots of the different variables influencing the
flavonoid yield. The 3D response surface graphically revealed
the sensitivity of the response value towards the change in the

Table 3 Results of the ANOVA to the response surface quadratic model

Source Sum of squares Degree of freedom Mean square F-value P-value Significant

Model 65.0378 14 4.6456 3.2072 0.0185 significant

A(Concentration) 28.2256 1 28.2256 19.4867 0.0006 *

B (Time) 0.8019 1 0.8019 0.5536 0.4692

C (Temperature) 4.9216 1 4.9216 3.3978 0.0866

D (Ratio) 0.8045 1 0.8045 0.5554 0.4685

AB 0.8978 1 0.8978 0.6198 0.4442

AC 0.0689 1 0.0689 0.0476 0.8305

AD 5.0042 1 5.0042 3.4548 0.0842

BC 0.0072 1 0.0072 0.0050 0.9447

BD 0.1556 1 0.1556 0.1075 0.7479

CD 2.1727 1 2.1727 1.5000 0.2409

A2 16.8061 1 16.8061 11.6028 0.0043 *

B2 7.2970 1 7.29704 5.0378 0.0415 *

C2 3.4190 1 3.41903 2.3606 0.1467

D2 3.9617 1 3.9617 2.7351 0.1204

Residual 20.2784 14 1.44846

Lack of fit 14.7102 10 1.47102 1.0567 0.5233 not significant

Pure error 5.5682 4 1.39206

Cor total 85.3162 28

R2 =0.7623, Adj. R2 =0.5246, Adeq Precision=6.1282, CV=7.15 %
aP<0.01 highly significant; 0.01 < P<0.05 significant; P>0.05 not significant
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variable. The 2D contour plot illustrated the significant coef-
ficients between the different variables. The independent var-
iables were obtained by keeping the other two factors at center
values (Figs. 1 and 2). The response surface plots illustrated
the magnitude of the response values. The steeper plots im-
plied that the response value had a greater effect on the
extraction conditions. Otherwise, the observed influences
were slight (Bezerra et al. 2008).

The response surface and contour plots for the influence of
the ethanol concentration and extraction time on the flavonoid
yield are shown in Figs. 1a and 2a. The extraction time
exhibited a significant effect on the flavonoid yield, whereas
the effect of the ethanol concentration was weaker. The yield
was increased when the ethanol concentration increased from
50 to 53 % and the extraction time increased from 1.5 to
2.12 h. However, prolonging the extraction time and further

Fig. 2 Contour plots (2D)
showing the effect of different
extraction parameters (X1:
ethanol concentration, %; X2:
extraction time, h; X3: extraction
temperature, °C; X4: liquid–solid
ratio, mL/g) added on the
response Y
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increasing the ethanol concentration appeared to be disadvan-
tageous for the extract yield. Prolonging the extraction
time may cause flavonoid decomposition and conse-
quently decrease the yield. By contrast, increasing the
ethanol concentration may change the solvent polarity
and increase the amount of impurities. These results
suggest that the ethanol concentration and the extraction
time had a quadratic effect on the response, whereas the
mutual interactions between the ethanol concentration
and the extraction time were not significant.

The effects of the extraction temperature and the ethanol
concentration on the flavonoid yield are shown in Figs. 1b and
2b. When the ethanol concentration was lower than 53 %, the
yield was positively correlated to the increasing ethanol con-
centration. The results indicated that the highest yield could be
produced when extraction was performed at 62 °C with 53 %
ethanol.

The combined effect of the ethanol concentration and
the liquid–solid ratio on the extraction yield is indicated
by Figs. 1c and 2c. The extraction yield increased
linearly when the ethanol concentration increased from
50 to 53 %, but the yield decreased when the ethanol
concentration exceeded 53 %. The liquid–solid ratio had
a less significant effect on the yield. The mutual inter-
actions of the ethanol concentration with the liquid–
solid ratio were similarly not significant.

Both the extraction time and the temperature exhibited
weak effects on the flavonoid yield (Figs. 1d and 2d). The
extraction yield increased when the temperature ranged from
50 to 62 °C, but the yield decreased when the temperature was
higher than 62 °C. The interaction effect of the extraction time
with the temperature on the flavonoid yield was not
significant.

The effects of the extraction time and the liquid–solid ratio
on the flavonoid yield are shown in Figs. 1e and 2e. A lower
liquid–solid ratio produced lower yield. The yield increased
when the liquid–solid ratio changed from 20 to 35, but de-
creased thereafter. The influence of the extraction time on
yield was less significant than the liquid–solid ratio. The
flavonoid yield was improved by prolonging the extraction

time from 1.5 to 2.12 h, but it decreased thereafter. The
interaction effect of the extraction time with the liquid–solid
ratio and the temperature on the flavonoid yield was not
significant.

The effects of the extraction temperature and the liquid–
solid ratio are given in Figs. 1f and 2f. Lower temperatures
induced lower yields. As the temperature rose from 50 to
62 °C, the yield was increased. However, the yield decreased
when the temperature rose beyond 62 °C. The influence of the
temperature on the yield was more significant than that of the
liquid–solid ratio. The flavonoid yield was improved by
prolonging the extraction time from 1.5 to 2.12 h; after which,
the yield was decreased.

Defining priority factors

Priority factors were needed to be defined definitely to im-
prove the yield of total flavonoids from S. baicalensis based
on the established model. Pareto chart of the standardized
coefficients corresponding to the independent variable and
their interactions with statistical significance (p<0.05) was
applied for investigating the relative contribution (Fig. 3)
(dos Santos et al. 2012; Wang et al. 2014). The result showed
the effects of the independent variable and their interactions
were ranked as A2 >> AD >> A > C > B2.

Optimization of extraction parameters

The selected variables were further reduced for optimization
using Design-Expert. The software identified the following
optimum conditions: ethanol concentration, 52.98 %; extrac-
tion time, 2.12 h; extraction temperature, 62.46 °C; and liq-
uid–solid ratio, 35.23. Under the abovementioned conditions,
the predicted extraction yield was 19.437 mg/g.

Conclusion

This study investigated the effects of the ethanol concentra-
tion, extraction time, temperature, and the liquid–solid ratio on
the yield of flavonoid extraction from S. baicalensis. The
extraction parameters were optimized using RSM and the
second-order polynomial regression model. The yield was
significantly increased under the optimized conditions.
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