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Abstract: RIG-I functions as a virus sensor that induces a cellular antiviral response. Although it
has been investigated in other species, there have been no further studies to date on canine RIG-I
against canine influenza virus (CIV). In the present study, we cloned the RIG-I gene of beagle dogs
and characterized its expression, subcellular localization, antiviral response, and interactions with
CIV proteins. RIG-I was highly expressed and mainly localized in the cytoplasm, with low levels
detected in the nucleus. The results revealed that overexpression of the CARD domain of RIG-I and
knockdown of RIG-I showed its ability to activate the RLR pathway and induced the expression of
downstream interferon-stimulated genes. Moreover, overexpression of canine RIG-I suppressed the
replication of CIV. The association between RIG-I and CIV was evaluated with the luciferase assay
and by indirect immunofluorescence and bimolecular fluorescence complementation analyses. The
results showed that CIV nonstructural protein 1 (NS1) can strongly suppress the RIG-I–mediated
innate immune response, and the novel interactions between CIV matrix proteins (M1 and M2) and
canine RIG-I were disclosed. These findings provide a basis for investigating the antiviral mechanism
of canine RIG-I against CIV, which can lead to effective strategies for preventing CIV infection
in dogs.

Keywords: canine RIG-I; antiviral; CIV; interaction

1. Introduction

Canine influenza virus (CIV) is an eight segments single stranded virus of the Or-
thomyxovirus type A influenza virus family. CIV encodes at least 10 proteins, including
PB2, PB1, PA, HA, NP, NA, M1, M2, NS1, NEP, and other proteins [1]. Equine-origin
CIV H3N8 was first reported to be prevalent among dogs in 2004 in Florida, USA [2].
Subsequently, more different origins CIV strains were later detected in different countries,
such as China and Korea [3–5]. Dogs might be a “mixing vessel” for the new influenza
A virus reassortment in future [6]. Thus, further studies about canine innate immune
response against CIV are crucial for new antiviral strategies investigation.

PAMPs are mediated by toll-like receptors (TLRs), retinoic acid-inducible gene I-like
receptors (RLRs), NOD-like receptors (NLRs), and C-type lectin receptors (CLR). Retinoic
acid-inducible gene I (RIG-I), a member of the RLR family, is an innate immunologic
molecule that recognizes short (10–300 bp) triphosphorylated (5′ ppp) ssRNA and dsRNA.
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In noninfected cells and in the absence of the virus, RIG-I exists in a self-inhibitory confor-
mation. After binding to the viral ligand, a conformational change exposes the N-terminal
caspase activation and recruitment domain (CARD) of the receptor. This triggers adapter
mitochondrial antiviral signaling (MAVS) [7,8] and induces the transcription of interferon
(IFN) regulatory factor 3 (IRF-3) and IRF-7, which are involved in the type I IFN-mediated
antiviral response. The binding of secreted IFN to its cognate receptor activates Janus
kinase (JAK)/signal transducer and activator of transcription (STAT) signaling and ex-
pression of downstream IFN-stimulated genes (ISGs), leading to a higher-level response
against the virus [9–11].

RIG-I detects many viruses including Newcastle disease, Sendai, influenza, rabies,
and hepatitis C viruses [12]. Influenza A virus (IAV) is a negative-strand RNA virus that
produces dsRNA or ssRNA, which are recognized by RIG-I in the host. Thus, IAV can
trigger the classical antiviral innate immune response mediated by RLR signaling [13,14].
However, IAV has developed several tactics to evade host immune surveillance mecha-
nisms that involve interactions between viral nonstructural protein 1 (NS1) and host RIG-I,
tripartite motif-containing 25 (TRIM25), and MAVS [15–17].

RIG-I has been characterized in many species, but little is known about the role
of canine RIG-I in canine influenza virus (CIV) infection. This was investigated in the
present study by cloning canine RIG-I and examining its tissue distribution and subcellular
localization; its interaction with viral proteins; and the antiviral response triggered by RIG-I.
We demonstrate that activated RIG-I induces RLRs pathway signaling and the activation of
ISGs as part of the host antiviral innate immune response. CIV non-structural protein 1
(NS1) has suppression effect to activated RLRs pathway. Moreover, RIG-I is available to
interact with various CIV proteins, including CIV RNA polymerase subunits (PB2, PB1,
and PA), nucleoprotein, NS1, and matrix proteins (M1 and M2), but further influenced
mechanism needs to be clarified.

2. Materials and Methods
2.1. Cells, Viruses, and Animals

Human embryonic kidney (HEK) 293T cells and Madin–Darby canine kidney (MDCK)
cells were cultured at 37 ◦C and 5% (v/v) CO2 in Dulbecco’s modified Eagle medium
(DMEM; Biological Industries, Kibbutz Beit-Haemek, Israel) and 10% fetal bovine serum
(Gibco, Grand Island, NY, USA). CIV H3N2 (A/canine/Guangdong/02/2011, C/GD/02)
was propagated in specific pathogen-free chick embryos. Viruses and tissue samples from
beagle dogs (Canis lupus familiaris) (Fuzhou Zhen and Experimental Animal Technology
Development Company, Fuzhou, China) were stored at −80 ◦C.

2.2. RNA Extraction, cDNA Synthesis, and Cloning of the Canine RIG-I Gene

Total RNA was extracted from cells and tissues with RNAiso Plus (Takara Bio, Otsu,
Japan) according to the manufacturer’s instructions. The amount of RNA in each sam-
ple was quantified with a NanoDrop One spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). cDNA was prepared from total RNA using the HiScript III 1st Strand
cDNA Synthesis Kit (Vazyme, Nanjing, China). The complete canine RIG-I cDNA was
amplified from tissues of beagle dogs with the following protocol: 95 ◦C for 3 min; 35 cycles
of 95 ◦C for 30 s, 67 ◦C for 30 s, and 72 ◦C for 3 min; and 72 ◦C for 10 min. PCR was per-
formed with Phanta Super-Fidelity DNA Polymerase (Vazyme). The primers were designed
based on the predicted canine RIG-I gene (XM_005626701.3) in the National Center for
Biotechnology Information (NCBI) database; the sequences are shown in Supplementary
Table S1.

2.3. Sequencing and Bioinformatic Analysis of Canine RIG-I

The PCR products were cloned into the pMD18-T vector (Takara Bio) and sequenced.
The conserved functional domains of the full-length canine RIG-I cDNA sequence were
analyzed using the SMART program (http://smart.embl-heidelberg.de/, 18 June 2018) and

http://smart.embl-heidelberg.de/
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NCBI Conserved Domain Database (https://www.ncbi.nlm.nih.gov/cdd/, 18 June 2018).
A phylogenic tree was constructed with the neighbor-joining method using MEGA v6.0
software (https://www.megasoftware.net/, 28 June 2018). Amino acid sequences were
aligned with Clustal X v2.0 and edited using BoxShade server (https://embnet.vital-it.ch/
software/BOX_form.html, 28 June 2018).

2.4. Plasmids, Reagents, and Antibodies

Full-length canine RIG-I (residues 1–925), the N-terminal CARD (residues 1–190),
and CARD deletion fragment (RIG-I∆CARD, residues 191–925) were inserted into the
mammalian expression plasmid p3 × CMV10-Flag and bimolecular fluorescence comple-
mentation (BiFC) vector Venus VC-155 (with split C-terminal fragments of green fluorescent
protein [GFP]) by homologous recombination using the ClonExpress Ultra Cloning Kit
(Vazyme). The sequences of CIV proteins were inserted into the pCMV-Myc plasmid and
BiFC vector Venus VN-173 (with split N-terminal fragments of GFP). The following plas-
mids were constructed: Flag–RIG-I, Flag–RIG-I-CARD, Flag–RIG-I∆CARD, VC–RIG-I, VC–
RIG-I-CARD, VC–RIG-I∆CARD, Myc-polymerase beta 2 (PB2), Myc-PB1, Myc-polymerase
alpha (PA), Myc-hemagglutinin (HA), Myc-nucleoprotein (NP), Myc-neuraminidase (NA),
Myc-NS1, Myc-matrix protein 1 (M1), Myc-M2, VN-PB2, VN-PB1, VN-PA, VN-HA, VN-NP,
VN-NA, VN-NS1, VN-M1, and VN-M2. The primer sets used for cloning are listed in
Supplementary Table S1. The RIG-I agonist used in this study was 5′ triphosphate hairpin
RNA (3p-hpRNA) (1000 ng per transfection; InvivoGen, San Diego, CA, USA). Primary
and secondary antibodies used in this study are listed in Supplementary Table S4.

2.5. Indirect Immunofluorescence Analysis (IFA)

To determine the subcellular localization of RIG-I and other proteins, HEK 293T or
MDCK cells were transfected with plasmid or agonist when they reached 50% confluence.
After 24 h, the cells were washed three times with phosphate-buffered saline and then fixed
in cold 4% paraformaldehyde at room temperature for 10 min. For immunofluorescence
labeling, cells were blocked for 10 min at room temperature (QuickBlock Blocking Buffer for
Immunol Staining, Beyotime, Shanghai, China), then incubated overnight at 4 ◦C with the
primary antibody and for 1 h at room temperature with the secondary antibody; nuclei were
stained with 4′,6-diamidino-2-phenylindole (Beyotime) for 5 min. The fluorescence signal
was observed with a confocal laser scanning microscope (SP8 TCS; Leica, Wetzlar, Germany)
and three-dimensional image reconstruction was carried out with Las X software (Leica).

2.6. Luciferase Assay

IFN-β promoter (IFN-Luc), nuclear factor κB (NF-κB) response element (3 × PRDII-Luc),
and IRF-3 response element (3 × PRDIII/I-Luc) reporter plasmids were constructed as
previously described [18]. MDCK cells were seeded in a 12-well plate and cotransfected
with 0.5 µg/well of reporter plasmid and 0.04 µg/well of pRL-TK plasmid along with
various expression plasmids, RIG-I agonist, or empty vector (control). After 24 h, the cells
were lysed and the luciferase activity in lysates was measured with the Dual Luciferase
Reporter Assay Kit (Vazyme) according to the manufacturer’s instructions and normalized
to the internal Renilla luciferase control. The assay was repeated three times.

2.7. Quantitative Real-Time PCR (qRT-PCR)

qRT-PCR was carried out on a LightCycler 480 (Roche, Basel, Switzerland) with
ChamQ SYBR qPCR Master Mix (Vazyme) using the following program: 95 ◦C for 30 s,
followed by 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s. Samples were analyzed in
triplicate and 3 independent experiments were performed. The mRNA expression levels
of cytokines and ISGs relative to glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
were calculated with the 2−∆∆Ct method and plotted as fold change compared to mock-
transfected cells. Primers used for qRT-PCR were designed based on published sequences
and are listed in Supplementary Table S2.

https://www.ncbi.nlm.nih.gov/cdd/
https://www.megasoftware.net/
https://embnet.vital-it.ch/software/BOX_form.html
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2.8. Virus Replication Kinetics

Mock- or plasmid-transfected MDCK cells were seeded in a 12-well plate and infected
with CIV at a multiplicity of infection of 0.1. The supernatant at different time points
(12, 24, 36, 48, 60, and 72 h) was collected and stored at −80 ◦C; 10-fold dilutions were
prepared and 0.1 mL of diluted virus was added to MDCK cells grown in a 96-well plate.
After 1 h of adsorption, fresh DMEM containing 2% fetal bovine serum was added to the
wells. Viral replication was detected by enzyme-linked immunosorbent assay [18] at 48 h
post infection and is expressed as median log10 (median tissue culture infectious dose
[TCID50]/mL) [19].

2.9. Western Blotting

HEK 293T or MDCK cells were grown to 80% confluence and transfected with different
gene expression plasmids or empty vector. Cells were infected with CIV (or left uninfected)
24 h after transfection. After 24 h, the cells were lysed using Minute Total Protein Extraction
Kit for Animal Cultured Cells/Tissues (Invent Biotechnologies, Plymouth, MN, USA).
Lysates were collected and centrifuged for 30 s. A total of 30 µg of each sample was
separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to
a nitrocellulose membrane that was blocked for 15 min with QuickBlock Blocking Buffer
for Western Blot (Beyotime) and then incubated overnight at 4 ◦C with primary antibodies,
followed by a 1-h incubation with secondary antibody. Protein bands were visualized by
Odyssey Sa (Li-cor, Lincoln, NE, USA).

2.10. RNA Interference

Small interfering RNA (siRNA; psiRIG-I-1 and psiRIG-I-2) targeting the different
fragments of canine RIG-I were prepared. The sequences are listed in Supplementary
Table S3. The siRNAs and a scrambled negative control siRNA were synthesized by
RiboBio (Guangzhou, China). HEK 293T or MDCK cells were transfected with the siRNAs
using Lipo8000 (Beyotime). The expression of transcription factors, cytokines, and ISGs
were evaluated by qRT-PCR.

2.11. BiFC Assay

HEK 293T cells were seeded in 12-well plates and transfected with plasmids containing
C- and N-terminal fragments of GFP for 24 h. GFP fluorescence was observed with a
confocal laser scanning microscope.

2.12. Statistical Analysis

Relative expression levels are presented as mean ± standard deviation. The statistical
significance of differences was evaluated with the unpaired Student’s t test using Prism
v6.0 software (GraphPad, La Jolla, CA, USA). (mean ± SD, n = 3, * p < 0.05, ** p < 0.01,
*** p < 0.001).

2.13. Ethics Statement

All procedures involving animals were approved and monitored by the South China
Agricultural University Experimental Animal Welfare Ethics Committee (permit number
SYXK [YUE] 2014-0136).

3. Results
3.1. Bioinformatic Analysis of the Canine RIG-I Gene

Based on the predicted sequence of canine RIG-I in the NCBI database, we designed a
primer pair to clone the full-length cDNA from beagle dog tissue. The results of agarose
electrophoresis and sequencing indicated that the open reading frame (2778 bp) encoded
a 925-amino acid protein; the sequence was deposited in GenBank (accession number
MG835367) (Supplementary Figure S1C). By performing a BLAST search, we found that
1 nucleobase in canine RIG-I was a variant of the predicted sequence at amino acid po-
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sition 291 (T291G). The conserved protein domains were predicted using SMART and
NCBI CCD; canine RIG-I had 2 CARDs at the N terminus (residues 2–186), a DEXD
box domain (residues 234–439), helicase domain (residues 562–723), and C-terminal reg-
ulatory domain (residues 807–913) (Supplementary Figure S1A,B). Multiple sequence
alignment of the canine RIG-I with homologs in other species showed that the highest
similarity was with feline RIG-I (89.0%). A phylogenetic tree constructed according to
the complete RIG-I sequence showed a close genetic relationship between the two species
(Supplementary Figure S1D).

3.2. Expression of Canine RIG-I in Beagle Dog Tissues

We examined the expression of the canine RIG-I gene in different tissues of beagle dog
by qRT-PCR. RIG-I was broadly expressed in all eight tissues (including small intestine,
intestinal lymph node, heart, kidney, spleen, lung, liver and brain) examined in this study,
and was most highly expressed in the spleen and lung (Figure 1).
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Figure 1. Distribution of canine RIG-I gene in different tissues of beagle dog. The expression level
of canine RIG-I gene in each tissue is normalized by glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) mRNA and the heart tissue serves as a control. Samples were analyzed in triplicate and
3 independent experiments were performed. Error bars indicate standard deviations.

3.3. Subcellular Localization of Canine RIG-I Protein

The subcellular localization of canine RIG-I was evaluated by IFA in MDCK cells
transfected with the RIG-I agonist 3p-hpRNA for 24 h. RIG-I was mainly detected in
the cytoplasm, with a low fluorescence signal observed in the nucleus (Figure 2A). In
HEK 293T cells overexpressing Flag–RIG-I, the fusion protein was detected in the nucleus
(Figure 2C,D). To identify the domain of RIG-I responsible for subcellular localization,
Flag–RIG-I-CARD and Flag–RIG-I∆CARD were overexpressed in HEK 293T cells. Flag–
RIG-I∆CARD showed similar localization to Flag–RIG-I, but Flag–RIG-I-CARD showed
near-equal distribution in the cytoplasm and nucleus (Figure 2B). These results suggest
that the CARD of canine RIG-I may contain a nuclear localization signal (NLS).
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Figure 2. Subcellular localization of canine RIG-I in MDCK or HEK 293T cells. (A) Schematic
diagram of plasmids of full-length canine RIG-I and truncated canine RIG-I. (B) MDCK cells were
transfected with the RIG-I agonist 3p-hpRNA for 24 h. (C) HEK 293T cells were transfected with
Flag–RIG-I, Flag–RIG-I-CARD, or Flag–RIG-I∆CARD for 24 h. (D,E) 3D reconstruction of HEK 293T
cells transfected with Flag–RIG-I. The analysis was carried out by Las X software (Leica).
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3.4. Antiviral Function of Canine RIG-I and Downstream ISGs

In human, mouse, rat, pig, and other species, the CARD of RIG-I activates the antiviral
response via a RIG-I–like signaling pathway. To investigate whether the CARD in canine
RIG-I has a similar function, the whole cDNA or different fragments were cloned into
the p3 × CMV10-Flag expression vector for overexpression in MDCK cells, and IFN
induction was evaluated by qRT-PCR and the luciferase assay. The full-length canine
RIG-I protein (Flag–RIG-I) and RIG-I lacking the CARD (Flag–RIG-I∆CARD) did not
enhance the expression of downstream genes encoding transcription factors, cytokines,
and ISGs in the absence of stimulation with the RIG-I agonist. However, these genes were
significantly upregulated by overexpression of N-terminal CARD (Flag–RIG-I-CARD) and
RIG-I agonist 3p-hpRNA. Notably, transcript levels of NF-κB were increased more than
4-fold, respectively (p < 0.01) whereas that of the cytokine IFN-β was increased more than
13-fold (p < 0.01). The expression of ISGs including MX dynamin-like GTPase 1 (Mx1;
7-fold, p < 0.01), oligoadenylate synthase (OAS; 7-fold, p < 0.05), and signal transducer
and activator of transcription 1 (STAT-1; 3-fold, p < 0.01) was also enhanced (Figure 3B).
Similarly, in the luciferase assay, CARD overexpression activated the IRF-3, NF-κB, and
IFN-β gene promoters compared to the empty vector (p < 0.01) (Figure 3C). The western
blotting results of MDCK cells transfected with the RIG-I agonist showed that endogenous
RIG-I was strongly raised in a concentration-dependent manner (Figure 3D). Collectively,
these results indicate that canine RIG-I can recognize the 3p-hpRNA and the CARD domain
of canine RIG-I can induce a strong antiviral response.

3.5. RIG-I Deficiency Reduces the Antiviral Response

Two siRNAs targeting different parts of canine RIG-I were designed to examine the
function of the protein in greater detail. The siRNA psiRIG-I-2 was more effective in
knocking down the expression of endogenous RIG-I in MDCK cells (Figure 4A,C) and was
used in subsequent experiments. RIG-I silencing significantly reduced the expression of
IFN-β, OAS, and STAT-1, as determined by qRT-PCR (Figure 4B), whereas NF-κB and Mx1
were largely unaffected. These results suggest that canine RIG-I is required for activation
of the antiviral innate immune response in dogs.

3.6. Canine RIG-I Inhibits CIV H3N2 Replication

RIG-I is known to activate antiviral responses by detecting IAV dsRNA or ssRNA.
We examined whether canine RIG-I suppresses CIV via a similar mechanism. We first
measured viral titers in MDCK cells overexpressing canine RIG-I at different time points
after infection with CIV H3N2. The viral titer was lower in cells transfected with Flag–
RIG-I as compared to the empty vector at each time point (Figure 5A). Furthermore,
western blot analysis revealed that the viral M1 and M2 protein was downregulated in
a dose-dependent manner in MDCK cells challenged with CIV after transfection with
RIG-I agonist 3p-hpRNA or Flag-RIG-I vector (Figure 5B,D). Moreover, MDCK cells with
canine RIG-I interference showed the higher yield of viral M1 and M2 protein than infected
control (Figure 5C). Notably, with the higher transfection ration, CIV was also significant
suppressed in HEK 293T cells transfected with the Flag-RIG-I or Flag–CARD plasmid
(Figure 5E,F). Thus, canine RIG-I may effectively sense CIV H3N2 and inhibit its replication
as part of the antiviral immune response in dogs.
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Figure 3. Gene expression in MDCK cells overexpressing full-length or partial forms of RIG-I or
RIG-I agonist. (A) MDCK cells transfected with plasmids Flag–RIG-I, Flag–RIG-I-CARD or Flag–RIG-
I∆CARD, respectively. The whole cells protein was obtained after 24 h. (B) Relative mRNA expression
levels of NF-κB, IFN-β, Mx1, OAS, and STAT-1 were evaluated by qRT-PCR 24 h after transfection
of Flag–RIG-I, Flag–RIG-I-CARD, Flag–RIG-I∆CARD, 3p-hpRNA, or empty vector. (C) Effect of
overexpression of the various constructs on IRF-3, NF-κB, and IFN-β promoter activity as determined
with the luciferase assays 24 h after transfection. Samples were analyzed in triplicate and three
independent experiments were performed. * p < 0.05, ** p < 0.01 vs. empty vector control group. Error
bars indicate standard deviation. (D) MDCK cells were transfected with indicated concentrations of
RIG-I agonist and the whole cells protein was obtained after 24 h; the expression level of endogenous
RIG-I was determined by western blotting with GAPDH used as a loading control.



Viruses 2021, 13, 2048 9 of 17

Viruses 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

transfection of Flag–RIG-I, Flag–RIG-I-CARD, Flag–RIG-IΔCARD, 3p-hpRNA, or empty vector. (C) 
Effect of overexpression of the various constructs on IRF-3, NF-κB, and IFN-β promoter activity as 
determined with the luciferase assays 24 h after transfection. Samples were analyzed in triplicate 
and three independent experiments were performed. * p < 0.05, ** p < 0.01 vs. empty vector control 
group. Error bars indicate standard deviation. (D) MDCK cells were transfected with indicated con-
centrations of RIG-I agonist and the whole cells protein was obtained after 24 h; the expression level 
of endogenous RIG-I was determined by western blotting with GAPDH used as a loading control. 

3.5. RIG-I Deficiency Reduces the Antiviral Response 
Two siRNAs targeting different parts of canine RIG-I were designed to examine the 

function of the protein in greater detail. The siRNA psiRIG-I-2 was more effective in 
knocking down the expression of endogenous RIG-I in MDCK cells (Figure 4A,C) and was 
used in subsequent experiments. RIG-I silencing significantly reduced the expression of 
IFN-β, OAS, and STAT-1, as determined by qRT-PCR (Figure 4B), whereas NF-κB and 
Mx1 were largely unaffected. These results suggest that canine RIG-I is required for acti-
vation of the antiviral innate immune response in dogs. 

 
Figure 4. RIG-I knockdown suppresses the RIG-I–mediated antiviral response. (A) MDCK cells were 
transfected with 100 nmol of RIG-I siRNA or negative control. RIG-I mRNA expression level was 
evaluated by qRT-PCR 24 h after transfection. (B) MDCK cells were transfected with 100 nmol of 
psiRIG-I-2 and 1000 ng of the RIG-I agonist 3p-hpRNA to stimulate the antiviral response. NF-κB, 
IFN-β, Mx1, OAS, and STAT-1 mRNA expression levels were evaluated by qRT-PCR 24 h after 
transfection and were normalized to the level of GAPDH mRNA. Samples were analyzed in 

Figure 4. RIG-I knockdown suppresses the RIG-I–mediated antiviral response. (A) MDCK cells were
transfected with 100 nmol of RIG-I siRNA or negative control. RIG-I mRNA expression level was
evaluated by qRT-PCR 24 h after transfection. (B) MDCK cells were transfected with 100 nmol of
psiRIG-I-2 and 1000 ng of the RIG-I agonist 3p-hpRNA to stimulate the antiviral response. NF-κB,
IFN-β, Mx1, OAS, and STAT-1 mRNA expression levels were evaluated by qRT-PCR 24 h after
transfection and were normalized to the level of GAPDH mRNA. Samples were analyzed in triplicate
and three independent experiments were performed. * p < 0.05 vs. empty vector control group. Error
bars indicate standard deviation. (C) MDCK cells were transfected with indicated 200 nmol siRNA
and 1000 ng RIG-I agonist 3p-hpRNA together. The whole cells protein was obtained after 24 h; the
expression level of endogenous RIG-I was determined by western blotting with GAPDH used as a
loading control.
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3.7. Interaction between CIV and Canine RIG-I

To investigate whether CIV NS1 could show the suppression to RLRs pathway, the
luciferase assay and western blotting was carried out. CIV NS1 overexpression strongly
suppressed the innate immune response (IRF-3, NF-κB, and IFN-β promoter activity)
induced by the RIG-I agonist 3p-hpRNA in luciferase assays (Figure 6A–C). In western
blotting, CIV NS1 showed the same ability to decrease the expression of the endogenous
RIG-I and impair the phosphorylation of IRF-3 induced by RIG-I agonist 3p-hpRNA
(Figure 6D). To further explore the protein interaction between CIV proteins and canine
RIG-I, we carried out the co-overexpression in the IFA and BiFC assays. Notably, the results
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of IFA and the BiFC assays showed that RIG-I interacted with CIV ribonucleoprotein
particle subunits (PB2, PB1, PA, and NP), NS1, and matrix proteins (M1 and M2). Moreover,
PB2, PB1, PA, NP, NS1, M1, and M2 colocalized with RIG-I in the cytoplasm while NP
colocalized with RIG-I in both the cytoplasm and nucleus (Figures 7 and 8). Moreover, the
IFA results of CIV infection also indicated the interactions between CIV M1/M2 and canine
RIG-I (Figure 9). To keep the authenticity of IFA and BiFC assays, the negative control of
IFA and BiFC assays were carried out and shown in supplementary materials (Figure S2).
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Figure 6. CIV NS1 impairs activation of RLR signaling in MDCK cells. (A) IRF-3 (B) IFN-β, and
(C) NF-κB, promoter activity in the cells was evaluated 24 h after transfection with Myc-tagged CIV
viral protein along with the 1000 ng RIG-I agonist 3p-hpRNA. Samples were analyzed in triplicate
and three independent experiments were performed. ** p < 0.01, *** p < 0.001 vs. empty vector control
group. Error bars indicate standard deviation. (D) MDCK cells were transfected with 1000 ng RIG-I
agonist 3p-hpRNA along with or without Myc-NS1 plasmid; the whole cells protein was obtained
for western blotting. Protein band intensity of endogenous RIG-I, IRF-3 and phosphorylated IRF-3
were used for western blotting quantification analysis.
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and CIV viral protein (PB2, PB1, PA, NP, NS1, M1, and M2 with the N-terminal fragment of GFP) in
HEK 293T cells.
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4. Discussion

RLR is a PAMP that participates in the innate immune response. It is the main cytosolic
viral RNA sensor and is highly conserved in eukaryotes. In this study, we cloned canine
RIG-I from beagle dog tissue. An analysis of the 2778-bp open reading frame revealed
3 main conserved domains, tandem N-terminal CARDs, and DEXD box, helicase, and
RIG-I C-terminal regulatory domains. The canine RIG-I sequence had a variant amino
acid at position 291 (T291G) that was not present in the predicted sequence in the NCBI
database, possibly due to individual differences among dogs. A phylogenetic analysis
showed that canine RIG-I was most closely related to the homologous gene in cat [20–22].

We examined the tissue distribution and subcellular localization of canine RIG-I and
found that it was broadly expressed in various tissues in beagle dogs, most prominently in
the spleen and lung. In other species, RIG-I is highly expressed in immune organs [23–25]
but canine RIG-I had low expression in lymph nodes, possibly due to the young age (and
corresponding immaturity of the immune system) of the dogs used in this study. In MDCK
cells stimulated with the RIG-I agonist 3p-hpRNA, RIG-I protein was mainly expressed
in the cytoplasm as previously reported [26], although some nuclear localization was also
observed. This was confirmed by IFA of HEK 293T cells transfected with the Flag–RIG-I
plasmid. These results imply that as with the human protein, canine RIG-I protein shuttles
between the cytoplasm and nucleus [27]. There is little information on the NLS or nuclear
export sequence (NES) of canine RIG-I. To identify these parts of the protein, HEK 293T
cells were transfected with plasmids harboring the full-length or partial RIG-I sequence. In
cells expressing Flag–RIG-I-CARD, protein localization was near-equal in the cytoplasm
and nucleus, but RIG-I lacking the CARD (Flag–RIG-I∆CARD) was detected only in the
cytoplasm, suggesting that the NLS is found in the CARD. Additional experiments are
needed to confirm the location of the NLS and identify the NES of RIG-I.

The short dsRNA and ssRNA of many viruses with 5′ ppp blunt ends are recognized
by RIG-I [28]; 5′ ppp is required for RIG-I activation and is used by the host to discriminate
self from viral RNA. In this study, 3p-hpRNA (an uncapped 5′ triphosphate hairpin RNA
generated by in vitro transcription of an IAV sequence) was used as an agonist for canine
RIG-I [29]. The endogenous canine RIG-I showed a strongly increasing trend under the
stimulation in present study.

In the absence of viral infection, RIG-I is autorepressed through internal interactions
between two domains (CARD2 and second CARD-helicase insertion domain [Hel2i]).
When viral dsRNA or ssRNA binds to the C terminus, the CARD2–Hel2i interaction
is disrupted by a conformational change and the exposed CARD binds to K63-linked
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polyubiquitin through ATP hydrolysis. TRIM25α mediates the ubiquitination of K63 in
the CARD of RIG-I and induces its binding to MAVS [7,8], thereby activating a signal
transduction cascade that leads to the translocation of the transcription factors IRF-3, IRF-7,
and NF-κB to stimulate the expression of antiviral factors and induction of type-I IFN,
which was confirmed in the present study by qRT-PCR. Moreover, IFN-β stimulates the
expression of ISGs including IFN-induced transmembrane protein 1 (IFITM), Mx1, protein
kinase R (PKR), and OAS, which function as effectors in the cellular response to virus
infection [13,30,31]. In the current study, overexpressing the CARD of canine RIG-I and
stimulating RIG-I with a specific agonist activated the RLR pathway and induced the
expression of the transcription factors IRF-3 and NF-κB; the cytokine IFN-β; and ISGs
Mx1, OAS, and STAT-1. Conversely, IRF-3, NF-κB, IFN-β, and Mx1 were downregulated
by RIG-I knockdown. These results indicate that canine RIG-I plays an important role in
regulating the antiviral response in dogs.

Elevated expression of IFN-β and ISGs suppresses IAV replication in the host during
infection [13,31]. To determine whether canine RIG-I has this effect on CIV, we examined
virus replication kinetics in MDCK cells and found that CIV titer was decreased at each
post infection time point, especially at 36 h. This was accompanied by reduced expression
of the CIV M1 and M2 protein in cells transfected with RIG-I agonist 3p-phRNA, full length
canine RIG-I or truncated length of CARD domain. Furthermore, cells with interference of
canine RIG-I showed a higher yield of viral protein compared to infected control group.
Taken together, canine RIG-I can inhibit the replication of CIV, consistent with the activity
of RIG-I in other species against IAVs.

IAVs have evolved a variety of strategies to evade host surveillance mechanisms.
Previous studies have demonstrated that protein degradation, inhibited phosphorylation
and ubiquitination in RLRs pathway results from the accumulation of multi-functional IAV
NS1 [15,16,32]. In present study, the results of the luciferase assay and western blotting in
MDCK cells showed that CIV NS1 protein suppressed the activation of the RLRs pathway,
including down-regulating canine RIG-I and decreasing phosphorylation of IRF-3, which
is in accordance with our previous finding that CIV NS1 inhibited the production of type
I IFN induced by SEV [33]. Taken together, CIV NS1 does not directly down-regulate
the expression of IRF-3, but it decreases the ratio of phosphorylated IRF-3 to inhibit the
signaling transduction of RLRs pathway. CIV NS1 can reduce the protein expression level
of canine RIG-I to restrain the activation of RLRs pathway.

However, the interactions between canine RIG-I and CIV are not fully understood.
This was addressed in our study by IFA and the BiFC assay. We found that RIG-I interacts
with the PB2, PB1, PA, NP, NS1, M1, and M2 proteins of CIV. The subcellular location
where canine RIG-I and CIV PB2 or NP interact differs from that reported in a previous
study [34]; we found that RIG-I interacted with PB2 mainly in the cytoplasm and with
NP in both the cytoplasm and nucleus, which may result from the shuttling activity of
RIG-I. The interaction between RIG-I and M1 and M2, which function in virus budding
and assembly, has not been previously described [35,36]. M2 also acts as a proton channel
and activator of inflammation [36,37], and interactions between MAVS and M2 have been
linked to autophagy and the innate immune response [38–40]. Additional studies are
needed to clarify the functional significance of these novel interactions in the host response
to viral infection.

In conclusion, this is the first report of the cloning and characterization of canine
RIG-I, including the signaling pathway that is activated by RIG-I in the host response to
CIV infection. We demonstrated that canine RIG-I stimulates the production of IFN and
expression of downstream ISGs and showed that it interacts with multiple CIV proteins.
These findings provide a basis for more detailed studies on the antiviral mechanisms of
RIG-I that can potentially be exploited as a measure to protect dogs against CIV infection.
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