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A B S T R A C T

Despite the development of new and advanced diagnostic approaches, monitoring the clinical evolution of ac-
cidents caused by venomous animals is still a challenge for science. In this review, we present the state of the art 
of laboratory tests that are routinely used for the diagnosis and monitoring of envenomings by venomous ani-
mals, as well as the use of new tools for more accurate and specific diagnoses. While a comprehensive range of 
tools is outlined, comprising hematological, biochemical, immunoassays, and diagnostic imaging tools, it is 
important to acknowledge their limitations in predicting the onset of clinical complications, since they provide 
an overview of organic damage after its development. Thus, the need for discovery, validation, and use of 
biomarkers that have greater predictive power, sensitivity and specificity is evident. This will help in the 
diagnosis, monitoring, and treatment of patients envenomated by venomous animals, consequently reducing the 
global burden of morbidity and mortality.

1. Introduction

Envenomings by venomous animals has increasingly affected the 
population of tropical and subtropical countries, resulting in high rates 
of morbidity and mortality. Snakebite envenomings have represented 
the main neglected health problem regarding venomous animals in 
tropical and subtropical countries in Africa, Asia, America, and Oceania 
(Braitberg et al., 2021; Cavalcante et al., 2021, 2023a,b; Chippaux, 
2017; Chippaux et al., 2019; Hannan Wan Ibadullah et al., 2021; Mender 
et al., 2022). Approximately 2.7 million people may be affected annu-
ally, resulting in 81,000–138,000 fatal cases and 400,000 cases of 
morbidity (Longbottom et al., 2018). The problem has increased over 
the years and after its inclusion in category A of neglected diseases by 
the World Health Organization (WHO) in 2017, strategies to mitigate 
the problem have been proposed, and in 2020 the race against cases of 

morbidity and mortality caused by snakebite was initiated through The 
Global Snakebite Initiative (Minghui et al., 2019).

Arthropod bite envenoming has also gained substantial attention due 
to the increase in cases. Scorpions kill less than snakes, although have 
been responsible for higher number of accidents, representing a serious 
public health problem in the Old and the New World, especially for 
pediatrics (Chippaux and Goyffon, 2008). Spider accidents report an 
exceptionally low number of fatalities, leading to an underestimation of 
their clinical significance. The reasons behind our exaggerated percep-
tion of the risk associated with spiders remain unclear (Cain et al., 2023; 
Fusto et al., 2020; Hubbard and James, 2011; Isbister and White, 2004; 
Mammola et al., 2022). Finally, the growing number of cases of enve-
noming by Africanized bees has represented a new challenge in clinical 
Toxinology. The mechanisms involved with the development of clinical 
complications have not yet been explored, and even today, there are no 
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specific diagnoses and an antivenom available for treatment, although 
these are under development (Barbosa et al., 2017, 2021).

Therefore, a significant aspect of the issue pertains to the necessity 
for a deeper comprehension of the mechanisms driving these patho-
physiological effects (Albuquerque et al., 2020; Cavalcante et al., 2021, 
2023a,b; Pereira et al., 2023; Pucca et al., 2019b). This need is com-
pounded by the absence of a clear and specific diagnosis, alongside a 
dearth of predictive tools for the emergence of various clinical compli-
cations. Consequently, these factors contribute to elevated rates of tissue 
loss, amputations, and fatalities (Cavalcante et al., 2023a,b). Within this 
context, this review delves into current and emerging methodologies for 
diagnosing and monitoring envenoming caused by major terrestrial 
venomous animals responsible by human envenoming. In the future, 
certain diagnostic tools discussed here might find their way into clinical 
use. This review also aims to facilitate the development of clinical trials 
that validate these tools by highlighting the most promising methods.

2. Snakebite envenoming

Snakebite envenoming is a tropical disease distributed in the devel-
oping world (Longbottom et al., 2018), such as in some Asian and Af-
rican countries (Chippaux et al., 2019; Wang et al., 2023), Latin 
American (Chippaux, 2017), and Oceanian (O’Leary and Isbister, 2009) 
countries. The greatest burden of snakebite has been identified in South 
Asia and sub-Saharan Africa (Appiah, 2012). India has the highest 
incidence of snakebite mortality ranging from 13,000 to 50,000 cases 
per year (Alirol et al., 2010; Mohapatra et al., 2011; Warrell, 2010). In 
the Americas an average annual incidence of 57,500 snakebites (6.2 per 
100,000 population) and mortality close to 370 cases of death (0.04 per 
100,000 population) is reported, although rates vary widely between 
and within countries (Chippaux, 2017).

Many viperids’ venoms are capable of inducing pain, edema, 
inflammation (Cavalcante et al., 2023a,b) oxidative stress (Dong et al., 
2020) and activation of immunocompetent cells (Teixeira et al., 2019), 
immunomodulatory activity (Pedro et al., 2024), hemostatic alterations 
and bleedings (Larréché et al., 2021), acute renal damage (Albuquerque 
et al., 2020), rhabdomyolisis and necrosis (Fujioka, 2015; Gutiérrez 
et al., 2018). On the other hand, envenoming by elapid serpents is 
mainly distinguished by inducing a neurotoxic syndrome. PLA2s and 
3FTX act as antagonists of ion channels and nicotinic or muscarinic re-
ceptors of pre- or post-sinaptic junctions, causing neurotoxicity 
(Ranawaka et al., 2013). The pathologic phenotype is characterized by 
flaccid paralysis, which is at first evident as bilateral ptosis and oph-
thalmoplegia. Moreover, the flaccid neuromuscular paralysis is 
descending, which can worsen by affecting the bulbar block (mouth and 
throat muscles responsible for speech and deglutition) and respiratory 
muscles (Gutiérrez et al., 2017).

In snakebite, uncertainties persist regarding the species involved (de 
Castañeda et al., 2019), the quantity of venom injected, and the 
appropriate dosage of antivenom administered (Daswani, 2017; Pucca 
et al., 2020b). In addition, venom composition may vary, influencing the 
snakebite manifestations (Moretto Del-Rei et al., 2019), make it difficult 
for health professionals to make decisions. Frequently, the healthcare 
teams overseeing the clinical care of victims at district and rural hos-
pitals lack the essential expertise and tools required to determine the 
most effective course of action for optimizing therapeutic outcomes 
within a timely manner (Cristino et al., 2021). However, although 
several techniques have been performed routinely, while others have 
been explored for application, diagnosis remains a challenge (Fig. 1).

In this context, the proper identification of the snake genus and/or 
type of venom can allow physicians to predict the development of 
clinical manifestations, which may modify the clinical outcome 
(Cavalcante et al., 2023a,b). To improve the clinical team’s under-
standing of this task, there is a common and deceptively simple cate-
gorization of venoms as being primarily neurotoxic (Elapidae family) 
and proteolytic and/or hemotoxic (Viperidae family) (Liu et al., 2018), 

which can lead to clinical misinterpretations, with several important 
exceptions to the standard clinical pictures.

In recent years there has been renewed interest in innovations and 
improvements, with much research being published not only on new 
treatment modalities (Pucca et al., 2019a). However, new diagnostics 
tools, such as immune-diffusion, agglutination test, enzyme-linked 
immunosorbent assay (ELISA), radioimmunoassay, lateral flow assay 
(LFSA), polymerase chain reaction, infrared thermography, and others, 
have not been implemented in the snakebite clinics (Knudsen et al., 
2021). Thus, even amidst diagnostic advancements, the identification of 
snakebite envenoming continues to be based on a combination of patient 
history, clinical presentation, and routine laboratory analysis (J. dos S. 
Cavalcante et al., 2023a,b).

In Latin America, many countries consider coagulation time as a 
commonly investigated parameter for early detecting viper snakebite 
envenoming, due to the highest occurrence of envenoming by snakes 
causing coagulopathy. Thus, a series of tests are used to identify and 
monitor coagulation abnormalities, including the 20-min whole blood 
coagulation test (20WBCT), Modified Lee and White (MLW) method, 
bleeding time, prothrombin time, and activated partial thromboplastin 
time (APTT) (Hamza et al., 2021; Lamb et al., 2021; Suseel et al., 2023). 
Hematological analysis based on cell counts has also been used. Clini-
cally, cases of microangiopathie thrombotique have been reported and 
associated with kidney injury and thrombocytopenia after envenoming 
by Bothrops jararaca and B. erythromelas in Brazil (Bucaretchi et al., 
2019; Mota et al., 2020; Noutsos et al., 2019, 2022). However, markers 
of microvascular hemolysis and anemia after snakebite are not yet 
specific (Noutsos et al., 2022). Platelet count, used to detect thrombo-
cytopenia, lacks specificity concerning the genus and type of venom, due 
to the variability of the action of toxins on platelets, which can cause 
platelet aggregation or inhibition (Almeida et al., 2023). Intense neu-
trophilia and thrombocytopenia have been documented in snake enve-
noming cases involving tissue loss and/or limb amputations but late 
when tissue damage has already occurred (Luciano et al., 2009; Mag-
alhães et al., 2017; Valente-Aguiar et al., 2019) a low predictive po-
tential for the clinical outcome.

Additional challenges stem from the reliability of test results con-
cerning the patients’ clinical status. For instance, in the Amazon region, 

Fig. 1. Overview of methods routinely used and under development for the 
diagnosis and monitoring of patients victims of snakebite envenoming.
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46% of B. atrox snakebite cases exhibit no alterations in whole blood 
coagulation tests, while 90% do not present thrombocytopenia upon 
arriving at the clinic (Oliveira et al., 2020; Silva de Oliveira et al., 2020). 
On the other hand, in B. jararaca snakebites, 100% of cases present 
thrombocytopenia and leukocytosis by the time they arrive at the clinic 
(Santoro et al., 2008). This underscores the necessity to customize 
protocols for diagnosing, managing, and treating envenoming in Brazil, 
whilst hematological parameters serve as crucial markers for patient 
monitoring and play a pivotal role in determining the number of anti-
venom vials required for treatment.

Biochemical parameters are used to monitor acute envenoming; 
however, their specificity and sensitivity are limited, and may not reflect 
the patient’s true clinical condition. For instance, assessing creatine 
kinase (CK), an enzyme involved in ATP degradation with a relatively 
short half-life, reveals activity that swiftly normalizes after myodegen-
eration or local necrosis ceases (Smith et al., 2013). Although it has been 
considered a gold standard for assessing muscle damage, evidence has 
shown that this biomarker does not reflect the amount of tissue damage 
(Delanghe et al., 2019; Lippi et al., 2018), since its activity depends not 
only on the number of CK molecules present in plasma/serum, but also 
to the glutathione concentrations that tend to decrease during rhabdo-
myolysis (Delanghe et al., 2019).

ELISA and LFSA for detection of venom in patient blood samples 
have also been developed (Kulawickrama et al., 2010; Liu et al., 2018). 
However, ELISA and LFSA have some limitations. For example, certain 
protein classes within each venom overlap, causing detection devices 
using immunological techniques to be nonspecific, identifying a range of 
species rather than a specific one (Knudsen et al., 2023). Another critical 
factor to be considered is the amount of injected and free venom in the 
patient’s plasma in relation to the sensitivity of the kit, since toxins 
might be significantly diluted in plasma samples, potentially falling 
outside the kits detection range. (Liu et al., 2018).

However, recently, some LFSAs kits are considered as a promising 
tool for detection of Trimeresurus stejnegeri, Protobothrops mucrosqua-
matus, Bungarus multicinctus, and Naja atra venoms in human blood (Liu 
et al., 2018; Nong et al., 2023). Associated to this the high rates of 
sensitivity and specificity without cross reactivity identified by a LFSA 
kit, specifically, to the venom of Naja atra indicates that an immuno-
chromatographic strip assay might be suitable for snake venom detec-
tion and used as a quick diagnostic tool against the burden of snakebite 
in the future, since the LFSAs kit technique is largely known and applied 
in emergency’s situations across the world (Koczula and Gallotta, 2016; 
Qriouet et al., 2021).

Research into clinical manifestations of envenoming indicates that 
cytokine responses could serve as potential biomarkers for snakebite 
envenoming. For instance, patients bitten by Bothrops spp. and Crotalus 
durissus terrificus demonstrated elevated serum levels of cytokines like 
IL-6 and IL-8, while levels of IL-1β and TNF-α in blood samples remained 
unchanged (Barraviera et al., 1995). In contrast, B. atrox patients 
demonstrated an increase in the levels of CXCL-9, CXCL-10, IL-6, IL-2, 
IL-10, and IL-17A molecules. In general, in Bothrops envenoming, 
CXCL-8 and CCL-2 cytokines shows elevated on admission and pro-
gressively decreased during the clinical evolution of patients bitten after 
antivenom administration (Neves et al., 2022), while in some cases 
CXCL-8 and IL-2 showed significantly lower levels in patients who 
clinical conditions progressed to Early Adverse Reactions (EARs) to 
antivenom treatment (Soares et al., 2022).

Diagnostic imaging tools have also been studied in the diagnosis and 
monitoring of snake envenomings (Medeiros et al., 2019). Thermog-
raphy is a technique that quantifies the body surface temperature, 
capturing the thermal radiation emitted and producing a high-resolution 
digital image called a thermogram. Its use makes it possible to visualize 
the extent of the inflammatory process and tissue damage caused by 
snake venom in Brazil through the analysis of the thermal gradient be-
tween the bitten limb and the healthy one (Medeiros et al., 2019; Ribeiro 
et al., 1969).

In snakebite envenoming, fever in patients may not represent an 
infectious condition but an inflammatory or immunomodulated process, 
being an important differential etiology in such cases (Ribeiro et al., 
1969). The presence of hot spots and local alterations in tissue’s tem-
perature of bitten patients have been accessed by infrared thermal 
technique and interesting results were found for differentiating 
venomous snakebites from non-venomous and dry bites (Sabitha et al., 
2021). Based on this, the area of increased temperature in the hot spots 
is evident on infrared thermal imaging in envenomed patients, while hot 
spot was not evident in most patients without envenoming, showing that 
infrared thermal images had a high sensitivity and specificity to differ-
entiate envenomed patients from those without (Sabitha et al., 2021).

Ultrasonography has also been studied as a resource to measure the 
extent of edema and the rate of proximal progression (Ho et al., 2021; 
Ismail, 2015; Jolissaint et al., 2018; Vohra et al., 2014; Wood et al., 
2016). Ultrasonography has been shown to be a tool with multiple 
clinical applications in snakebite envenoming, including the identifica-
tion of damaged tissue in the intramuscular layer (Wood et al., 2016) 
and compromised arterial flow (Mc Loughlin and Mc Loughlin, 2013; Mc 
Loughlin et al., 2013). In muscle damage, the ultrasonography demon-
strated the structural involvement of superficial tissues that were 
damaged (presence of subcutaneous edema, fasciculations and tendon 
sheath fluid — a marker of tenosynovitis), and the preservation of 
deeper tissues in cases of crotaline snakebite (Vohra et al., 2014). Ul-
trasonography has also been used for renal analysis, revealing the 
presence of spontaneous subcapsular and perinephric hematoma, 
increased size of the kidneys and kidney damage at different stages 
(Golay et al., 2015; Patil, 2012; Pucca et al., 2020a; Tchaou et al., 2020). 
These findings suggest that ultrasound can aid in the external assessment 
of bite-related injuries by providing useful information on internal 
changes.

Point-of-care ultrasound protocol could improve the capacity for 
facilitating the clinical decisions for antivenom administration, once the 
anatomic site of the snakebite is an important factor that affects the 
prognosis of the patients (Ho et al., 2021). Furthermore, 
ultrasound-guided compression alone or in combination with some 
substances as thrombin, can reduce some neurotoxic effects of Daboia 
russelii that induced pseudoaneurysm, without surgical procedure. 
However, several limitations in this technique can be pointed, such as 
envenomated limb or a comparison with the generally accepted invasive 
evaluation for acute compartment syndrome (Ho et al., 2021).

Clinical proteomic studies consider the set of proteins in an organism 
on a large scale, making it possible to identify biomarkers associated 
with severity, progression, and therapeutic response to treatment. The 
wide range of protein recognition and associated biochemical processes 
provides a solid basis for application in the diagnosis of human diseases, 
such as snake envenoming. However, this application started recently. 
First, in vivo studies revealed the possibility of identifying candidate 
proteins for biomarkers associated with the severity of edema and ac-
cording to the amount of venom injected into mice (Cavalcante et al., 
2022a, 2022b, 2022c). Regarding this, peroxiredoxin 2, hemoglobin 
subunit alpha, and Factor IX, increased according to the amount of B. 
atrox venom injected, while Igf1, Efemp1, and fibulin showed a drop in 
the plasma levels of Igf1, Efemp1, and fibulin (Cavalcante et al., 2022b). 
On the other hand, B. erythromelas venom induced an increase in plasma 
levels of apolipoprotein A1, serum amyloid protein A-4, adiponectin, in 
addition to a drop in plasma levels of fibulin 1, Factor XII and vitamin 
K-dependent protein Z (Cavalcante et al., 2022a). Clinical proteomics 
studies also enabled discrimination between envenomings caused by 
Agkistrodon acutus and Trimeresurus stejnegeri (Dong et al., 2020). 
Finally, another study based on clinical proteomics detected potential 
markers indicative of lethal anaphylaxis, cardiac arrest, and brain death 
in an individual case of lethal of snakebite envenoming by Crotalus viridis 
viridis, which is in accordance with the clinical course of the envenom-
ing, since the patient developed a rapid, apparent and lethal anaphy-
lactic reaction, characterized by collapse, cardiac arrest, and eventual 
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brain death (Smith et al., 2023).

3. Scorpion envenoming

Although the taxonomic catalog is extensive, about 30 species of 
scorpions are considered harmful to humans, 29 of which belong to the 
Buthidae family. While scorpions kill less than snakes, the effects of 
scorpion envenoming represent a serious public health problem, 
particularly for pediatrics, and affect mainly countries in the Old World 
(Iran, Saudi Arabia and Morocco, Africa, Asia, and Europe) and the New 
World (Mexico, Brazil, and Venezuela, United States, Central America, 
Caribbean, and other South American countries) (de Oliveira et al., 
2024; Mendoza-Tobar et al., 2024; Ward et al., 2018).

There are still no laboratory tests or diagnostic tools for scorpion 
envenoming (Abroug et al., 2020). However, scorpion stings are typi-
cally intensely painful, facilitating patients’ descriptions of the incident, 
especially since victims frequently witness the animal and often bring it 
along for identification (Monteiro et al., 2016). In addition, in instances 
where the victim did not witness the animal, the diagnosis can be guided 
by a combination of factors related to the incident (location, pain, 
clinical signs, among others) (Chabchoub et al., 2010). Although scor-
pion envenoming has a major impact on public health, and venom 
identification and quantification tools are necessary, this is a subject that 
has been little explored. Thus, the use of antivenoms for treatment is 
based on the clinical picture presented by the victims (Abroug et al., 
2020; Monteiro et al., 2016; Thumtecho et al., 2023a). This issue can 
lead to errors regarding the administration or not of antivenoms, and, in 
cases where the application is necessary, errors regarding the amount of 
antivenom to be administered (Santos et al., 2016).

The classification of scorpion sting envenoming continues to this day 
based on the set of clinical manifestations, being: (i) dry sting (without 
envenoming), (ii) class I (only local manifestations); (iii) class II (non- 
life-threatening clinical manifestations), (iv) class III (life-threatening 
systemic manifestations - respiratory failure, pulmonary edema, 
cardiogenic shock, and brain damage) and fatal outcome (Khattabi et al., 
2011). Biochemical parameters are used to monitor acute envenoming: 
Leukocytosis, hypokalemia, hyperglycemia, and glycosuria. Increased 
CK levels due to CK-MB and CK-BB fractions, increased levels of lactate 
dehydrogenase, AST, and amylase (Cupo et al., 1994). Furthermore, 
many patients initially considered moderate do not receive antivenom, 
and this is due to the long period of observation, in which monitoring 
occurs only by the clinic, although some laboratory tests can auxiliary 
(Takehara et al., 2023). ELISA assays represent promising tools for 
detecting Tityus serrulatus venom in the plasma of patients in moderate 
and severe cases, yet they lack the ability to distinguish between cases of 
envenoming and healthy individuals (Rezende et al., 1995). Other 
studies also report the ability to detect and quantify scorpion venom 
antigens in the serum of patients (Benslimane et al., 2000; D’Suze et al., 
2003; Krifi et al., 1998; Osnaya- Romero et al., 2016). In this sense, 
advances in the field of scorpion venom real-time detection using elec-
trochemical or circular dichroism approaches have been realized 
(Hartono et al., 2009; Mars et al., 2018; Mazhdi and Hamidi, 2021). A 
liquid crystal-based sensor for real-time and label-free identification of 
phospholipase-like toxins like phospholipases, beta-bungarotoxin 
(B. multicinctus), alpha bungarotoxin (B. multicinctus) have already 
been reported. Hydrolysis of the self-assembled phospholipid monolayer 
at the aqueous-LC interface by betabungarotoxin induces orientation 
responses of LCs, emitting optical signals that can be used as diagnostic 
tools (Hartono et al., 2009). Another amperometric biosensor to detect 
scorpion venom toxins displaying rapid body diffusion has also been 
reported, with the ability to identify low levels of Androctonus australis 
hector (Aah) venom. The sensitive and robust sensing platform is built by 
combining the unique features of graphene quantum dots and the high 
selectivity of the best-in-class nanobody candidate (NbF12-10) gener-
ated to fight scorpion envenomation. To amplify the signal, a Hydro-
quinone/H2O2/peroxidase system was used, obtaining high sensitivity 

(Mars et al., 2018). Finally, Odontobuthus doriae scorpion venom and its 
neurotoxic effect on blood serum neurotransmitter analytes were 
detected with high sensitivity using the achiral plasmonic structure as a 
sensor (Mazhdi and Hamidi, 2021).

When the manifestations are systemic, the electrocardiogram is very 
useful, since the patients may present cardiac alterations (Abdi et al., 
2013). In addition, radiography and echocardiography are used to 
investigate possible changes in the cardiac area, as well as signs of acute 
pulmonary edema and other cardiac complications (Bahloul et al., 2013; 
Kumar and Naveen Prasad, 2015; Thumtecho et al., 2023b). Further-
more, cases of cerebral edema and neurological deterioration have been 
reported, being diagnosed first by clinical manifestations, and confirmed 
by computed tomography (Romero and Hernández, 2005).

4. Honeybee stings

Honeybee envenoming can lead to a complex physiopathological 
response, including inflammatory reactions, allergic manifestations, 
anaphylactic shock, and systemic toxic reactions (Cavalcante et al., 
2024). Over the last few years, the number of accidents involving Afri-
canized bees has increased (Apis mellifera) (Pucca et al., 2019c). Local 
reactions observed in these envenomings include papules, pain, ery-
thema, local burning and edema. In some previously sensitized patients, 
severe systemic allergic reactions, culminating in anaphylactic shock, 
may occur (Ediger et al., 2018). However, a wide range of clinical 
complications resulting from multiple bee stings have been documented, 
and include, in accidents with multiple stings (>100), systemic reactions 
such as liver injury, renal failure, myocardial infarction, hypotension, 
acute lung injury and acute respiratory distress syndrome can occur and 
progress to multiple organ failure and death (Akyıldız et al., 2016; 
Babikir et al., 2021a; Guzel et al., 2016; Lubis et al., 2019; Navaradnam 
et al., 2021).

Hemorrhage can manifest in multiple locations after a bee sting, 
potentially affecting different body systems. These areas include the 
digestive system (resulting in gastrointestinal hemorrhage), the nervous 
system (leading to subarachnoid hemorrhage and hemorrhagic stroke 
and others) (Abhishek et al., 2021; Akyıldız et al., 2016; Babikir et al., 
2021b; Gupta, 2019; Jain et al., 2012; Kabra et al., 2022; Ramlack-
hansingh and Seecheran, 2020; Rathnayaka et al., 2021; Varuni et al., 
2018), and the respiratory system (causing pulmonary hemorrhage) 
(Mondello et al., 2023), and others. Furthermore, hematological com-
plications that may arise include ischemia (Ratnayake et al., 2018), 
anemia (Odinaka et al., 2015), thrombosis, hemolysis (Akyıldız et al., 
2016; França et al., 1994; Toledo et al., 2018; Witharana et al., 2021), 
disseminated intravascular coagulation (DIC) (França et al., 1994), and 
shock (Azevedo et al., 2006; Babikir et al., 2021b; França et al., 1994; 
Mendonça-da-Silva et al., 2021; Rauf et al., 2021), which may subse-
quently lead to hypovolemia (Ruwanpathirana and Priyankara, 2022; 
Silva Junior et al., 2017).

Anaphylactic shock is an IgE-mediated immune system response 
resulting in hypoperfusion and vasodilation (Ediger et al., 2018). It 
usually occurs in individuals who have already suffered a bee sting or in 
people with allergies. This reaction can lead to mortality and organ 
damage. Another immune system response is mast cell activation syn-
drome, characterized by an excessive production of mast cells. The in-
flammatory effects of the venom can trigger multisystem complications, 
resulting in multiple organ damage and failure (Ruwanpathirana and 
Priyankara, 2022). Rhabdomyolysis, a condition characterized by the 
rupture of skeletal muscle cells, is strongly linked to bee stings enve-
noming, potentially contributing to the development of acute kidney 
injury (AKI) (Mendonça-da-Silva et al., 2021; Silva Junior et al., 2017). 
Other complication of the muscular system is hemiparesis, a common 
condition characterized by muscle weakness after an ischemic stroke, 
which can lead to immobilization or a decrease in the victim’s physical 
activity. (Wist et al., 2016).

These outcomes are largely contingent upon factors such as the 
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number of stings, the patient’s age, weight, existing health conditions, 
and medical interventions (Barbosa et al., 2017; Pucca et al., 2019b). 
However, we do not have specific diagnoses or laboratory protocols for 
monitoring the clinical evolution of patients. Although it is easy to di-
agnose, honeybee sting envenoming are difficult to monitor, and require 
different laboratory tests such as fibrinogen, APTT, PT and D-dimer 
assay for diagnosis and monitoring of disseminated intravascular coa-
gulopathy, blood complete count to identify internal hemorrhages and 
hemolytic anemia (evidenced by the drop in red blood cells and hemo-
globin levels; elevated serum concentrations of CK, myoglobin, lactate 
dehydrogenase (LDH), potassium, creatinine, and aspartate amino-
transferase (AST) for rhabdomyolysis; gamma GT, alkaline phosphatase, 
alanine aminotransferase (ALT) and AST for identification of liver 
injury; urea, creatinine, sodium, potassium for assessment of kidney 
damage. In addition, clinical complications such as cerebral venous 
thrombosis, subarachnoid hemorrhage, acute limb ischemia, acute 
cerebellar infarction, and others have been commonly reported. Diag-
nosis for these cases includes continuous physical examination and use 
of tests such as magnetic resonance imaging, and computed tomogra-
phy, use of duplex ultrasound, computed tomography angiography, and 
magnetic resonance angiography, and invasive angiogram (Table 1).

In the multicenter phase I/II clinical trial of antivenom for the 
treatment of Africanized bee stings (Oliveira et al., 2024), several clin-
ical and biochemical parameters were considered for monitoring enve-
noming and therapeutic success (Barbosa et al., 2017, 2021). With that, 
it became clear the need is major to development of methods to quantify 
the venom in blood plasma of victim, which would assist in the quan-
tification of the residual venom that is slowly released into the blood-
stream. Under these conditions, the renewal of antivenom serum 
administration needs to be planned based on the half-life of F (ab’)2, and 
on the amount of bee venom in circulation, which is more difficult to 
determine, with the need to methods that can monitor the abundance of 
toxins released into the circulation.

5. Spider bites

The epidemiological impact of spider bite envenoming is compli-
cated by various factors, including challenges in distinguishing lesions, 
identifying suspected spider species, determining the specific causative 
spider, and the potential for imprecise identification by professionals 
(Diaz, 2004; Lopes et al., 2020). Regrettably, accurate diagnoses often 
rely on patients bringing the spider to the hospital, increasing the like-
lihood of precise identification. In most cases, diagnoses remain pre-
sumptive or uncertain. The challenge escalates when patients do not feel 
or see the spider, relying solely on clinical and laboratory assessments, 
along with knowledge about the regional species distribution, for 
diagnosis (Vetter and Isbister, 2008).

Diagnosis considering systemic and/or local symptoms is difficult, as 
they are not specific and can be confused with other medical conditions 
that have been or can be diagnosed as bites by other animals. The 
diagnosis is basically clinical and focused on the skin wound; however, 
the clinical team also uses laboratory tests, although nonspecific, to 
obtain a possible differential diagnosis (Dunbar et al., 2022; Jerusalem 
and Salavert Lletí, 2018; Langner et al., 2021). The most common blood 
tests are hematological tests, hemostatic tests, and biochemical tests 
(Loden et al., 2020). Laboratory diagnosis depends on the presence of 
several hematological tests (analysis of the red series and WBC) to 
identify hemolysis and leukocytosis, hemostatic tests (fibrinogen, APTT, 
PT and D-dimer assay) to assess the presence of disseminated intravas-
cular coagulopathy for directing the diagnosis.

Faced with different confounding factors in the clinic, many cases of 
spider bites are neglected, causing the clinical condition to evolve from 
mild to moderate, which can result in tissue loss and death (Danilo Leite 
da Silva et al., 2021; Rosen et al., 2012). In spider bite by Loxosceles, the 
development of systemic loxoscelism is common, and presents a wide 
variety of clinical manifestations, such as intravascular hemolysis and 

hemolytic anemia, renal failure, hemostatic changes, cerebral, cardiac, 
hepatic disorders, and others (Gremski et al., 2022).

Hemolysis is diagnosed mainly by laboratory tests that include He-
moglobinuria; low hematocrit; direct Coombs positive; Anemia; positive 
DAT 1; Anemia; hematuria; Low hemoglobin; increased LDH 2; indirect 
bilirubin; abnormal coagulation profile; myoglobinuria; increased 
whole blood, C-protein reactive, reticulocytosis, increased whole blood 
lactate (Calhoun et al., 2022; Harry et al., 2022; Lane et al., 2011; Nance, 
1961). Furthermore, clinical manifestations such as fever, jaundice, dark 
urine, malaise, pallor, rash, fatigue, exanthem, low oxygen saturation, 
nausea, abdominal pain, vomiting, dyspnea, body aches, bilateral scleral 
icterus are reported in different frequencies of patients who develop 
hemolysis.

Cases of systemic loxoscelism with acute renal failure have been 
reported in patients of all ages, especially in pediatric cases (Gremski 
et al., 2022). Diagnosis begins with clinical signs of impaired renal 
function and laboratory tests. Clinical signs are generally oliguria, 
vomiting, jaundice, fever, hemolysis, hemolytic anemia, rhabdomyol-
ysis, hypotension, fatigue, dark urine, malaise, periumbilical pain, 
headache, nausea, and tachycardia. From the perspective of laboratory 
tests, increased levels of urea, potassium and creatinine in the blood, 
proteinuria, hematuria, pyuria, heterogeneous enhancement pattern of 
kidneys found in tomography of the abdomen and pelvis are commonly 
reported (Albuquerque et al., 2018; Anwar et al., 2013; de Siqueira 
França et al., 2002; Golay et al., 2013; Hubbard and James, 2011; 
Nguyen and Pandey, 2019; Rosen et al., 2012).

Pain, and radiating spasms and pain, blurred vision, tachycardia, 
poor peripheral perfusion, prostation, pallor, cyanosis, diaphoresis, 
tremors, dyspnea, and pulmonary edema are clinical manifestations 
commonly reported in cases of spider veins envenoming by Phoneutria, 
assist to diagnosis and discrimination among other accident-causing 
spiders. In addition, laboratory tests based on blood analysis are little 
used for diagnostic and monitoring purposes (Bucaretchi et al., 2016). In 
more serious cases, local clinical complications such as Raynaud’s 
phenomenon may occur due to compromised blood flow caused by 
edema, causing a sensation of cold and pale blue coloration. However, 
no laboratory tests have yet been reported that could be used for iden-
tification of Raynaud’s phenomenon, although aortography, arteriog-
raphy, venous and arterial duplex ultrasound can be used to rule out the 
presence of thrombosis (Salvatierra and Ramos, 2018).

Latrodectism cases present on physical examination intense muscle 
pain and stiffness, muscle spasms, agitation, petechiae, grunting respi-
rations, priapism and generalized tremors, peripheral cyanosis, a third 
cardiac sound, crackles over both lung fields, and a rigid, board-like 
abdomen (Emara et al., 2022; Friedman et al., 2021; Pneumatikos 
et al., 2003). Laboratory tests may show leukocytosis, increased platelet 
count, tendency to increase creatine kinase, increased levels of lactate 
dehydrogenase, and increased levels of aspartate aminotransferase 
(Emara et al., 2022; Friedman et al., 2021; Pneumatikos et al., 2003). 
Furthermore, the venom can cause dilation of the heart chambers and 
severe global hypokinesia of the left ventricular wall, making it neces-
sary to perform an echocardiogram for evaluation (Pneumatikos et al., 
2003). Furthermore, it is recommended to perform electrocardiogram to 
evaluate the presence of ST elevation in leads I and aVL with reciprocal 
ST segment depression in infero-lateral leads with elevated cardiac 
biomarkers (CK-MB, and cTnI) (Emara et al., 2022).

The bulk of studies focusing on tools to identify and quantify toxins 
are centered around Loxosceles sp. These studies utilize diverse samples 
like skin exudates (through passive hemagglutination inhibition test and 
ELISA) (Barrett et al., 1989; Keklikci et al., 2008; Krywko and Gomez, 
2002; McGlasson et al., 2009; Stoecker et al., 2006), biopsy and hair 
samples (employing competitive ELISA) (Gomez et al., 2001; Krywko 
and Gomez, 2002; Miller et al., 2016), and serum (Barbaro et al., 1992; 
Chávez-Olórtegui et al., 1994, 2001), all for detecting Loxosceles venom 
via ELISA. Despite reports of Loxosceles venom detection for a consid-
erable time, its practical use in clinical settings remains unclear. 
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Table 1 
Complications associated with honeybee stings envenoming.

System/Organ Clinical complications Diagnostic Ref.

Cardiovascular Acute myocardial ischemia Electrocardiogram (Pirasath et al., 2021; Sheshala et al., 2021)
Acute myocardial injury Change in plasma cardiac troponin (cTn) and change in 

electrocardiogram
Bindu et al. (2013)

Kounis syndrome (KS) Eosinophils count, cardiac enzymes (CK, CK-MB) and troponin I 
or T, C-reactive protein, total and specific immunoglobulin E 
(IgE) Histamine, chymase, serum tryptase levels and 
arachidonic acid products.

(Acehan et al., 2022; Aytekin et al., 2020; E Khoda et al., 
2023; Gopinath et al., 2022; Kamalesh et al., 2023; 
Katsanou et al., 2018; Thwe et al., 2022; Tsuruta et al., 
2022)

Left ventricular hypertrophy/ 
Left ventricular systolic 
dysfunction

Echocardiography, cardiovascular magnetic resonance imaging 
(MRI) and scintigraphy

(du Toit-Prinsloo et al., 2016)

Mobitz type 2 heart block Change in plasma CK-Mb, cardiac troponin (cTn) and change in 
electrocardiogram

Chaudry (2020)

Myocardial damage Cardiac enzymes (CK, CK-MB) and troponin I or T (França et al., 1994; Su et al., 2021)
Pericardial effusion Chest X-ray, electrocardiogram, transthoracic 

echocardiography, computed tomography scan, cardiac 
magnetic resonance imaging, and pericardiocentesis.

Azevedo et al. (2006)

Digestory Boerhaave’s syndrome Chest radiology examination Sheshala et al. (2021)
Gastrointestinal hemorrhage Serum liver enzymes (AST, ALT, GGT) and abnormal 

coagulation tests (PTT and APTT)
(Mellyana et al., 2019; Önder and Aktan, 2021)

Hematologic Acute limb ischemia Examination with Doppler ultrasound, Computed Tomography 
Angiography, and Magnetic Resonance Angiography, and 
Invasive Angiogram

Ratnayake et al. (2018)

Acute femoral thrombosis Magnetic resonance imaging (MRI) Ratnayake et al. (2018)
Anemia Reed blood cells count and levels of hemoglobin Odinaka et al. (2015)
Brachial artery thrombosis Digital angiography Akgul and Bagırov (2021)
Deep vein thrombosis (DVT) Doppler ultrasonography (USG) Cil et al. (2022)
Disseminated intravascular 
coagulation

Attention to hemostatic parameters and management of the 
underlying disease

França et al., 1994

Thrombotic microangiopathy Blood picture examination (polychromatic cells, ovalocytes, and 
schistocytes)

Witharana et al. (2021)

Thrombotic 
thrombocytopenic purpura 
(TTP)

Platelets count Khalighi et al. (2020)

Hepatic dysfunction/Ischemic 
hepatitis

Increase of levels of gamma GT, alkaline phosphatase, ALT, AST, 
and Bilirubin

(Farhat et al., 2018; França et al., 1994; Toledo et al., 2018)

Rhabdomyolysis Monitoring laboratory tests and physical examination: elevated 
serum concentrations of CK (>5 × the upper limit of normal or 
>1000 IU/L), myoglobin, lactate dehydrogenase, potassium, 
creatinine, and aspartate aminotransferase (AST)

(Betten et al., 2006; Constantino et al., 2020; França et al., 
1994; Geoffroy et al., 2021; Hiran et al., 1994; Jain et al., 
2012; Mendonça-da-Silva et al., 2021; Rauf et al., 2021; S 
et al., 2020; Seelarathna et al., 2020; Toledo et al., 2018)

Nervous Acute bilateral cerebellar 
infarction

Continuous physical examination and use of tests such as 
magnetic resonance imaging and computed tomography

Mahale et al. (2016)

Axonal motor polyneuropathy Electrophysiological nerve studies (Poddar et al., 2012; Saini et al., 2014)
Cavernous sinus thrombosis Magnetic resonance Walter et al. (2020)
Encephalitis Electroencephalography Önder and Aktan (2021)
Hemorrhagic/Ischemic stroke Use of imaging exams, such as magnetic resonance imaging, and 

computed tomography for support
(Abhishek et al., 2021; Akyıldız et al., 2016; Babikir et al., 
2021b; Gupta, 2019; Jain et al., 2012; Kabra et al., 2022; 
Ramlackhansingh and Seecheran, 2020; Rathnayaka et al., 
2021; Varuni et al., 2018)

Multiple acute cerebral 
infarcts

Computed tomography (Gupta, 2019; Jain et al., 2012; Walter et al., 2020)

Subarachnoid hemorrhage Computed tomography, and pay attention to erythrocytes count (du Toit-Prinsloo et al., 2016; Gupta, 2019; Oliveira et al., 
2000)

Renal Acute kidney injury Assess the need for renal replacement therapy, presence of 
hypervolemia with pulmonary edema, severe hyperkalemia, 
among others

(Betten et al., 2006; Constantino et al., 2020; Mellyana et al., 
2019; Pirasath et al., 2021; Rauf et al., 2021; Ryakitimbo 
et al., 2018; S et al., 2020; Toledo et al., 2018; Walter et al., 
2020; Witharana et al., 2021)

Acute kidney failure Assess the need for renal replacement therapy, presence of 
hypervolemia with pulmonary edema, severe hyperkalemia, 
among others

(Akyıldız et al., 2016; Babikir et al., 2021b; França et al., 
1994; Geoffroy et al., 2021; Hiran et al., 1994; Jain et al., 
2012; Mendonça-da-Silva et al., 2021; Sunny and 
Abrencillo, 2021)

Respiratory Acute pulmonary emphysema Objective examination (emphysematous chest) and radiology 
examination (chest x-ray), however it is based on high- 
resolution computed tomography (HRCT) of the lung

Mondello et al. (2023)

Acute respiratory distress 
syndrome (ARDS)

Pulse oximetry, chest x-rays, blood gas analysis and end-tidal 
carbon dioxide monitoring (capnometry)

(Akyıldız et al., 2016; Azevedo et al., 2006; E Khoda et al., 
2023 França et al., 1994; Mendonça-da-Silva et al., 2021; 
Rauf et al., 2021; Singer and Lande, 2022)

Bronchial obstruction Chest x-ray and pulmonary function tests Mondello et al. (2023)
Pulmonary congestion Physical examination, chest x-ray and lung ultrasound (Mondello et al., 2023; Riches et al., 2002; Silva et al., 2013)
Pulmonary edema Chest x-ray (Azevedo et al., 2006; Mellyana et al., 2019; Mondello et al., 

2023; Riches et al., 2002; Seecheran et al., 2021)
Pulmonary hemorrhage Chest x-ray and bronchoalveolar lavage Mondello et al. (2023)
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Consequently, a pressing need for studies showcasing the efficacy of 
these kits in routine laboratory-hospital practices. On the other hand, to 
identify and quantify the venoms of spiders of the genus Phoneutria, 
Atrax, and Hadronyche, only serum samples were inspected, unlike 
Loxosceles. Although serum is a widely collected sample in the clinic, 
experimental and clinical loxoscelism models were unable to detect 
circulating venom, probably because of its concentration at the bite site 
(Krywko and Gomez, 2002; Stoecker et al., 2006). On the other hand, as 
Phoneutria, Atrax, and Hadronyche venoms exhibit a systemic toxicity 
profile, detection of the venom in serum samples was possible 
(Bucaretchi et al., 2008; Chávez-Olórtegui et al., 2001; Lucas, 1988; 
Miller et al., 2016).

6. Diagnostic tests: from the bench to the hospital bed

The analysis of changes in the blood-plasma proteome because of 
envenomings by venomous animals is certainly informative for re-
searchers studying the pathogenesis of diseases and host immune re-
sponses or interested in identifying diagnostic or prognostic biomarkers 
aiming to identify endogenous candidates, as well as performing trace-
ability of toxins (Cavalcante et al., 2023a,b). This could be translated to 
the clinic through the development of more simplified diagnostic tools, 
based on targets identified by mass spectrometry. Biomarkers are indi-
cator biomolecules that aid in early diagnosis, discriminate between 
different diseases, and provide valuable tools to monitor disease pro-
gression/severity (García-Gutiérrez et al., 2020; Kamtchum-Tatuene 
and Jickling, 2019; Manole et al., 2019; Mohammed et al., 2022; Shu 
et al., 2020).

Although existing diagnostic approaches (including analysis of 
clinical symptoms, identification of the animal causing envenoming, 
laboratory diagnostic methods including hematology and biochemistry, 
and the use of diagnostic imaging tools) that are generally implemented 
clinically, they are not robust and sensitive and have low predictive 
potential. Furthermore, existing routine detection techniques are unable 

to provide any prognostic information regarding envenoming, or to 
clearly discriminate between envenoming that have overlapping clinical 
manifestations. To this end, protein markers are potential candidates for 
the development of alternative diagnostic and prognostic approaches, 
but to achieve this, studies must follow the validation workflow, from 
bench to patient. Thus, although several diagnostic and monitoring tests 
are in development, their reports present fragments of results from the 
stages that reflect the iterative nature of translational research 
(Keim-Malpass et al., 2023; Seyhan, 2019) and failure to establish key 
development steps returns test evaluation to a previous phase and po-
tential test redesign, as well as moving forward to the next phase 
(Leeflang and Allerberger, 2019).

Many reports have addressed the path to be taken by a candidate 
molecule for a new drug, from the bench to the target population 
(Lombardino and Lowe, 2004). However, there are few studies that 
focus on the translational path of testing for diagnosis and monitoring. 
Therefore, the development of a new diagnostic test must follow at least 
five phases (Fig. 2): (i) test selection and initial measurements of single 
test performance, (ii) clinical test performance measurements, (iii) 
impact on clinical decision-making and health outcomes, (iv) effec-
tiveness of the new diagnostic strategy on clinical outcomes, and finally, 
(v) implementation and effects at the health system and population level 
(Leeflang and Allerberger, 2019; Walter et al., 2019). Many reports have 
addressed the path to be taken by a candidate molecule for a new drug, 
from the bench to the target population.

7. Perspectives

In the future, diagnostic tools for venomous animal identification 
post-accidents are likely to advance significantly, driven by innovative 
technologies and biomarker discoveries. Precision in identification 
could arise from enhanced proteomic analyses, allowing for rapid, 
species-specific identification of venomous animals involved in enve-
noming incidents. Biomarkers signaling poor prognosis or worsening 

Fig. 2. Journey to cross the valley of death in the development of new disruptive technologies for the diagnosis and monitoring of patients victims of snake-
bites envenoming.
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conditions may become pivotal in guiding treatment decisions. Sophis-
ticated diagnostic assays might be developed to detect these prognostic 
indicators, enabling early intervention strategies and personalized 
treatment plans. The integration of artificial intelligence and machine 
learning could streamline diagnostic processes, improving accuracy and 
aiding in the prediction of clinical outcomes following envenoming in-
cidents. Collaborative efforts among researchers, healthcare pro-
fessionals, and technology experts will likely play a crucial role in 
realizing these advancements, ultimately enhancing patient care and 
outcomes in cases of venomous animal envenoming.

CRediT authorship contribution statement

Joeliton S. Cavalcante: Writing – original draft, Validation, 
Conceptualization. Sabrina Santana Toledo Arruda: Writing – review 
& editing, Visualization, Investigation. Pedro Marques Riciopo: 
Writing – original draft, Methodology, Data curation. Manuela Pucca: 
Writing – review & editing, Writing – original draft, Conceptualization. 
Rui Seabra Ferreira Junior: Writing – review & editing, Visualization, 
Supervision.

Ethical statement

Not applicable.

Funding

Rui Seabra Ferreira Júnior (RSFJr) is a CNPq PQ1D research fellow 
No. 301608/2022-9. The APC was funded by FAPESP Proc. 2021/ 
11936-3 (RSFJr).

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Acknowledgments

We are thankful to the Coordination of Superior Level Staff 
Improvement (CAPES)-n◦ 88887.674376/2022-00 (JSC), Fundação de 
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Chappuis, F., Salathé, M., Bolon, I., 2019. Snakebite and snake identification: 
empowering neglected communities and health-care providers with AI. Lancet Digit 
Health 1, e202–e203. https://doi.org/10.1016/S2589-7500(19)30086-X.

de Oliveira, I.S., Alano-da-Silva, N.M., Ferreira, I.G., Cerni, F.A., Sachett, J.A.G., 
Monteiro, W.M., Pucca, M.B., Arantes, E.C., 2024. Understanding the complexity of 
Tityus serrulatus venom: a focus on high molecular weight components. J. Venom. 
Anim. Toxins Incl. Trop. Dis. https://doi.org/10.1590/1678-9199-JVATITD-2023- 
0046.

de Siqueira França, F.O., Barbaro, K.C., de Moraes Abdulkader, R.C.R., 2002. 
Rhabdomyolysis in presumed viscero-cutaneous loxoscelism: report of two cases. 
Trans. R. Soc. Trop. Med. Hyg. 96, 287–290. https://doi.org/10.1016/S0035-9203 
(02)90101-X.

Delanghe, J.R., Speeckaert, M.M., De Buyzere, M.L., 2019. Is creatine kinase an ideal 
biomarker in rhabdomyolysis? Reply to Lippi et al.: Diagnostic biomarkers of muscle 
injury and exertional rhabdomyolysis. Clin. Chem. Lab. Med. 57, e75–e76. https:// 
doi.org/10.1515/cclm-2018-1320.

Diaz, J.H., 2004. The global epidemiology, syndromic classification, management, and 
prevention of spider bites. Am. J. Trop. Med. Hyg. 71, 239–250. https://doi.org/ 
10.4269/ajtmh.2004.71.2.0700239.

Dong, D., Deng, Z., Yan, Z., Mao, W., Yi, J., Song, M., Li, Q., Chen, J., Chen, Q., Liu, L., 
Wang, X., Huang, X., Wang, W., 2020. Oxidative stress and antioxidant defense in 
detoxification systems of snake venom-induced toxicity. J. Venom. Anim. Toxins 
Incl. Trop. Dis. 26. https://doi.org/10.1590/1678-9199-jvatitd-2020-0053.

du Toit-Prinsloo, L., Morris, N.K., Meyer, P., Saayman, G., 2016. Deaths from bee stings: 
a report of three cases from Pretoria, South Africa. Forensic Sci. Med. Pathol. 12, 
81–85. https://doi.org/10.1007/s12024-015-9737-x.

Dunbar, J.P., Vitkauskaite, A., O’Keeffe, D.T., Fort, A., Sulpice, R., Dugon, M.M., 2022. 
Bites by the noble false widow spider Steatoda nobilis can induce Latrodectus -like 
symptoms and vector-borne bacterial infections with implications for public health: 
a case series. Clin. Toxicol. 60, 59–70. https://doi.org/10.1080/ 
15563650.2021.1928165.

D’Suze, G., Moncada, S., González, C., Sevcik, C., Aguilar, V., Alagón, A., 2003. 
Relationship between plasmatic levels of various cytokines, tumour necrosis factor, 
enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon 
41, 367–375. https://doi.org/10.1016/S0041-0101(02)00331-8.

E Khoda, M.M., Islam, R.N., Rahim, M.A., Mansur, M.A., 2023. WCN23-0329 Kounis 
syndrome with fatal outcome: a case report. Kidney Int Rep 8, S5. https://doi.org/ 
10.1016/j.ekir.2023.02.011.

Ediger, D., Terzioglu, K., Ozturk, R.T., 2018. Venom allergy, risk factors for systemic 
reactions and the knowledge levels among Turkish beekeepers. Asia Pac Allergy 8, 
e15. https://doi.org/10.5415/apallergy.2018.8.e15.

Emara, A.G., Aboshady, A.-R.A., Aboshady, O.A., Shawqi, M.M., 2022. Reversible 
myocarditis following Black widow spider (Latrodectus spp.) bite in Egypt. Sultan 
Qaboos University Medical Journal [SQUMJ]. https://doi.org/10.18295/ 
squmj.2.2022.017.

Farhat, E., Tegg, E., Mohammed, S., Grzechnik, E., Favaloro, E.J., 2018. Not as sweet as 
honey: a rare case of an apparent factor V “inhibitor” in association with bee sting 
anaphylaxis. Am. J. Hematol. 93, 965–970. https://doi.org/10.1002/ajh.25121.

França, F.O.S., A, B.L., W, F.H., D, S.D., H, H.S., R, P.-M.F., A, W.D., 1994. Severe and 
fatal mass attacks by ‘killer’ bees (Africanized honey bees—<italic>Apis mellifera 
scutellata) in Brazil: clinicopathological studies with measurement of serum venom 
concentrations. QJM: Int. J. Med. https://doi.org/10.1093/oxfordjournals.qjmed. 
a068927.

Friedman, E.R., Seidel, S., Heiser, S., Prybys, K., 2021. Silently suffering: a pediatric 
black widow spider envenomation. J. Emerg. Med. 61, e151–e154. https://doi.org/ 
10.1016/j.jemermed.2021.02.035.

Fujioka, M., 2015. Skin necrosis due to snakebites. In: Skin Necrosis. Springer, Vienna, 
Vienna, pp. 109–115. https://doi.org/10.1007/978-3-7091-1241-0_16.

Fusto, G., Bennardo, L., Duca, E. Del, Mazzuca, D., Tambur, F., Patruno, C., Nisticò, S.P., 
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Oliveira Marques, H., Guimarães de Lacerda, M.V., Moura-da-Silva, A.M., Wen 
Fan, H., de Lima Ferreira, L.C., Sigueko Sano Martins, I., Monteiro, W.M., 2020. 
Bothrops snakebites in the Amazon: recovery from hemostatic disorders after 
Brazilian antivenom therapy. Clin. Toxicol. 58, 266–274. https://doi.org/10.1080/ 
15563650.2019.1634273.

Silva, G.A.R. da, Pires, K.L., Soares, D.C. de S., Ferreira, M.R., Ferry, F.R. de A., Motta, R. 
N., Azevedo, M.C.V.M., 2013. RRH: envenoming syndrome due to 200 stings from 
Africanized honeybees. Rev. Inst. Med. Trop. Sao Paulo 55, 61–64. https://doi.org/ 
10.1590/S0036-46652013000100011.

Silva Junior, G.B. da, Vasconcelos Junior, A.G., Rocha, A.M.T., Vasconcelos, V.R. de, 
Barros Neto, J. de, Fujishima, J.S., Ferreira, N.B., Barros, E.J.G., Daher, E.D.F., 2017. 
Acute kidney injury complicating bee stings – a review. Rev. Inst. Med. Trop. Sao 
Paulo 59. https://doi.org/10.1590/s1678-9946201759025.

Singer, E., Lande, L., 2022. Critical upper airway edema after a bee sting to the uvula. 
Wilderness Environ. Med. 33, 236–238. https://doi.org/10.1016/j. 
wem.2022.02.001.

Smith, G.S., Walter, G.L., Walker, R.M., 2013. Clinical pathology in non-clinical 
toxicology testing. In: Haschek and Rousseaux’s Handbook of Toxicologic Pathology. 
Elsevier, pp. 565–594. https://doi.org/10.1016/B978-0-12-415759-0.00018-2.

Smith, C.F., Brandehoff, N.P., Pepin, L., McCabe, M.C., Castoe, T.A., Mackessy, S.P., 
Nemkov, T., Hansen, K.C., Saviola, A.J., 2023. Feasibility of detecting snake 
envenomation biomarkers from dried blood spots. Analytical Science Advances 4, 
26–36. https://doi.org/10.1002/ansa.202200050.

Soares, F.G.S., Ibiapina, H.N., Sartim, M.A., Mendonça-da-Silva, I., Nascimento, E.F., 
Ferreira, L.C.L., Cerni, F.A., Malheiro, A., Pucca, M.B., Wen, F.H., Maria Moura-da- 
Silva, A., Costa, A.G., Monteiro, W.M., Sachett, J.A.G., 2022. Lower levels of CXCL-8 
and IL-2 on admission as predictors of early adverse reactions to Bothrops antivenom 
in the Brazilian Amazon. Cytokine 152, 155825. https://doi.org/10.1016/j. 
cyto.2022.155825.

Stoecker, W.v., Green, J.A., Gomez, H.F., 2006. Diagnosis of loxoscelism in a child 
confirmed with an enzyme-linked immunosorbent assay and noninvasive tissue 
sampling. J. Am. Acad. Dermatol. 55, 888–890. https://doi.org/10.1016/j. 
jaad.2006.04.065.

Su, Z., Hu, Z., Wang, L., Wang, Y., Fang, X., Ye, P., 2021. Visual loss caused by central 
retinal artery occlusion after bee sting: a case report. Front. Med. 8. https://doi.org/ 
10.3389/fmed.2021.707978.

Sunny, J.M., Abrencillo, R., 2021. Massive bee envenomation treated by therapeutic 
plasma exchange. J. Clin. Apher. 36, 654–657. https://doi.org/10.1002/jca.21898.

Suseel, A., Abraham, S.V., Paul, S., Tomy, M.M.L., Rafi, A.M., 2023. Comparing modified 
Lee and White method against 20-minute whole blood clotting test as bedside 
coagulation screening test in snake envenomation victims. J. Venom. Anim. Toxins 
Incl. Trop. Dis. https://doi.org/10.1590/1678-9199-JVATITD-2022-0088.

Takehara, C.A., Lamas, J.L.T., Gasparino, R.C., Fusco, S. de F.B., 2023. Moderate or 
severe scorpion sting: identification of risk factors. Rev. Esc. Enferm. USP 57. 
https://doi.org/10.1590/1980-220x-reeusp-2023-0022en.
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