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Abstract 

Background:  Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low 
heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associ‑
ated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single 
nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits 
in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were 
performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-
square statistic.

Results:  There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which 
showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic 
nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 
184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function 
was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromo‑
somes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for 
cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important 
positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, 
and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, 
JMJD1C, and NELL2) traits.

Conclusions:  These findings contribute to better understand the underlying biological mechanisms of fertility and 
reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for 
these traits in dairy cattle.
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Background
Fertility, reproduction, calving, and fertility disorders 
represent a group of traits that directly impact the eco-
nomic efficiency and animal welfare in the dairy indus-
try [1, 2]. However, the long-term genetic selection for 
production traits (especially milk yield) in Holstein cattle 
has negatively impacted fertility and reproductive perfor-
mance due to their unfavorable genetic correlations [3–
5]. Fertility and reproduction traits were only added to 
worldwide official genetic evaluations over the past two 
decades [6, 7]. In this context, the more recent imple-
mentation of genomic selection (GS) in North Ameri-
can Holstein cattle has greatly contributed to improving 
genetic gains for fertility and reproduction traits [8]. The 
usually low heritability estimates [9] and great complex-
ity of biological mechanisms affecting fertility and repro-
ductive performance impact GS accuracy, which relies, 
among other factors, on population-specific linkage dis-
equilibrium (LD) between genotype markers and causal 
variants. Therefore, a promising approach is to geno-
type and use the causal or tightly linked variants within 
known quantitative trait loci (QTL) related to fertility 
and reproduction traits in GS schemes, which is expected 
to improve the prediction accuracy for such traits [10]. 
Despite the great efforts that have been made to iden-
tify QTL, functional genes, and putative causal variants 
related to fertility and reproduction traits in dairy cat-
tle, it is expected that many potential candidate variants 
still remain to be uncovered, especially with the increase 
in detection power achieved by using whole-genome 
sequence (WGS) variants.

Genome-wide association studies (GWAS) have been 
popularly performed as a standard method for QTL 
mapping and candidate gene discovery in both humans 
and other species [11]. For instance, Fortes et  al. [12] 
and Ma et al. [3], based on a systematic review, reported 
that a considerable number of QTL and candidate genes 
located in the Bos taurus autosomes (BTA) and in the 
X chromosome are associated with fertility and repro-
duction traits. However, most of these studies used the 
low- or medium-density single-nucleotide polymorphism 
(SNP) panels, which might hinder the discovery of candi-
date genes and causal variants. Due to the reduced cost of 
high-throughput sequencing approaches, several large-
scale genome resequencing initiatives have been under-
taken, such as the 1,000 Bull Genomes Project [13] and 
the Canada’s Ten Thousand Cows Genome Project [14]. 
Based on these large reference populations, WGS vari-
ants can be obtained cost-effectively through computa-
tional imputation from SNP panels to WGS [15, 16]. The 
use of WGS variants for GWAS can enhance the discov-
ery of variant-trait associations especially when there is 
only short-range LD surrounding causal variants [17]. 

Previous studies have successfully used real or imputed 
WGS variants for performing GWAS of fertility and 
reproduction traits in other dairy cattle populations (e.g., 
[18–20]).

There is a plethora of traditional and novel trait defi-
nitions for measuring fertility and reproductive per-
formance in females and males, which are further 
complicated by alternative definitions across breeding 
programs [3, 21, 22]. Furthermore, fertility and repro-
duction traits recorded in heifers and lactating cows have 
always been treated as different traits, i.e., they have been 
analyzed separately due to their usually low genetic cor-
relations [9, 23]. Therefore, the detection of pleiotropic 
variants affecting multiple fertility and reproduction 
traits is paramount for unraveling their biological back-
ground. In this context, Bolormaa et al. [24] proposed an 
efficient multiple-trait analysis for directly combining the 
estimated effects of SNPs from single-trait GWAS based 
on a chi-square statistic, which facilitates the discovery of 
potential pleiotropic variants. In dairy cattle, this method 
has been applied to multiple fertility and reproduction 
traits, which were mainly based on SNP array data (e.g., 
[25–27]).

In this study, we first performed single-trait GWAS 
analyses for 18 fertility and reproduction traits in North 
American Holstein cattle, using imputed WGS geno-
types. Following the method proposed by Bolormaa et al. 
[24], the multiple-trait chi-square statistics were subse-
quently calculated regarding different trait categories, 
including heifer traits, cows traits, sire traits, and their 
combinations. Our main objective was to identify can-
didate pleiotropic SNPs and genes associated with vari-
ous fertility and reproduction traits in heifers, cows, and 
sires, which will contribute to a better understanding 
of the underlying biological mechanisms of fertility and 
reproduction traits in North American Holstein cattle.

Results
Deregressed breeding values and imputed SNP variants
The analyzed traits and their phenotypic summaries (i.e., 
deregressed estimated breeding values, dEBV) are shown 
in Table  1. The number of included animals that have 
phenotypes ranged from 3,803 for SCSc (sire calf sur-
vival – cow) to 5,986 for CA (calving ability). The aver-
age accuracy of dEBV (± standard deviation, SD) was 
0.55 ± 0.02. After performing the quality control (QC), 
about 5.6 million SNPs (ranging from 5,396,362 for CA 
to 5,880,012 for SCSc) were retained for single-trait 
GWAS analyses. These SNPs were distributed across 
all autosomes with a mean (± SD) pairwise distance of 
445 ± 1,478 bp and a mean (± SD) minor allele frequency 
(MAF) of 18.7 ± 15.6% (Table S1).
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Summaries of single‑trait and multiple‑trait GWAS 
analyses
The single-trait GWAS revealed a total of 1,484 SNPs 
that were significantly associated with the 18 fertility and 
reproduction traits with no overlapping SNPs between 
traits. The highest and lowest numbers of significant 
SNPs were observed for DO (days open) and NRRh (non-
return rate heifer), respectively (Fig.  1A). These signifi-
cant SNPs were broadly distributed across all autosomes 
(Fig.  1B), with the greatest number of significant SNPs 
located on BTA3, BTA22, and BTA23. For each trait, the 
top three chromosomes with the greatest numbers of sig-
nificant SNPs are shown in Fig.  1C. BTA4, BTA20, and 
BTA22 were observed in common for four traits [i.e., 
CSc (calf survival cow), DCA (daughter calving ability), 
DO, and SCEc (sire calving ease cow) for BTA4, CSh 
(calf survival heifer), DF (daughter fertility), NRRh, and 
SCSh (sire calf survival heifer) for BTA20, and CA, CEh 
(calving ease heifer), FSTCh (first service to conception 
heifer), and SCEh (sire calving ease heifer) for BTA22]. 
The detailed distribution of significant SNPs identified 
across traits and chromosomes is shown in Table S2. 
The number of QTL identified in the single-trait GWAS 
ranged from 38 for NRRh to 73 for SCEc. There were 
three QTL overlapping between CA and CTFS (calving 
to first service), and three overlapping between CSh and 

SCEc (Table S3). The highest estimated genome infla-
tion factor was equal to 1.090 (95% CI of 1.075–1.104) 
for DCA, and its mean ± SD across all traits was equal to 
1.052 ± 0.024 (Fig. S1).

For the multiple-trait analyses, the defined trait cat-
egories of heifer, cow, and sire traits, and their combina-
tions are shown in Table  1. There were 425 significant 
SNPs revealed by multiple-trait analysis, including 87 
for heifers, 72 for cows, 84 for sires, 96 for heifers and 
cows, and 86 for all animals. Of these, only one SNP 
(BTA9:21,350,462) was shared between heifers and cows, 
whereas no SNP for sire traits was shared with heifers, 
cows, or heifers and cows (Fig. S2). When both heifer and 
cow traits were analyzed together, there were 15 and 25 
significant SNPs overlapping with the independent analy-
ses of heifer and cow traits, respectively. In summary, the 
multiple-trait analyses revealed a total of 328 unique sig-
nificant SNPs, which are distributed across all autosomes.

Multiple‑trait analysis for heifer traits
The multiple-trait analysis of six heifer traits revealed 87 
significant SNPs broadly distributed across 22 chromo-
somes (Fig. 2 and Table 2). Of these, the highest numbers 
of significant SNPs were observed on BTA20, BTA22, 
BTA23, and BTA18. The three most significant SNPs 
were located on BTA18, BTA20, and BTA20. A total of 

Table 1  Traits, summary statistics, and trait categories of multiple-trait analysis

a dEBV: deregressed estimated breeding values
b The trait categories are defined with respective to heifers (H), cows (C), sires (S), heifers and cows (HC), and all the animals together (HCS), respectively

Traits Full names of traits dEBVa Accuracy Trait categories used for multiple-
trait analysisb

N Mean Min Max Mean SD H C S HC HCS

AFS Age at first service 5,123 81 -1,790 1,992 0.56 0.02 √ √ √

FSTCh First service to conception heifer 5,451 114 -1,934 2,134 0.55 0.03 √ √ √

NRRh Non-return rate heifer 5,374 86 -1,939 2,137 0.55 0.03 √ √ √

CEh Calving ease heifer 4,623 122 -1,726 1,925 0.56 0.02 √ √ √

CSh Calf survival heifer 5,168 121 -1,887 2,082 0.55 0.03 √ √ √

CA Calving ability 5,986 110 -1,881 2,074 0.56 0.02 √ √ √ √

CTFS Calving to first service 4,800 125 -1,847 2,046 0.56 0.02 √ √ √

DO Days open 5,034 93 -1,773 1,970 0.55 0.02 √ √ √

FSTCc First service to conception cow 5,036 88 -1,835 2,032 0.55 0.02 √ √ √

NRRc Non-return rate cow 5,283 105 -1,923 2,118 0.55 0.02 √ √ √

CEc Calving ease cow 4,761 101 -1,814 2,012 0.56 0.02 √ √ √

CSc Calf survival cow 5,045 122 -1,956 2,156 0.55 0.03 √ √ √

DCA Daughter calving ability 5,191 116 -1,874 2,072 0.55 0.02 √ √ √

DF Daughter fertility 5,529 106 -1,851 2,048 0.55 0.02 √ √ √

SCEh Sire calving ease heifer 5,782 85 -1,974 2,167 0.56 0.02 √ √

SCEc Sire calving ease cow 5,133 112 -1,974 2,171 0.56 0.02 √ √

SCSh Sire calf survival heifer 4,687 109 -1,897 2,103 0.54 0.02 √ √

SCSc Sire calf survival cow 3,803 113 -1,887 2,100 0.53 0.02 √ √
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176 protein-encoding and eight long non-coding RNAs 
(lncRNA) genes were found within ± 100  Kb regions 
around the significant SNPs, and 41 SNPs were located 
in the exonic, intronic, or upstream/downstream regions 
of 36 genes. All 87 significant SNPs were clustered 
into 69 QTL and three QTL (BTA18:39.58–40.01  Mb, 
BTA20:15.57–15.94  Mb, and BTA20:29.77–30.06  Mb) 
were identified based on three or more SNPs. Fur-
thermore, 21 of these QTL (30.4%) overlapped with 
138 previously reported reproduction-related QTL in 

cattle (Table S4). Among them, one QTL on BTA3:89.78–
89.98  Mb overlapped with 98 previously reported QTL 
that are associated with luteal activity (LA) and concep-
tion rate (CR).

The functional analyses revealed that the identified 
184 candidate genes were significantly enriched into 
21 Gene Ontology (GO) terms and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways (Fig. S3). 
Among them, the immunity-associated biological func-
tions were predominant, such as the antigen processing 

Fig. 1  Significant SNPs revealed by single-trait GWAS. Beside the numbers of SNPs identified among 18 fertility and reproduction traits (A) and 29 
autosomes (B), the top three chromosomes with the largest numbers of significant SNPs were shown for each trait (C). AFS = Age at first service; 
FSTCh = First service to conception heifer; NRRh = Non-return rate heifer; CEh = Calving ease heifer; CSh = Calf survival heifer; CA = Calving ability; 
CTFS = Calving to first service; DO = Days open; FSTCc = First service to conception cow; NRRc = Non-return rate cow; CEc = Calving ease cow; 
CSc = Calf survival cow; DCA = Daughter calving ability; DF = Daughter fertility; SCEh = Sire calving ease heifer; SCEc = Sire calving ease cow; 
SCSh = Sire calf survival heifer; SCSc = Sire calf survival cow
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and presentation that was associated with multiple 
genes within the regions of BTA23:25.72–25.92 Mb and 
BTA23:28.53–25.73 Mb. These genes included the major 

histocompatibility complex (MHC), class II, DR alpha 
(BOLA-DRA), MHC class I antigen (BOLA-NC1), MHC 
class I heavy chain (BOLA), and MHC Class I JSP.1 

Fig. 2  Manhattan plots for multiple-trait analysis for different trait categories. Statistically significant SNP are denoted by triangles



Page 6 of 22Chen et al. BMC Genomics          (2022) 23:331 

Table 2  Significant SNPs and candidate genes from multiple-trait analysis for six heifer fertility and reproduction traits

Chr Position
(bp)

P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

BTA2 70,633,250 1.7755e-06 Intergenic EN1 0

80,773,959 8.2906e-06 Intron TMEFF2 0

98,894,327 1.703e-05 Intergenic — 0

BTA3 83,818,837 9.9389e-06 Exon PATJ 0

89,878,033 1.2513e-06 Intergenic — 98

BTA4 2,476,516 1.0209e-05 Intergenic — 0

17,304,670 2.5726e-06 Intergenic — 0

36,768,135 2.6301e-05 Intergenic ENSBTAG00000053333* 0

77,892,378 2.4934e-05 Intergenic HECW1 0

BTA6 31,807,526 1.248e-05 Intergenic — 2

54,108,303 9.9442e-06 Intergenic — 1

BTA7 6,177,026 5.1964e-06 Intron CPAMD8, F2RL3, SIN3B, NWD1 1

8,193,333 2.7732e-05 Exon CASP14, CCDC105, SLC1A6, ENSBTAG00000053903, OR7C19, OR7A85, 
ENSBTAG00000051946

0

62,865,717 8.3985e-06 Intergenic FAT2, SPARC​, ENSBTAG00000054940, ATOX1 0

97,438,333 1.6934e-05 Intergenic — 0

100,189,059 2.344e-05 Intergenic ST8SIA4 2

BTA9 21,350,462 1.1343e-05 Intergenic — 0

71,191,104 1.5112e-05 Intergenic — 0

95,975,870 2.4538e-05 Intergenic ENSBTAG00000052316, SOD2, WTAP, ACAT2, TCP1, MRPL18, PNLDC1 5

BTA10 41,323,422 2.7906e-05 Intergenic — 0

81,606,975 1.5652e-05 Intron SLC10A1, SMOC1 1

BTA12 45,686,110 1.8064e-05 Intergenic — 0

45,712,972 2.0906e-05 Intergenic

69,768,461 1.8444e-05 Intergenic — 0

77,682,412 2.495e-05 Intron NALCN 4

BTA13 3,327,860 1.1246e-05 Intergenic ANKEF1 0

42,023,779 3.7745e-05 Downstream NXT1, GZF1, NAPB, ENSBTAG00000027420, MGC133636, CST8, ENS‑
BTAG00000015949

0

42,049,979 3.7745e-05 Intron

BTA14 18,883,604 1.0029e-05 Intergenic — 3

54,326,109 7.0163e-06 Intergenic — 1

61,221,242 3.2749e-05 Intergenic CTHRC1, FZD6, BAALC 3

67,859,596 1.5109e-05 Intergenic PTDSS1 0

BTA15 45,999,990 2.9729e-05 Intergenic OR6A2, OR6B18, ENSBTAG00000027525, OR6B17, ENS‑
BTAG00000037603, OR2D4, OR2D3G, OR2AG1E, OR2AG1G, OR2AG1, 
OR2AG2

0

BTA18 39,676,071 1.3142e-05 Intron ZNF19, ZNF23, ENSBTAG00000053994*, CALB2, CMTR2, ENS‑
BTAG00000051512

0

39,750,065 2.1267e-05 Intergenic

39,767,356 8.5276e-06 Exon

39,797,494 1.8113e-07 Downstream

39,854,578 9.5369e-06 Upstream

39,905,828 2.4327e-05 Intron

41,105,349 4.5111e-05 Intron ZNF536 2

41,112,039 2.5866e-05 Intron

BTA19 39,685,286 4.588e-05 Exon PLXDC1, CACNB1, RPL19, ENSBTAG00000050597, STAC2, ENS‑
BTAG00000008368, FBXL20

0

46,856,509 2.2533e-05 Intron EFCAB3, METTL2A, TLK2 2

53,776,030 3.7096e-06 Intron DNAH17, PGS1, SOCS3 0

53,779,550 2.1366e-06 Intron
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Table 2  (continued)

Chr Position
(bp)

P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

BTA20 12,849,264 2.7392e-05 Intron ENSBTAG00000049964 0

15,673,813 3.5073e-06 Intergenic HTR1A 0

15,788,934 4.5398e-07 Intergenic

15,839,035 3.8454e-05 Intergenic

29,868,266 8.7288e-06 Intergenic ENSBTAG00000054476 0

29,957,655 1.2013e-06 Intergenic

29,957,766 3.1125e-05 Intergenic

29,959,061 1.8094e-05 Intergenic

51,156,345 1.4415e-05 Intron CDH12 0

62,043,263 3.4353e-05 Intron CTNND2 0

62,043,442 3.5997e-05 Intron

BTA21 17,250,280 2.0376e-05 Intron AGBL1 0

BTA22 2,072,527 1.8504e-05 Intergenic EOMES 0

5,159,344 4.422e-05 Intron TGFBR2, GADL1 1

9,601,560 4.4335e-05 Intergenic ARPP21 0

9,634,144 1.8949e-05 Intergenic

11,393,650 1.341e-05 Intron CTDSPL, VILL, PLCD1, DLEC1 0

11,701,385 2.9746e-05 Intron ACAA1, ENSBTAG00000054286, MYD88, OXSR1, ENS‑
BTAG00000050531*, SLC22A14, XYLB, ACVR2B

0

11,737,948 4.1052e-06 Downstream

35,777,156 2.4904e-05 Intron MAGI1 0

51,337,027 3.512e-05 Intron CELSR3, SLC26A6, TMEM89, UQCRC1, ENSBTAG00000049917*, ENS‑
BTAG00000052088*, ENSBTAG00000049028*, UCN2, PFKFB4, SHISA5, 
ENSBTAG00000048942, TREX1, ATRIP, TMA7, CCDC51

2

55,900,928 4.9063e-05 Intergenic TAMM41, TRH, TMCC1 1

BTA23 5,726,221 2.9329e-05 Intergenic — 0

25,235,958 5.2155e-05 Intron GSTA1, GSTA5, GSTA3, GSTA4, CILK1, FBXO9, GCM1 0

25,819,703 4.2745e-05 Intergenic ENSBTAG00000013919, ENSBTAG00000048364, ENS‑
BTAG00000038397, ENSBTAG00000015565, BOLA-DRA, BTNL2, 
ENSBTAG00000034945, ENSBTAG00000007618

0

26,689,257 1.4214e-05 Intergenic — 0

28,036,775 4.1923e-06 Intron ENSBTAG00000051047, ENSBTAG00000007075, ENS‑
BTAG00000053433, POU5F1, TCF19, CCHCR1, PSORS1C2, CDSN, C23H6orf15

1

28,634,425 3.1365e-05 Intergenic BOLA-NC1, JSP.1, ENSBTAG00000037421, BOLA 0

30,058,286 2.9988e-05 Intron ZNF311, ENSBTAG00000052294*, TRIM27, ENSBTAG00000053198 0

34,904,897 1.9645e-05 Intergenic GHE4, PRP2, PRP14, PRP9 0

34,928,894 5.2141e-05 Intron

BTA24 13,978,039 3.8859e-05 Intron PIK3C3 0

58,070,140 2.9176e-05 Intron ZNF532, ENSBTAG00000022829, SEC11C 0

BTA25 38,933,869 4.7617e-05 Intron FBXL18, ENSBTAG00000050734*, TNRC18, SLC29A4, WIPI2 3

BTA27 13,585,281 3.5455e-05 Intron TENM3 1

23,857,214 4.66e-05 Intron DLC1 0

30,435,395 1.768e-05 Intergenic — 0

34,758,502 1.2659e-05 Intron ADAM2, ADAM3A 3

BTA28 10,602,903 3.7999e-05 Intergenic RYR2, ZP4 1

24,802,568 6.4777e-05 Intron PBLD, HNRNPH3, RUFY2, DNA2, SLC25A16 0

39,062,420 5.1602e-05 Intergenic GHITM, C10orf99, CDHR1 0

BTA29 27,630,533 1.1083e-05 Intergenic OR8G5, OR8G47, OR8D2, OR8B1U, OR8B1S, OR8B1AE, ENS‑
BTAG00000051999, OR8B3G, ENSBTAG00000050103, OR8B3

0

a Candidate genes are represented by gene symbol when available, otherwise by the Ensembl gene ID. The long noncoding RNA genes are marked by asterisk (*). The 
genes directly linked to SNPs are further denoted in bold
b The number of known and reproduction-associated QTL found in Cattle QTL Database v43 (www.​anima​lgeno​me.​org)

http://www.animalgenome.org
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(JSP.1). Another significantly enriched GO term, the 
“prolactin receptor binding”, was found related to three 
genes, named growth hormone E4 (GHE4), prolactin-
related protein 14 (PRP14), and prolactin-related protein 
IX (PRP9), within the region of BTA23:34.80–35.03 Mb.

Multiple‑trait analysis for cow traits
There were 72 SNPs significantly associated with cow 
traits (Fig.  2 and Table  3). These significant SNPs were 
distributed across 25 chromosomes, with the highest 
number of SNPs observed on BTA3, BTA8, and BTA10. 
The three most significant SNPs were located on BTA17, 
BTA13, and BTA27, respectively. There were 37 sig-
nificant SNPs located within the exonic, intronic, or 
upstream/downstream regions of 23 genes, while 101 
candidate genes were found within ± 100 Kb of 35 inter-
genic SNPs. Fifty-six QTL were found, and two of them 
(BTA3:67.59–67.79  Mb, BTA8:49.18–49.38  Mb) were 
supported by three or more significant SNPs. By search-
ing the Cattle QTL Database, 17 QTL (30.4%) overlapped 
with 31 previously reported QTL that are associated with 
calving interval (CI), CR, first service conception (FSC), 
and number of inseminations per conception (IPC) 
(Table S5).

Eight GO terms and one KEGG pathway were signifi-
cantly enriched for the 124 identified candidate genes 
(Fig. S3). Acylglycerol O-acyltransferase activity and dia-
cylglycerol metabolism were the most significantly asso-
ciated biological functions, which were linked to four 
genes (Monoacylglycerol O-acyltransferase 2, MOGAT2; 
2-acylglycerol O-acyltransferase 2, LOC785379; ENS-
BTAG00000017443; ENSBTAG00000015091) within the 
region of BTA15:54.88–55.08 Mb and to one gene (Mem-
brane bound O-acyltransferase domain containing 7, 
MBOAT7) within the region of BTA18:63.08–63.28 Mb. 
Three GO terms of “integrin complex”, “protein complex 
involved in cell adhesion”, and “plasma membrane signal-
ing receptor complex” were linked to six genes on BTA25 
(Glutamate ionotropic receptor NMDA type subunit 
2A, GRIN2A; Integrin subunit alpha M, ITGAM; Inte-
grin subunit alpha X, ITGAX; Integrin subunit alpha D, 
ITGAD), BTA18 (Shisa family member 7, SHISA7), and 
BTA10 (Integrin subunit alpha 11, ITGA11). The KEGG 
pathway of “Olfactory transduction” was also associated 
with 12 genes on BTA5 and BTA10.

Multiple‑trait analysis for sire traits
Eighty-four significant SNPs were associated with sire 
traits, which were broadly distributed across 24 chro-
mosomes (Fig. 2 and Table 4). The three chromosomes 
that had the highest numbers of significant SNPs were 

BTA7, BTA17, and BTA22. The three most significant 
SNPs were located on BTA4, BTA5, and BTA26. There 
were one, 32, and one significant SNP located within 
the exonic, intronic, and upstream/downstream regions 
of 30 protein-encoding genes, respectively. Other 104 
protein-encoding and 13 lncRNA genes were found 
within ± 100 Kb regions of 50 intergenic SNPs. Seventy-
three QTL regions were determined from the 84 signif-
icant SNPs, and 31 of them (42.5%) overlapped with 72 
previously reported QTL associated with reproduction 
traits in sires such as scrotal circumference, daughter 
pregnancy rate (DPR), CR, IPC, and interval to first 
estrus after calving (IFEC); Table S6. Among all the 147 
candidate genes found for sire reproduction traits, only 
one GO term of “N-acetyl-beta-D-galactosaminidase 
activity” was shown to be significantly enriched (Fig. 
S3). Two genes located on BTA20, including HEXB 
(Hexosaminidase subunit beta) and LOC786974 (Beta-
hexosaminidase subunit beta) were also involved in this 
biological function.

Multiple‑trait analysis for the combined trait categories
When the 14 female fertility and reproduction traits 
were combined (heifers and cows), 96 significant SNPs 
were identified across 28 chromosomes (Fig.  2 and 
Table S7). The three most significant SNPs were located 
on BTA23, BTA22, and BTA4, respectively. Ninety-six 
QTL were detected and 25 of them overlapped with 
60 previously reported reproduction-associated QTL 
in cattle (Table S8). There were 171 candidate genes 
found, in which, nine GO terms and one KEGG, such 
as Phagosome (KEGG:04,145) and rough endoplasmic 
reticulum (GO:0,005,791), were significantly enriched 
for them (Table S9).

The multiple-trait chi-square statistics was also 
applied to all 18 traits of heifers, cows, and sires com-
bined. Eighty-six significant SNPs and 178 candidate 
genes were identified across 26 chromosomes (Fig.  2 
and Table S10). All significant SNPs were clustered into 
77 QTL, and 27 of them (35%) overlapped with previ-
ously reported reproduction-associated QTL in cat-
tle for traits, such as CR, calving ease (CE), DPR, and 
IPC (Table S11). The functional enrichment analy-
ses revealed four GO terms, including “2-acylglycerol 
O-acyltransferase activity”, “Diacylglycerol biosynthetic 
process”, “Acylglycerol O-acyltransferase activity”, and 
“O-acyltransferase activity” (Table S9). For these bio-
logically relevant genes identified for heifer, cow, and 
sire traits in this study, we also performed a protein–
protein interaction analysis, but no direct functional 
interactions among them were observed as shown in 
Fig. S4.
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Table 3  Significant SNPs and candidate genes from multiple-trait analysis for nine cow fertility and reproduction traits

Chr Position (bp) P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

BTA1 34,156,863 6.8092e-06 Intergenic CADM2 0

BTA2 44,192,878 1.7484e-05 Intron CACNB4 0

BTA3 13,060,985 1.5004e-05 Intergenic ENSBTAG00000053098, ENSBTAG00000052866*, ENSBTAG00000054932, ENS‑
BTAG00000051454

0

67,686,622 2.6373e-05 Intron ST6GALNAC5 0

67,687,557 2.2745e-05 Intron

67,687,632 1.0234e-05 Intron

67,687,904 1.6141e-05 Intron

67,688,010 8.0894e-06 Intron

67,688,259 1.4877e-05 Intron

67,691,020 1.2185e-05 Intron

67,691,132 9.1178e-06 Intron

67,691,448 2.7514e-05 Intron

67,691,487 1.6939e-05 Intron

67,691,717 2.6505e-05 Intron

67,693,137 1.9264e-05 Intron

67,693,371 2.0276e-05 Intron

BTA4 52,090,769 3.731e-06 Intergenic TES, ENSBTAG00000055251 0

86,337,952 2.7549e-05 Intron PTPRZ1 0

86,338,437 5.4702e-06 Intron

BTA5 59,741,942 2.5619e-05 Downstream OR9K2, OR9K15, OR9K1, OR9K2F, OR9K1B 1

61,923,964 1.5754e-05 Intergenic None 2

98,326,111 2.4699e-05 Intergenic None 0

BTA8 9,613,389 1.6984e-05 Intron KIF13B, HMBOX1 0

48,903,003 2.4027e-06 Intergenic ENSBTAG00000048940*, TMC1, ENSBTAG00000052698 0

49,280,626 6.2112e-06 Intergenic ENSBTAG00000052764*, ANXA1 0

49,282,386 7.11e-06 Intergenic

49,282,702 8.1027e-06 Intergenic

52,344,611 2.7461e-05 Intron PCSK5 0

97,982,105 1.9975e-05 Intergenic None 0

98,998,669 2.7653e-05 Intron PTPN3 0

100,989,652 2.3223e-05 Intron ECPAS, ZNF483, PTGR1, DNAJC25, GNG10 0

BTA9 21,350,462 2.972e-06 Intergenic None 0

73,443,174 2.0733e-05 Intron AHI1, ENSBTAG00000046495 0

91,316,160 2.1955e-05 Intergenic ENSBTAG00000020723, ENSBTAG00000049872, SCAF8 1

BTA10 15,091,095 1.0356e-05 Intergenic PIAS1, CALML4, CLN6, FEM1B, ITGA11 2

15,499,538 2.5633e-05 Intron CORO2B 0

15,737,285 1.2939e-05 Intergenic ANP32A, ENSBTAG00000051138*, SPESP1 0

27,718,962 6.5343e-06 Downstream OR4F67B, OR4G18, OR4K36, OR4G8, OR4G9, OR4G2 0

30,942,681 2.4868e-05 Intron DPH6 0

BTA11 89,383,411 1.5143e-05 Intergenic None 3

BTA12 74,138,771 2.0551e-05 Intergenic HS6ST3, ENSBTAG00000045566, OXGR1 0

74,922,982 3.4154e-05 Intergenic ENSBTAG00000052185* 2

BTA13 20,203,933 6.2166e-07 Intergenic ENSBTAG0000002675, ENSBTAG00000052951 0

BTA14 2,204,649 8.1819e-06 Intergenic ENSBTAG00000048964* 1

40,827,215 1.0856e-05 Intergenic ENSBTAG00000039499 0

79,535,150 3.2796e-06 Intergenic None 0
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Discussion
Refined studies on fertility and reproduction traits in dairy 
cattle
Due to the great economic importance of fertility and 
reproduction traits in cattle industry, GWAS have 
been frequently carried out especially since genotyping 
become affordable for large sample sizes. Besides the 
fact that SNP panels have been used in former GWAS of 
cattle fertility and reproduction traits [27–39], whole-
genome sequence variants recently began to be used to 
refine QTL boundaries and identify causal genes [18–
20]. Therefore, the imputed or real WGS variants is 
being increasingly used for GWAS, especially for traits 
with low heritability and that are highly polygenic. 
Because of intrinsic correlations among various indica-
tor traits of fertility and reproduction, it is preferable 

to perform multiple-trait GWAS to detect pleiotropic 
variants and increase the detection power of important 
variants. The classical methods of multiple-trait GWAS 
[40, 41] are difficult to implement in practice, especially 
on large-scale datasets due to computing requirements. 
Alternatively, an approximate method was proposed 
by Bolormaa et  al. [24], which efficiently computes a 
multiple-trait chi-square statistic from estimated SNP 
effects from single-trait GWAS. In this study, we used 
imputed WGS variants and this approximate method 
for multiple-trait GWAS of fertility and reproduction 
traits in Holstein cattle, aiming to refine the associated 
pleiotropic variants, candidate genes, and QTLs.

Polygenic nature of fertility and reproduction traits
Most fertility and reproduction traits are lowly her-
itable in cattle. Berry et  al. [21] reported a summary 

Table 3  (continued)

Chr Position (bp) P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

BTA15 54,978,763 2.5073e-05 Intergenic MOGAT2, ENSBTAG00000053794, LOC785379, ENSBTAG00000017443, ENS‑
BTAG00000015091, ENSBTAG00000052936

1

73,049,607 1.3516e-05 Intergenic None 0

BTA17 4,778,666 1.7939e-05 Intron FHDC1, ARFIP1 1

7,455,065 4.1422e-05 Intron LRBA 0

32,848,516 5.4123e-07 Intergenic None 0

36,481,658 9.3183e-06 Intron FSTL5 1

BTA18 61,968,892 2.8497e-05 Intergenic EPN1, U2AF2, CCDC106, ZNF581, ZNF580, ZNF524, ZNF784, FIZ1, ZNF579, SBK2, 
SSC5D, NAT14, ZNF628, C19orf85, ENSBTAG00000050011, ISOC2, SHISA7

0

63,182,112 3.3624e-05 Intergenic ENSBTAG00000049178, RPS9, TSEN34, MBOAT7, TMC4, LENG1, CNOT3, PRPF31, 
TFPT, NDUFA3

6

BTA19 59,744,349 4.8366e-06 Intergenic None 0

BTA20 56,959,618 2.3978e-05 Intron MARCHF11 4

60,163,003 4.01e-05 Intergenic None 0

BTA21 16,945,728 2.5982e-05 Intergenic AGBL1 0

60,917,828 2.6523e-06 Intron C21H14orf132 0

BTA22 56,807,677 1.3049e-05 Intron PPARG​, ENSBTAG00000052393* 0

BTA23 2,330,898 2.7799e-05 Intergenic None 0

28,726,064 3.9504e-06 Upstream JSP.1, ENSBTAG00000037421, BOLA, TRIM26, TRIM15, TRIM10 0

BTA24 45,122,975 4.3551e-05 Intergenic None 0

57,019,331 7.1833e-06 Intergenic ATP8B1 1

BTA25 8,675,209 3.4891e-05 Intron GRIN2A 0

8,702,138 2.0848e-06 Intergenic

27,413,783 6.8667e-06 Exon ITGAM, ITGAX, ITGAD, COX6A2, ARMC5, TGFB1I1 1

BTA27 24,754,025 1.5149e-05 Intron CLDN23, LOC527981 1

43,998,949 1.466e-06 Intergenic ZNF385D 1

BTA28 19,657,628 8.5e-06 Intron JMJD1C, REEP3 0

BTA29 13,752,854 2.5963e-05 Intergenic None 0

37,010,381 1.9927e-05 Intergenic ENSBTAG00000050640*, SNX19, ENSBTAG00000022460, MS4A8, MS4A18 2
a Candidate genes are represented by gene symbol when available, otherwise by the Ensembl gene ID. The long noncoding RNA genes are marked by asterisk (*). The 
genes directly linked to SNPs are further denoted in bold
b The number of known and reproduction-associated QTL found in Cattle QTL Database v43 (www.​anima​lgeno​me.​org)

http://www.animalgenome.org
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Table 4  Significant SNPs and candidate genes from multiple-trait analysis for four sire fertility traits

Chr Position (bp) P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

BTA3 147,935 2.2433e-05 Intergenic ENSBTAG00000000584, TBX19 0

71,522,570 2.1323e-05 Intergenic — 0

BTA4 18,040,294 2.4781e-05 Intergenic — 0

47,200,188 2.5485e-05 Intergenic SYPL1 0

59,888,193 9.0367e-06 Intron ELMO1 0

82,878,864 9.7487e-07 Intergenic LSM8 3

BTA5 6,106,039 2.7083e-06 Intergenic ZDHHC17 0

13,310,594 9.9233e-07 Intergenic — 0

32,058,789 1.0382e-05 Intergenic H1-7, ENSBTAG00000032429, ENSBTAG00000032428, CCDC184, ASB8, PFKM 0

53,516,007 2.3608e-05 Intergenic — 6

BTA6 7,494,351 1.3907e-05 Intergenic ENSBTAG00000051854* 2

16,046,562 2.6665e-05 Intergenic — 0

BTA7 56,985,760 2.23e-05 Intron PRELID2, GRXCR2 0

64,117,199 1.5768e-05 Intergenic — 2

65,880,766 2.3775e-05 Intergenic ENSBTAG00000053039*, LARP1 0

65,887,207 2.5969e-06 Intergenic

68,359,300 1.6201e-05 Intergenic ENSBTAG00000030297, TIMD4, ENSBTAG00000050582*, ENSBTAG00000049542* 0

68,430,783 1.5884e-05 Intergenic

69,170,746 2.7112e-05 Intron CYFIP2, NIPAL4, ADAM19, SOX30 0

83,320,343 2.8225e-06 Intron XRCC4, VCAN 1

100,056,219 8.7549e-06 Intron ST8SIA4 2

BTA9 15,828,286 7.3866e-06 Intergenic — 2

15,843,031 2.5491e-05 Intergenic

74,655,065 1.7472e-05 Intron MAP3K5 4

BTA10 13,081,096 2.3448e-05 Intron MEGF11 0

55,196,388 9.9519e-06 Intergenic RSL24D1 0

77,838,554 2.8177e-05 Downstream FUT8 0

77,968,781 1.3016e-05 Intergenic

BTA11 58,988,314 1.1679e-05 Intergenic — 0

63,929,970 1.3355e-05 Intergenic — 0

BTA12 60,487,742 4.3234e-06 Intergenic — 0

63,535,854 1.6981e-05 Intergenic — 0

63,538,393 2.1305e-05 Intergenic

BTA13 13,568,203 2.023e-05 Intergenic — 0

14,812,273 1.4407e-05 Intergenic — 0

41,317,365 1.2933e-05 Intergenic — 0

53,595,922 1.5122e-05 Intron ENSBTAG00000054594, ENSBTAG00000011638, ENSBTAG00000054447, ENS‑
BTAG00000027221, GINS1, PCMTD2, MYT1

2

BTA14 78,863,167 3.3468e-05 Intergenic — 0

BTA15 30,636,699 1.2166e-05 Intergenic TRIM29 3

60,970,873 2.5168e-05 Intergenic FSHB, ARL14EP 2

BTA16 23,387,972 1.0853e-05 Intergenic SLC30A10, EPRS1 0

BTA17 18,332,441 2.8154e-05 Intron RAB33B, NAA15, NDUFC1, MGARP, ENSBTAG00000015811, ELF2 3

18,371,778 2.706e-05 Intron

18,408,888 2.8364e-05 Intron

18,458,616 2.3968e-05 Intergenic

33,971,794 2.9933e-05 Intergenic ENSBTAG00000052376* 5
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Table 4  (continued)

Chr Position (bp) P values Genomic location Candidate genes
(within ± 100 kb)a

N of QTLb

48,501,570 3.3186e-05 Intron TMEM132C 2

73,040,719 1.7853e-05 Intergenic TANGO2, ENSBTAG00000049742*, DGCR8, TRMT2A, ENSBTAG00000049062, 
RANBP1, ZDHHC8, CCDC188, ENSBTAG00000052630*, RTN4R, PRODH, DGCR6L

8

BTA19 3,507,732 6.9599e-06 Intergenic — 0

6,425,261 2.0337e-05 Intron PCTP, ENSBTAG00000053407, ENSBTAG00000039563 0

23,803,632 4.6828e-05 Intron RAP1GAP2, ENSBTAG00000049401, OR1D3B, OR1D3 2

23,811,867 3.2146e-05 Intron

BTA20 6,792,445 2.1451e-05 Intron FAM169A, NSA2, GFM2, HEXB, LOC786974 0

44,069,982 8.8349e-06 Intergenic — 0

53,664,202 1.0238e-05 Intron CDH18 0

BTA21 3,550,200 1.2359e-05 Intergenic — 0

BTA22 529,021 3.8026e-05 Intron VOPP1, LANCL2 0

756,892 2.5524e-05 Intron

37,660,216 4.9522e-05 Intergenic THOC7, C22H3orf49, ENSBTAG00000051113*, SNTN 3

42,471,770 2.3695e-05 Intron CFAP20DC 3

44,200,445 1.8137e-06 Intron ARHGEF3 0

59,781,347 1.759e-05 Intron MGLL, ABTB1, PODXL2 0

BTA24 1,516,807 1.8306e-05 Intergenic — 0

20,595,336 4.1116e-05 Intron FHOD3 1

57,446,121 5.5515e-06 Intron NEDD4L, ENSBTAG00000051924* 0

57,476,264 2.8706e-05 Exon

61,476,879 2.1094e-05 Intron BCL2 1

BTA25 26,121,115 1.2696e-05 Intron EIF3CL, CLN3, ENSBTAG00000050361, IL27, NUPR1, SGF29, SULT1A1, SLX1A, 
ENSBTAG00000008632, CORO1A, MAPK3, GDPD3, YPEL3, TBX6, PPP4C, ALDOA, 
ENSBTAG00000050743

1

27,554,453 2.3765e-05 Intergenic ITGAD, COX6A2, ARMC5, TGFB1I1, SLC5A2, RUSF1, AHSP, OR7A53, OR7A153, SEP-
TIN14, ZNF713, MRPS17

1

39,147,647 6.6288e-05 Intron MMD2, ENSBTAG00000051446, RADIL, PAPOLB, AP5Z1, ENSBTAG00000050145*, 
FOXK1

1

40,290,599 1.0271e-05 Intergenic CARD11 0

40,356,262 5.4215e-05 Intergenic

BTA26 10,927,671 1.4324e-06 Intergenic ENSBTAG00000054811*, LIPA 1

27,142,712 2.691e-05 Intergenic ENSBTAG00000055185* 0

30,565,345 4.8874e-05 Intergenic XPNPEP1, ENSBTAG00000054944, ADD3 0

48,212,324 5.1946e-05 Intergenic ENSBTAG00000053738* 5

BTA27 13,351,474 3.8108e-05 Intron ENSBTAG00000047749 1

25,506,261 6.2859e-05 Intron TNKS 1

BTA28 5,066,852 2.9294e-05 Intergenic — 1

19,499,175 7.0726e-06 Intron JMJD1C 0

29,298,316 2.2431e-06 Intron NUDT13, ECD, FAM149B1, DNAJC9, MRPS16, CFAP70, ANXA7 0

37,896,374 1.0502e-05 Intron NRG3 1

BTA29 4,807,970 5.4737e-05 Intergenic — 1

14,612,904 3.5086e-05 Intergenic — 1

a Candidate genes are represented by gene symbol when available, otherwise by the Ensembl gene ID. The long noncoding RNA genes are marked by asterisk (*). The 
genes directly linked to SNPs are further denoted in bold
b The number of known and reproduction-associated QTL found in Cattle QTL Database v43 (www.​anima​lgeno​me.​org)

http://www.animalgenome.org
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of heritability estimates below 0.05 for most female 
traits and 0.05–0.22 for most male traits. Similarly, the 
reported QTL and candidate genes in literature have 
been found to be extensively distributed across genome, 
and few of them could be repeated across studies [3, 12]. 
In this study, a similar genetic landscape was observed, 
as all autosomes harbored significant SNPs for one or 
more traits analyzed, being consistent with the polygenic 
nature of these traits. Numerous fertility and repro-
duction indicator traits have been defined for measur-
ing reproductive performance at different reproductive 
stages in female cattle [3, 21]. However, some of these 
traits are by definition related with each other, such as CI 
is greatly determined by the interval from calving to con-
ception. Therefore, pleiotropic variants are expected for 
these traits [10, 42]. Overall, we found that the number 
of significant SNPs from multiple-trait analysis was less 
than the cumulative sum of separate single-trait analysis; 
and similar results were found in previous GWAS studies 
on fertility and reproduction [e.g., 27].

Differences between heifer and cow traits
It is well known that the genetic basis and physiologi-
cal processes underlying reproduction differ between 
heifers and lactating cows. In general, heifer traits have 
higher heritability, but lower genetic correlations with 
each other compared to cow traits [43, 44]. There are 
also only moderate genetic correlations between heifer 
and cow traits, which are lower than between cow traits 
in different parities [23, 44–46]. Likewise, both ovarian 
structures and circulating steroids (such as serum con-
centrations of progesterone and estradiol) were observed 
to act differently between heifers and cows. In addition, 
lactating cows have lower circulating steroid concentra-
tions, but larger ovulatory follicles and luteal structures 
than heifers [47, 48].

In previous GWAS for fertility and reproduction traits, 
different variants, candidate genes, and QTL were found 
significantly associated with heifers and cows [20, 26, 
27, 37]. For instance, Fang et al. [26] found a significant 
QTL on BTA17 associated with interval from first to last 
insemination (IFLI) and non-return rate (NRR) in heif-
ers, but not in cows. For NRR, distinct significant QTL 
regions on BTA17 were also suggested for heifers and 
cows [20]. Liu et  al. [27] analyzed four fertility traits 
(IFLI, FSC, IPC, and NRR) measured on both heifers and 
cows, and found that none of the significant QTL over-
lapped and most of these QTL were located on distinct 
chromosomes. In this study, our multiple-trait analysis 
found that there were only two candidate QTL (around 
at BTA9:21.35  Mb and BTA23:28.63  Mb) overlapping 
between heifers and cows. Furthermore, our functional 
analyses of candidate genes also suggested differences 

between heifer and cow traits. The candidate genes found 
for heifers were significantly involved in immunity-asso-
ciated biological functions, whereas candidate genes 
found for cows were associated with acylglycerol O-acyl-
transferase activity and diacylglycerol metabolism.

QTL and candidate genes found for heifer traits
The mean CR of Holstein heifers was estimated to be 
56.3% in the United States, which is influenced by the 
age at breeding, month of breeding, age of service sire, 
and other factors [45]. Accordingly, our multiple-trait 
analysis for heifer traits suggested dozens of associated 
QTL that are broadly distributed across three quarters 
of all included chromosomes. Notably, one-third of these 
QTL overlapped with previously identified reproduction-
related QTL in cattle. For example, the QTL located on 
BTA3:89.78–89.98  Mb was supported by a QTL previ-
ously reported to be associated with the commence-
ment of LA and proportion of cows in LA between 25 
and 60 days in milk [19], and with CR [49]. There were 
five QTL previously reported to be associated with 
DPR, CR, and IFEC [50–52], overlapping with one QTL 
on BTA9:95.88–96.08 Mb found in this study. The QTL 
located on BTA12:77.58–77.78  Mb overlapped with 
four previously reported QTL associated with CE, DPR, 
and stillbirth [31, 53]. Furthermore, we identified many 
novel QTL in this study, such as BTA13:41.92–42.15 Mb, 
BTA18:39.57–40.01  Mb, BTA19:53.68–53.88  Mb, and 
BTA22:11.29–11.84  Mb, which showed strong associa-
tion with heifer traits.

For the CR at first service and the number of times bred 
in Holstein heifers, Galliou et  al. [54] found that three 
out of the five most significant pathways were involved 
in immune system regulation, which was consistent with 
our results. More importantly, the non-classical MHC I 
gene of BoLA-NC1, found in this study and involved in 
the KEGG pathway of allograft rejection, was suggested 
to increase maternal immunity against the fetus [55]. 
Another non-classical MHC I gene (JSP.1) was found to 
play a crucial role during early pregnancy in heifers in a 
previous study [56]. Similarly, Melo et al. [57] found that 
the MHC class II genes were significantly associated with 
pregnancy success in Nellore cows. As the link between 
autophagy and reproduction has been acknowledged 
[58], another autophagy-related gene of phosphatidylino-
sitol 3-kinase catalytic subunit type 3 (PIK3C3) was iden-
tified in this study. These findings suggest the importance 
of immunological tolerance of dam to fetus and other 
immune responses in establishing successful pregnancy.

Notably, a QTL, that was located on BTA9:95.88–
96.08  Mb and supported by five previously reported 
QTL, contained four candidate genes having biological 
implications in reproduction, including the superoxide 
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dismutase 2 (SOD2) for meiotic defects in mouse oocytes 
[59], WT1 associated protein (WTAP) for spermatogen-
esis in mice [60], acetyl-CoA acetyltransferase 2 (ACAT2) 
for DPR in Holstein [52], and t-complex 1 (TCP1) for 
mediating sperm-oocyte interaction in mice [61]. On 
BTA22, there were five suggestive candidate genes, 
including the transforming growth factor beta recep-
tor 2 (TGFBR2) for female fertility in pigs and mice [62, 
63], DLEC1 cilia and flagella associated protein (DLEC1) 
and solute carrier family 22 member 14 (SLC22A14) 
regulating male fertility in mice [64, 65], activin A recep-
tor type 2B (ACVR2B) associated with premature ovar-
ian failure in human [66], and 6-phosphofructo-2-kinase 
fructose-2,6-biphosphatase 4 (PFKFB4) involved in 
spermatogenesis in mice [67]. Two genes, the tripartite 
motif containing 27 (TRIM27) and PRP14 on BTA23, 
were suggested to be associated with male and female 
fertility, respectively [68, 69]. Other positional candi-
date genes included the transmembrane protein with 
EGF like and two follistatin like domains 2 (TMEFF2) on 
BTA2 involved in early oocyte development in human 
[70] and associated with bull sperm morphometry [71], 
HECT, C2 and WW domain containing E3 ubiquitin pro-
tein ligase 1 (HECW1) on BTA4 required for estrogen-
induced degradation of Scribble [72], cystatin 8 (CST8) 
on BTA13 involved in sperm maturation [73], dynein 
axonemal heavy chain 17 (DNAH17) on BTA19 associ-
ated with human sperm fertility [74, 75], ADAM metal-
lopeptidase domain 3A (ADAM3A) on BTA27 regulating 
sperm migration in mice [76], and zona pellucida glyco-
protein 4 (ZP4) on BTA28 regulating embryo develop-
ment in rabbits [77]. Taken together of the experimental 
evidence in literature, these genes have been supported 
to hold biological roles in reproduction of humans and 
other species.

QTL and candidate genes found for cow traits
Our multiple-trait analysis for cow traits revealed that 
all significant QTL were broadly distributed across more 
than 85% of the chromosomes and one-third of them 
were supported by previously reported QTL in cattle. For 
instance, one QTL located on BTA18:63.08–63.28  Mb 
was previously reported significantly associated with CI 
and stillbirth [36, 78]; one QTL located on BTA20:56.86–
57.06  Mb was supported by two previously reported 
associations with CR, FSC, and IPC [49, 54]; and one 
QTL located on BTA5:61.82–62.02 associated with FSC 
and CR [79]. In addition, many novel QTL identified in 
this study harbored candidate genes that have biologi-
cal functions impacting reproduction according to the 
literature.

Our analyses of candidate genes for cow traits revealed 
functional implications that are in contrast to those for 

heifers. Instead of immune system, the most significant 
functions were associated with fatty acid metabolism, 
such as the acylglycerol O-acyltransferase activity and 
diacylglycerol metabolism. Mattos et  al. [80] compre-
hensively reviewed effects of dietary fatty acids on repro-
duction in ruminants, which include the influences on 
ovarian follicle and corpus luteum function via improved 
energy status, and the synthesis of reproductive hor-
mones, such as steroids and prostaglandins. In addi-
tion, the maternal lipid metabolism during pregnancy 
positively influence fetal growth [81, 82]. Many genes 
involved in fatty acid metabolism were similarly found to 
be associated with reproductive performance in Nellore 
cattle [57]. The seasonal changes in Holstein fertility was 
related to fatty acid composition of follicles [83]. Further-
more, the relationship between dietary fatty acids and 
ovarian function was experimentally found in Holstein 
cows [84].

Interestingly, numerous candidate genes identified 
in this study also have the known biological functions 
associated with reproduction in literature. Two genes 
(GRIN2A and ITGAX) located on BTA25 were asso-
ciated with CTFS in Iranian Holstein cattle [85] and 
with altered expression in polycystic ovary syndrome 
in women [86], respectively. There were four candidate 
genes located on BTA8, including the kinesin family 
member 13B (KIF13B) involved in oocyte meiosis [87], 
annexin A1 (ANXA1) with regulatory functions during 
early pregnancy in mice [88] and differentially expressed 
between less fertile and normally fertile Holstein [89], 
proprotein convertase subtilisin/kexin type 5 (PCSK5) 
that contributed to ovarian follicle development in rats 
[90], and zinc finger protein 483 (ZNF483), which is 
associated with age of puberty in Brahman heifers [91]. 
Two genes, the fem-1 homolog B (FEM1B) and sperm 
equatorial segment protein 1 (SPESP1) on BTA10, were 
reported to be involved in polycystic ovary syndrome in 
humans [92] and required for fully fertile sperm in mice 
[93], respectively. Four genes were associated with differ-
ent reproduction traits, including cell adhesion molecule 
2 (CADM2) on BTA1 with the number of piglets born 
dead in pigs [94], calcium voltage-gated channel auxiliary 
subunit beta 4 (CACNB4) on BTA2 with CTFS in Iranian 
Holstein Cattle [85], ST6 N-acetylgalactosaminide alpha-
2,6-sialyltransferase 5 (ST6GALNAC5) on BTA3 with 
fertility index in Holstein cattle [95], and ATP/GTP bind-
ing protein like 1 (AGBL1) on BTA21 with out of season 
lambing in sheep [96]. Other suggestive candidate genes 
included the protein tyrosine phosphatase receptor type 
Z1 (PTPRZ1) on BTA4 differentially expressed between 
high- and low-fertility Holstein cows [97], LPS respon-
sive beige-like anchor protein (LRBA) on BTA17 differ-
entially methylated between high- and low-fertility bulls 
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[98], peroxisome proliferator activated receptor gamma 
(PPARG​) on BTA22 involved in the release of oocytes 
each estrous cycle [99], and jumonji domain containing 
1C (JMJD1C) on BTA28 required for long-term mainte-
nance of male germ cells in mice [100].

QTL and candidate genes found for sire traits
In dairy cattle, the genetic evaluation of male reproduc-
tion has received much less attention in comparison with 
female traits [101, 102]. Sire CR in Holstein was included 
in two previous GWAS studies [103, 104], which revealed 
significant SNPs located on multiple chromosomes. In 
this study, we included four sire traits and found that the 
number and genomic distribution of QTL are comparable 
with or higher than that in females. Interestingly, more 
than 40% of these QTL identified in this study overlapped 
with previously reported reproduction-related QTL 
in cattle. For instance, all four QTL located on BTA17 
(BTA17:18.23–18.56  Mb, BTA17:33.87–34.07  Mb, 
BTA17:48.40–48.60  Mb, and BTA17:72.94–73.14  Mb) 
overlapped with previous reports for DPR, IPC, CE, 
stillbirth, IFEC, and NRR [31, 34, 49, 50, 54] and three 
out of four QTL on BTA25 (BTA25:26.02–26.22  Mb, 
BTA25:27.45–27.65  Mb, and BTA25:39.05–39.25  Mb) 
overlapped with previous reports for age at first calving 
(AFC) and CR [105, 106].

Only one GO term (N-acetyl-beta-D-galactosamini-
dase activity) was significantly enriched among all candi-
date genes of sire traits. The two involved genes (HEXB 
and LOC786974) on BTA20 have no functional evidence 
in literature with respective to reproduction. However, 
we found many novel candidate genes that have direct 
functional implications in reproduction. For example, the 
engulfment and cell motility 1 (ELMO1) gene on BTA4 
was found to play crucial roles in clearance of apoptotic 
germ cells and spermatogenesis in mice [107]. Two genes, 
JMJD1C and cilia and flagella associated protein 70 
(CFAP70) on BTA28, are required for long-term mainte-
nance of germ cells in mice [100] and are associated with 
multiple morphological abnormalities of sperm flagella in 
human [108]. Notably, both ELMO1 and JMJD1C genes 
were suggested by the significant SNPs located in intronic 
regions. One well-known candidate gene on BTA15 (fol-
licle stimulating hormone subunit beta, FSHB), associ-
ated with semen quality and fertility in bulls [109], was 
also identified in this study.

There were four suggestive candidate genes on BTA7, 
including the PRELI domain containing 2 (PRELID2) 
associated with fertility traits in pigs [110], ADAM 
metallopeptidase domain 19 (ADAM19) differentially 
expressed between different quality of bovine blastocysts 
[111], SRY-box transcription factor 30 (SOX30) required 
for male fertility in mice [112, 113], and versican (VCAN) 

involved in embryo implantation in rabbits [114]. 
Three candidate genes were found on BTA17, includ-
ing RAB33B, member RAS oncogene family (RAB33B), 
associated with freezability in boar spermatozoa [115], 
transport and golgi organization 2 homolog (TANGO2) 
influencing bull fertility [116], and DGCR8 microproces-
sor complex subunit (DGCR8) involved in human sper-
matogenesis [117]. On BTA25, the mitogen-activated 
protein kinase 3 (MAPK3), septin 14 (SEPTIN14), and 
poly(A) polymerase beta (PAPOLB) were found to regu-
late ovulation in mice [118], spermatogenesis in humans 
[119], and spermatogenesis in mice [120], respectively. 
Other suggestive candidate genes included the synap-
tophysin like 1 (SYPL1) on BTA4 contributing to sperm 
maturation in sheep [121], multiple EGF like domains 11 
(MEGF11) on BTA10 associated with lifetime productiv-
ity in pigs [122], fucosyltransferase 8 (FUT8) on BTA10 
differentially expressed between matured oocytes from 
older and younger women [123], myelin transcription 
factor 1 (MYT1) on BTA13 involved in reduced fertility 
of anovular dairy cows [124], Rho guanine nucleotide 
exchange factor 3 (ARHGEF3) on BTA22 associated with 
number of piglets weaned [125], monoglyceride lipase 
(MGLL) on BTA22 influencing metabolism of endocan-
nabinoids in bovine endometrium [126], NEDD4 like 
E3 ubiquitin protein ligase (NEDD4L) on BTA24 associ-
ated with AFC in buffaloes [127], and BCL2 apoptosis 
regulator (BCL2) on BTA24 influencing oocyte and early 
embryo survival in humans [128].

Combining multiple trait categories
We combined multiple trait categories for multiple-trait 
analysis for exploiting potential pleiotropic effects for fer-
tility and reproduction traits. When the 14 female traits 
were analyzed together, 10 out of the 33 suggestive can-
didate genes in heifer and cow traits were identified. In 
addition, 15 out of the 54 suggestive candidate genes in 
heifers, cows, and sires were identified when also com-
bining the four male traits together. There were five addi-
tional identified candidate genes in the combined analysis 
that have biological implications in reproduction in the 
literature, including Cbp/p300 interacting transactivator 
with Glu/Asp rich carboxy-terminal domain 2 (CITED2) 
on BTA9, cadherin 1 (CDH1) on BTA18, fanconi ane-
mia complementation group M (FANCM) on BTA23, 
DPY30 domain containing 1 (DYDC1) on BTA28, and 
neural EGFL like 2 (NELL2) on BTA5 [129–133]. Among 
them, NELL2 was recently found to be involved in lumic-
rine system essential for testis-epididymis-spermatozoa 
signaling and male fertility [133]. Furthermore, three 
chromosomes (BTA3, BTA11, and BTA24) no longer 
contained significant regions when all 18 traits were ana-
lyzed together. A possible explanation for these findings 



Page 16 of 22Chen et al. BMC Genomics          (2022) 23:331 

is that the increased amount of information might have 
removed spurious associations.

Implications of the study
The results of this study have three main implications. 
First, we enhanced compelling evidence that traits meas-
ured in heifers, cows, and sires hold relatively distinct 
polygenic nature, therefore having specific evaluation is 
needed in breeding programs. Second, the QTL and can-
didate genes found in this study can be specifically incor-
porated into genomic prediction models by giving greater 
weights to the more important markers. Furthermore, 
SNPs located in the relevant genomic regions identified 
can also be included in commercial genotyping platforms 
to increase the accuracy of genomic prediction. Third, we 
suggested several novel candidate genes associated with 
fertility and reproduction traits in cattle, which should be 
further investigated in sequel studies. Additionally, the 
use of closer to biology phenotypes that better capture 
the biological mechanisms underlying the fertility and 
reproduction traits and the use of multi-omic data (e.g., 
transcriptomics, metabolomics, epigenomics) can fur-
ther facilitate the mapping of QTL and variants associ-
ated with fertility and reproduction. Future studies could 
further investigate the most promising candidate genes 
using gene editing or gene knock-out experiments and 
real WGS data (instead of imputed WGS), which would 
enable the investigation of rare alleles (usually removed 
due to low imputation accuracy) and structural variation 
in the genome (e.g., copy number of variants, insertions, 
deletions). For the significant intergenic SNPs found in 
this study, their possible functional roles will be explored 
when a comprehensive annotation of genomic regulatory 
elements are available.

Conclusions
The multiple-trait GWAS of 18 fertility and reproduction 
traits in North American Holstein cattle revealed several 
QTL and candidate genes associated with heifer, cow, and 
sire traits. These QTL were broadly distributed across the 
entire genome, which are consistent with the polygenic 
nature of fertility and reproduction traits. The biological 
functions of immune response and fatty acid metabo-
lism were significantly enriched in heifer and cow traits, 
respectively, whereas no known functional enrichment 
was found for sire traits. The most important chromo-
somes, which had three or more significant QTL, were 
BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for 
cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and 
BTA28 for sire traits. Several candidate genes that have 
not been previously reported in cattle and other live-
stock were strongly suggested for heifer (SOD2, WTAP, 
DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and 

ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), 
and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, 
PAPOLB, JMJD1C, and NELL2) traits. More than one-
third of the QTL identified in this study overlapped with 
previously reported reproduction-related QTL in cat-
tle, and more than 50 candidate genes were supported 
by functional implications in reproduction, as found in 
the literature. In addition, many important candidate 
genes were identified via significant SNPs located in 
their intronic regions. These observations indicate high 
detection power and mapping resolution of this study. 
Therefore, a comprehensive investigation on underly-
ing genetic basis of fertility and reproduction in heifers, 
cows, and sires are provided in this study, whose findings 
can be used for improving genomic evaluation for fertil-
ity and reproduction traits in Holstein cattle.

Methods
Animals, phenotypes and genotypes
The phenotypic and genotypic datasets used in this study 
were provided by the Canadian Dairy Network (CDN), 
a member of Lactanet Canada (Guelph, ON, Canada). 
A total of 18 fertility and reproduction traits were ana-
lyzed in this study (Table  1). For all traits, dEBV were 
used as pseudo-phenotypes, which were computed fol-
lowing VanRaden et al. [134] and only dEBV with accu-
racy greater than 0.50 were kept for further analyses. 
The details of trait definitions and the effects included 
in the statistical model used to predict the original esti-
mated breeding values (EBV) for each trait are reported 
in Oliveira Junior et al. [9].

Imputed WGS datasets containing 29,548,077 SNPs 
were available for 9,131 animals. The detailed genotype 
imputation process using the FImpute software [135], 
including the number of animals per SNP panel, meth-
ods, and QC, was described by Chen et  al. [136]. In 
brief, genotype imputation was performed in two steps: 
(1) imputation from medium density panels (9,131 cows 
and 56,955 or 60,914 SNP; Illumina, San Diego, CA, 
USA) to the BovineHD panel [HD, 311,725 SNP after a 
preliminary quality control; Illumina, San Diego, CA, 
USA]; and (2) imputation from HD to WGS. The refer-
ence population for step 1 had 2,397 animals (from the 
same herds and Holstein population), whereas for step 2, 
there were 1,147 animals with WGS data (from the 1,000 
Bull Genomes Project, which also included North Ameri-
can Holstein animals) [136]. An additional QC step was 
applied after imputation, which required the individual 
and genotype missing rates to be lower than 0.1 (this step 
was done as some markers were still missing after the 
imputation process), MAF to be higher than 0.01, and 
no extreme deviation from Hardy–Weinberg equilib-
rium (only retained SNPs with P > 1.0 × 10–8). The SNPs 
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that were poorly imputed were also removed from the 
analyses. This was done in a previous step where accu-
racy of imputation was calculated based on genotype 
concordance rate and allelic R2 on a per-SNP basis, where 
the SNPs retained had a concordance rate and allelic R2 
greater than 0.95 and 0.85, respectively. All QC were con-
ducted using the PLINK software [137], after which an 
average of 5,576,878 SNPs were retained for single-trait 
GWAS using 3,803 to 5,986 animals (depending on the 
trait, as showed in Table 1).

Single‑trait association analyses
As all known fixed effects were fitted when predicting the 
EBVs used to compute the dEBVs, only SNP and poly-
genic effects were included in the mixed linear model 
used for the association analyses, i.e.:

where y is the vector of dEBV for each analyzed trait; 1 is 
a vector of ones; µ is the overall mean; b is the fixed effect 
of the SNP tested for association, X is a vector containing 
the genotype score for the tested SNP; u is the random 
vector of polygenic effect with u ∼ N (0,Gσ 2

u ) , where G 
is the genomic-based relationship matrix (GRM), σ 2

u is 
the additive genomic variance of polygenic effects; Z is 
the incidence matrix for u ; and e is a random vector of 
residual effects with e ∼ N (0, Iσ 2

e ) , where I is an identity 
matrix and σ 2

e  is the residual variance. The genetic rela-
tionship between individuals j and k in the GRM was 
computed as [138]:

where pi is the frequency of the reference allele for the 
ith SNP; xij and xik are the numbers of copies of the ref-
erence allele for individuals j and k , respectively; and 
N  is the total number of SNPs used. Instead of using all 
included SNPs, a total of 29 GRMs were constructed by 
randomly sampling 50,000 SNPs from the remaining 28 
chromosomes (i.e., iterative process including all chro-
mosomes except the one in which the analyzed SNP was 
located). These analyses were implemented using the 
GCTA software [138].

The strongly-linked SNPs were clumped out if they had 
high LD (r2 > 0.9) with another SNP that have a lower P in 
the GWAS, using the PLINK software [137]. This clump-
ing process avoids overestimating the number of signifi-
cant SNPs and was suggested to be preferable compared 
to the pruning method without considering the P values 
from GWAS [139]. To check if there was potential strati-
fication due to the population structure, the genomic 

y = 1µ+ Xb+ Zu + e,

Gjk =
1

N

N∑

i=1

(xij − 2pi)(xik − 2pi)

2pi(1− pi)
,

inflation factor (λ) [140] was evaluated, along with its 
95% confidence interval.

Multiple‑trait chi‑square statistics
Following Bolormaa et  al. [24], the multiple-trait analy-
sis was performed using five different trait categories 
(i.e., heifers, cows, sires, heifers and cows, and all traits), 
as shown in Table  1. The CA trait was simultaneously 
included into both heifer and cow categories as it is a 
sub-index incorporating other traits. For each category of 
n traits, the multiple-trait chi-square statistics of a SNP 
was obtained as follows [24]:

where t i is a n× 1 vector of signed t-values for ith SNP 
(that is equal to the allele effect divided by its standard 
error) across the n analyzed traits; t ′i is the transpose of 
vector t i ( 1× n ); and V−1 is the inverse of n× n correla-
tion matrix, in which the pairwise correlations of traits 
were calculated over the estimated SNP effects. The null 
hypothesis that the SNP has no significant effect on any 
of the tested traits was tested based on the χ2 distribution 
with n degrees of freedom.

Adjustment for multiple‑hypotheses testing
Due to the polygenic architecture of fertility and repro-
duction traits, a large number of QTL are expect, there-
fore a Bonferroni correction at 5% chromosome-wise 
significance level [141] was carried, by dividing 0.05 by 
the number of independent chromosome segments ( Me ) 
to account for dependency among tests. The Me was cal-
culated as follow [142]:

where Ne is the effective population size, which was 
set to 66 according to a recent report in North Ameri-
can Holstein [143]; L is chromosome length expressed 
in centi-Morgans (cM; one cM was considered to be 
equivalent to 1 Mb). Thus, SNPs were considered as sta-
tistically significant if their −log10(P) was higher than the 
chromosome-wide threshold [ −log10(0.05/Me) ], which 
ranged from 4.15 to 4.65 depending on the chromosome 
(average ± SD = 4.39 ± 0.12).

QTL, positional candidate genes, and functional analyses
The QTL were defined as chromosomal regions 
of ± 100  Kb around the significant SNPs, therefore, 
considering a flanking distance where, on average, high 
LD is expected in North American Holsteins [144]. 
The identified QTL were compared to previously 
reported QTL in the Cattle QTL Database – Release 

χ
2
= t

′

iV
−1

t i

Me =
2NeL

ln(NeL)
,
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43 [145]. To most effectively avoid missing the poten-
tial causal genes, all positional candidate genes within 
QTL region, including protein-encoding and lncRNA, 
were retrieved using the biomaRt R package [146]. 
The ARS-UCD1.2 assembly (https://​ensem​bl.​org/​Bos_​
taurus/​Info/​Index) was used as the reference genome. 
Functional enrichment analyses of the candidate genes 
were conducted using the g:GOSt function of the 
g:Profiler web server [147], including the target data-
sets of the GO terms [148] and KEGG pathways [149]. 
The default parameters and methods for adjusting for 
multiple hypotheses testing were used, targeting an 
adjusted 5% level of significance. For the biologically 
suggested candidate genes, we also performed a pro-
tein–protein interaction analysis using the STRING 
software [150].

Abbreviations
AFC: Age at First Calving; BTA: Bos Taurus Autosomes; CE: Calving Ease; CI: 
Calving Interval; CR: Conception Rate; DPR: Daughter Pregnancy Rate; dEBV: 
Deregressed Estimated Breeding Values; EBV: Estimated Breeding Values; 
FSC: First Service Conception; GO: Gene Ontology; GWAS: Genome-wide 
Association Studies; GS: Genomic Selection; GRM: Genomic-based Relation‑
ship Matrix; IFLI: Interval From First to Last Insemination; IFEC: Interval to First 
Estrus After Calving; KEGG: Kyoto Encyclopedia of Genes and Genomes; LD: 
Linkage Disequilibrium; lncRNA: Long non-coding RNAs; LA: Luteal Activity; 
MHC: Major Histocompatibility Complex; MAF: Minor Allele Frequency; NRR: 
Non-return Rate; IPC: Number of Inseminations Per Conception; QC: Quality 
Controls; QTL: Quantitative Trait Loci; SD: Standard Deviation; SNP: Single-
nucleotide Polymorphism; WGS: Whole-genome Sequence.

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12864-​022-​08555-z.

Additional file 1: TableS1. Position distribution and minor allele frequen‑
cies of SNPs that passed thegenotype quality control; Table S2. Distribu‑
tion of significant SNPs of single-traitGWAS; Table S3. Numbers of quanti‑
tative trait loci revealed by single-traitGWAS and their overlapping among 
traits; Table S4. The previously reported andreproduction-associated QTL 
for the significant SNPs revealed by multiple-traitanalysis of six heifer traits; 
Table S5. The previously reported andreproduction-associated QTL for 
the significant SNPs revealed by multiple-traitanalysis of nine cow traits; 
Table S6. The previously reported andreproduction-associated QTL for 
the significant SNPs revealed by multiple-traitanalysis of four sire traits; 
Table S7. Significant SNPs and candidate genesfrom multiple-trait analysis 
of 14 heifers and cows’ traits; Table S8. Thepreviously reported and repro‑
duction-associated QTL for the significant SNPsrevealed by multiple-trait 
analysis of 14 heifer and cow traits; Table S9. Thesignificantly enriched 
GO terms and KEGG from multiple-trait analysis of 18heifers, cows, sire 
traits; Table S10. Significant SNPs and candidate genesfrom multiple-trait 
analysis of 18 heifers, cows, sire traits; Table S11. Thepreviously reported 
and reproduction-associated QTL for the significant SNPsrevealed by 
multiple-trait analysis of 18 heifer, cow, and sire traits; Figure S1. Manhat‑
tan plots (left) and Quantile-quantile plots (right) of thesingle-trait GWAS 
results based on imputed WGS data; Figure S2. Numbers of significant 
SNPs foreach trait category and their overlaps found by multiple-trait 
analysis. Figure S3. Significantly enrichedbiological functions of candidate 
genes revealed by multiple-trait analysis. Figure S4. Potential protein-
protein interaction among biologically relevantgenes that were identified 
for heifer, cow, and sire traits in this study.

Acknowledgements
The University of Guelph is a partner in the 1,000 Bull Genomes Project and 
thanks the Project for the use of the full genome sequence genotypes. This 
research is also part of the activities of Drs. Schenkel and Brito within the 
Resilient Dairy Genome Project (http://​www.​resil​ientd​airy.​ca). We also thank 
the financial support in main part by Agriculture and Agri-Food Canada, and 
by additional contributions from Dairy Farmers of Canada, the Canadian Dairy 
Network and the Canadian Dairy Commission under the Agri-Science Clusters 
Initiative. As per the research agreement, aside from providing financial sup‑
port, the funders have no role in the design and conduct of the studies, data 
collection and analysis or interpretation of the data. Researchers maintain 
independence in conducting their studies, own their data, and report the 
outcomes regardless of the results. The decision to publish the findings rests 
solely with the researchers.

Authors’ contributions
SC and LFB conceived, designed, and coordinated this research. SC performed 
the data analyses and wrote the initial version of the manuscript. FSS and 
MGM provided all the datasets. LFB, FSS, ALPM, VBP, MGM, and ACA provided 
technical assistance and suggestions in the final version of the manuscript. 
All authors interpreted the results and edited the manuscript. All authors read 
and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All the data supporting the results of this study are included in the article and 
in the Additional file.

Declarations

Ethics approval and consent to participate
No Animal Care Committee approval was necessary for the purposes of this 
study, as all information required was obtained from pre-existing databases.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Animal Sciences, Purdue University, 270 S. Russell Street, West 
Lafayette, IN 47907‑2041, USA. 2 Farm Animal Genetic Resources Exploration 
and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural Uni‑
versity, Chengdu 611130, Sichuan, China. 3 Centre for Genetic Improvement 
of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, 
ON N1G 2W1, Canada. 4 Department of Reproduction and Animal Evaluation, 
Rural Federal University of Rio de Janeiro, Seropédica, RJ 23897‑000, Brazil. 
5 Department of Animal Sciences, State University of Ponta Grossa, Ponta 
Grossa, PR 84030‑900, Brazil. 6 Department of Animal and Food Science, Uni‑
versity of Wisconsin River Falls, River Falls, WI 54022, USA. 

Received: 5 August 2021   Accepted: 12 April 2022

References
	 1.	 Inchaisri C, Jorritsma R, Vos PLAM, van der Weijden GC, Hogeveen H. 

Economic consequences of reproductive performance in dairy cattle. 
Theriogenology. 2010;74:835–46.

	 2.	 Ritter C, Beaver A, von Keyserlingk MAG. The complex relationship 
between welfare and reproduction in cattle. Reprod Domest Anim. 
2019;54:29–37.

	 3.	 Ma L, Cole JB, Da Y, VanRaden PM. Symposium review: Genetics, 
genome-wide association study, and genetic improvement of dairy 
fertility traits. J Dairy Sci. 2019;102:3735–43.

https://ensembl.org/Bos_taurus/Info/Index
https://ensembl.org/Bos_taurus/Info/Index
https://doi.org/10.1186/s12864-022-08555-z
https://doi.org/10.1186/s12864-022-08555-z
http://www.resilientdairy.ca


Page 19 of 22Chen et al. BMC Genomics          (2022) 23:331 	

	 4.	 Brito LF, Bedere N, Douhard F, Oliveira HR, Arnal M, Peñagaricano F, et al. 
Invited Review: Genetic selection of high-yielding dairy cattle towards 
sustainable farming systems in a rapidly-changing world. Animal. 
2021:100292.

	 5.	 Miglior F, Fleming A, Malchiodi F, Brito LF, Martin P, Baes CF. A 100-Year 
Review: Identification and genetic selection of economically important 
traits in dairy cattle. J Dairy Sci. 2017;100:10251–71.

	 6.	 VanRaden PM, Sanders AH, Tooker ME, Miller RH, Norman HD, Kuhn MT, 
et al. Development of a national genetic evaluation for cow fertility. J 
Dairy Sci. 2004;87:2285–92.

	 7.	 Van Doormaal BJ, Kistemaker G, Miglior F. Implementation of repro‑
ductive performance genetic evaluations in Canada. Interbull Bull. 
2007;37:129–33.

	 8.	 García-Ruiz A, Cole JB, VanRaden PM, Wiggans GR, Ruiz-López FJ, Van 
Tassell CP. Changes in genetic selection differentials and generation 
intervals in US Holstein dairy cattle as a result of genomic selection. 
Proc Natl Acad Sci U S A. 2016;113:E3995–4004.

	 9.	 Oliveira Junior GA, Schenkel FS, Alcantara L, Houlahan K, Lynch C, Baes 
CF. Estimated genetic parameters for all genetically evaluated traits in 
Canadian Holsteins. J Dairy Sci. 2021: 9002–15.

	 10.	 Xiang R, MacLeod IM, Daetwyler HD, de Jong G, O’Connor E, Schrooten 
C, et al. Genome-wide fine-mapping identifies pleiotropic and func‑
tional variants that predict many traits across global cattle populations. 
Nat Commun. 2021;12:860.

	 11.	 Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations 
of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

	 12.	 Fortes MR, DeAtley KL, Lehnert SA, Burns BM, Reverter A, Hawken RJ, 
et al. Genomic regions associated with fertility traits in male and female 
cattle: advances from microsatellites to high-density chips and beyond. 
Anim Reprod Sci. 2013;141:1–19.

	 13.	 Hayes BJ, Daetwyler HD. 1000 Bull Genomes Project to map simple and 
complex genetic traits in cattle: applications and outcomes. Annu Rev 
Anim Biosci. 2019;7:89–102.

	 14.	 Stothard P, Liao X, Arantes AS, De Pauw M, Coros C, Plastow GS, et al. 
A large and diverse collection of bovine genome sequences from the 
Canadian Cattle Genome Project. Gigascience. 2015;4:49.

	 15.	 Rubinacci S, Ribeiro DM, Hofmeister RJ, Delaneau O. Efficient phasing 
and imputation of low-coverage sequencing data using large reference 
panels. Nat Genet. 2021;53:120–6.

	 16.	 Larmer SG, Sargolzaei M, Brito LF, Ventura RV, Schenkel FS. Novel meth‑
ods for genotype imputation to whole-genome sequence and a simple 
linear model to predict imputation accuracy. BMC Genet. 2017;18:120.

	 17.	 Wu Y, Zheng Z, Visscher PM, Yang J. Quantifying the mapping precision 
of genome-wide association studies using whole-genome sequencing 
data. Genome Biol. 2017;18:86.

	 18.	 Höglund JK, Sahana G, Brøndum RF, Guldbrandtsen B, Buitenhuis B, Lund 
MS. Fine mapping QTL for female fertility on BTA04 and BTA13 in dairy 
cattle using HD SNP and sequence data. BMC Genomics. 2014;15:790.

	 19.	 Tenghe AMM, Bouwman AC, Berglund B, Strandberg E, de Koning DJ, 
Veerkamp RF. Genome-wide association study for endocrine fertility 
traits using single nucleotide polymorphism arrays and sequence vari‑
ants in dairy cattle. J Dairy Sci. 2016;99:5470–85.

	 20.	 Frischknecht M, Bapst B, Seefried FR, Signer-Hasler H, Garrick D, Stricker 
C, et al. Genome-wide association studies of fertility and calving traits 
in Brown Swiss cattle using imputed whole-genome sequences. BMC 
Genomics. 2017;18:910.

	 21.	 Berry DP, Wall E, Pryce JE. Genetics and genomics of reproductive 
performance in dairy and beef cattle. Animal. 2014;8:105–21.

	 22.	 Fleming A, Baes CF, Martin AAA, Chud TCS, Malchiodi F, Brito LF, et al. 
Symposium review: The choice and collection of new relevant pheno‑
types for fertility selection. J Dairy Sci. 2019;102:3722–34.

	 23.	 Jamrozik J, Fatehi J, Kistemaker GJ, Schaeffer LR. Estimates of genetic 
parameters for Canadian Holstein female reproduction traits. J Dairy Sci. 
2005;88:2199–208.

	 24.	 Bolormaa S, Pryce JE, Reverter A, Zhang Y, Barendse W, Kemper K, et al. 
A multi-trait, meta-analysis for detecting pleiotropic polymorphisms for 
stature, fatness and reproduction in beef cattle. PLoS Genet. 2014;10: 
e1004198.

	 25.	 Xiang R, MacLeod IM, Bolormaa S, Goddard ME. Genome-wide com‑
parative analyses of correlated and uncorrelated phenotypes identify 
major pleiotropic variants in dairy cattle. Sci Rep. 2017;7:9248.

	 26.	 Fang ZH, Pausch H. Multi-trait meta-analyses reveal 25 quantitative 
trait loci for economically important traits in Brown Swiss cattle. BMC 
Genomics. 2019;20:695.

	 27.	 Liu A, Wang Y, Sahana G, Zhang Q, Liu L, Lund MS, et al. Genome-wide 
association studies for female fertility traits in Chinese and Nordic 
Holsteins. Sci Rep. 2017;7:8487.

	 28.	 Feugang JM, Kaya A, Page GP, Chen L, Mehta T, Hirani K, et al. Two-stage 
genome-wide association study identifies integrin beta 5 as having 
potential role in bull fertility. BMC Genomics. 2009;10:176.

	 29.	 Kim ES, Berger PJ, Kirkpatrick BW. Genome-wide scan for bovine twin‑
ning rate QTL using linkage disequilibrium. Anim Genet. 2009;40:300–7.

	 30.	 Sahana G, Guldbrandtsen B, Bendixen C, Lund MS. Genome-wide 
association mapping for female fertility traits in Danish and Swedish 
Holstein cattle. Anim Genet. 2010;41:579–88.

	 31.	 Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ, Crooker BA, et al. 
Genome-wide association analysis of thirty one production, health, 
reproduction and body conformation traits in contemporary US Hol‑
stein cows. BMC Genomics. 2011;12:408.

	 32.	 Sahana G, Guldbrandtsen B, Lund MS. Genome-wide association study 
for calving traits in Danish and Swedish Holstein cattle. J Dairy Sci. 
2011;94:479–86.

	 33.	 Minozzi G, Nicolazzi EL, Stella A, Biffani S, Negrini R, Lazzari B, et al. 
Genome wide analysis of fertility and production traits in Italian Hol‑
stein cattle. PLoS ONE. 2013;8: e80219.

	 34.	 Gaddis KP, Null DJ, Cole JB. Explorations in genome-wide association 
studies and network analyses with dairy cattle fertility traits. J Dairy Sci. 
2016;99:6420–35.

	 35.	 Nayeri S, Sargolzaei M, Abo-Ismail MK, May N, Miller SP, Schenkel F, et al. 
Genome-wide association for milk production and female fertility traits 
in Canadian dairy Holstein cattle. BMC Genet. 2016;17:75.

	 36.	 Abo-Ismail MK, Brito LF, Miller SP, Sargolzaei M, Grossi DA, Moore SS, 
et al. Genome-wide association studies and genomic prediction of 
breeding values for calving performance and body conformation traits 
in Holstein cattle. Genet Sel Evol. 2017;49:82.

	 37.	 Nayeri S, Sargolzaei M, Abo-Ismail MK, Miller S, Schenkel F, Moore SS, 
et al. Genome-wide association study for lactation persistency, female 
fertility, longevity, and lifetime profit index traits in Holstein dairy cattle. 
J Dairy Sci. 2017;100:1246–58.

	 38.	 Atashi H, Salavati M, De Koster J, Crowe MA, Opsomer G, Hostens M, 
et al. A genome-wide association study for calving interval in Holstein 
dairy cows using weighted single-step genomic BLUP approach. 
Animals (Basel). 2020;10:500.

	 39.	 Hiltpold M, Kadri NK, Janett F, Witschi U, Schmitz-Hsu F, Pausch H. Auto‑
somal recessive loci contribute significantly to quantitative variation of 
male fertility in a dairy cattle population. BMC Genomics. 2021;22:225.

	 40.	 Ferreira MA, Purcell SM. A multivariate test of association. Bioinformat‑
ics. 2009;25:132–3.

	 41.	 Turley P, Walters RK, Maghzian O, Okbay A, Lee JJ, Fontana MA, et al. 
Multi-trait analysis of genome-wide association summary statistics 
using MTAG. Nat Genet. 2018;50:229–37.

	 42.	 Solovieff N, Cotsapas C, Lee PH, Purcell SM, Smoller JW. Pleiot‑
ropy in complex traits: challenges and strategies. Nat Rev Genet. 
2013;14:483–95.

	 43.	 Muir BL, Fatehi J, Schaeffer LR. Genetic relationships between per‑
sistency and reproductive performance in first-lactation Canadian 
Holsteins. J Dairy Sci. 2004;87:3029–37.

	 44.	 Tiezzi F, Maltecca C, Cecchinato A, Penasa M, Bittante G. Genetic 
parameters for fertility of dairy heifers and cows at different parities 
and relationships with production traits in first lactation. J Dairy Sci. 
2012;95:7355–62.

	 45.	 Kuhn MT, Hutchison JL, Wiggans GR. Characterization of Holstein heifer 
fertility in the United States. J Dairy Sci. 2006;89:4907–20.

	 46.	 Muuttoranta K, Tyrisevä AM, Mäntysaari EA, Pösö J, Aamand GP, Lidauer 
MH. Genetic parameters for female fertility in Nordic Holstein and Red 
Cattle dairy breeds. J Dairy Sci. 2019;102:8184–96.

	 47.	 Sartori R, Rosa GJM, Wiltbank MC. Ovarian structures and circulating 
steroids in heifers and lactating cows in summer and lactating and dry 
cows in winter. J Dairy Sci. 2002;85:2813–22.

	 48.	 Sartori R, Haughian JM, Shaver RD, Rosa GJM, Wiltbank MC. Comparison 
of ovarian function and circulating steroids in estrous cycles of Holstein 
heifers and lactating cows. J Dairy Sci. 2004;87:905–20.



Page 20 of 22Chen et al. BMC Genomics          (2022) 23:331 

	 49.	 Kiser JN, Clancey E, Moraes JG, Dalton J, Burns GW, Spencer TE, et al. 
Identification of loci associated with conception rate in primiparous 
Holstein cows. BMC Genomics. 2019;20:840.

	 50.	 Hawken RJ, Zhang YD, Fortes MRS, Collis E, Barris WC, Corbet NJ, et al. 
Genome-wide association studies of female reproduction in tropically 
adapted beef cattle. J Anim Sci. 2012;90:1398–410.

	 51.	 Cochran SD, Cole JB, Null DJ, Hansen PJ. Discovery of single nucleo‑
tide polymorphisms in candidate genes associated with fertility and 
production traits in Holstein cattle. BMC Genet. 2013;14:49.

	 52.	 Ortega MS, Denicol AC, Cole JB, Null DJ, Hansen PJ. Use of single 
nucleotide polymorphisms in candidate genes associated with daugh‑
ter pregnancy rate for prediction of genetic merit for reproduction in 
Holstein cows. Anim Genet. 2016;47:288–97.

	 53.	 Saatchi M, Schnabel RD, Taylor JF, Garrick DJ. Large-effect pleiotropic 
or closely linked QTL segregate within and across ten US cattle breeds. 
BMC Genomics. 2014;15:442.

	 54.	 Galliou JM, Kiser JN, Oliver KF, Seabury CM, Moraes JG, Burns GW, et al. 
Identification of loci and pathways associated with heifer conception 
rate in US Holsteins. Genes (Basel). 2020;11:767.

	 55.	 Shu L, Peng X, Zhang S, Deng G, Wu Y, He M, et al. Non-classical major 
histocompatibility complex class makes a crucial contribution to repro‑
duction in the dairy cow. J Reprod Dev. 2012;58:2011–018.

	 56.	 Mansouri-Attia N, Forde N, Roche JF, Lonergan P, Fair T. Immunological 
characterization of the bovine endometrial response to the pres‑
ence of an embryo: is the Th1/Th2 paradigm important? Biol Reprod. 
2010;83:97.

	 57.	 Melo TPD, De Camargo GMF, De Albuquerque LG, Carvalheiro R. 
Genome-wide association study provides strong evidence of genes 
affecting the reproductive performance of Nellore beef cows. PLoS 
ONE. 2017;12: e0178551.

	 58.	 Peters AE, Mihalas BP, Bromfield EG, Roman SD, Nixon B, Sutherland 
JM. Autophagy in female fertility: a role in oxidative stress and aging. 
Antioxid Redox Signal. 2020;32:550–68.

	 59.	 Han L, Wang H, Li L, Li X, Ge J, Reiter RJ, et al. Melatonin protects against 
maternal obesity-associated oxidative stress and meiotic defects in 
oocytes via the SIRT3-SOD2-dependent pathway. J Pineal Res. 2017;63: 
e12431.

	 60.	 Jia GX, Lin Z, Yan RG, Wang GW, Zhang XN, Li C, et al. WTAP function 
in sertoli cells is essential for sustaining the spermatogonial stem cell 
niche. Stem Cell Reports. 2020;15:968–82.

	 61.	 Dun MD, Smith ND, Baker MA, Lin M, Aitken RJ, Nixon B. The chaperonin 
containing TCP1 complex (CCT/TRiC) is involved in mediating sperm-
oocyte interaction. J Biol Chem. 2011;286:36875–87.

	 62.	 Du X, Liu L, Li Q, Zhang L, Pan Z, Li Q. NORFA, long intergenic noncod‑
ing RNA, maintains sow fertility by inhibiting granulosa cell death. 
Commun Biol. 2020;3:131.

	 63.	 Ni N, Fang X, Li Q. Functional similarity between TGF-beta type 
2 and type 1 receptors in the female reproductive tract. Sci Rep. 
2021;11:9294.

	 64.	 Okitsu Y, Nagano M, Yamagata T, Ito C, Toshimori K, Dohra H, et al. Dlec1 
is required for spermatogenesis and male fertility in mice. Sci Rep. 
2020;10:18883.

	 65.	 Kuang W, Zhang J, Lan Z, Deepak RK, Liu C, Ma Z, et al. SLC22A14 is 
a mitochondrial riboflavin transporter required for sperm oxidative 
phosphorylation and male fertility. Cell Rep. 2021;35:109025.

	 66.	 Pyun JA, Kim S, Kwack K. Epistasis between polymorphisms in ACVR2B 
and ADAMTS19 is associated with premature ovarian failure. Meno‑
pause. 2015;22:212–6.

	 67.	 Gómez M, Manzano A, Figueras A, Viñals F, Ventura F, Rosa JL, et al. 
Sertoli-secreted FGF-2 induces PFKFB4 isozyme expression in mouse 
spermatogenic cells by activation of the MEK/ERK/CREB pathway. Am J 
Physiol Endocrinol Metab. 2012;303:E695–707.

	 68.	 Zhuang XJ, Tang WH, Feng X, Liu CY, Zhu JL, Yan J, et al. Trim27 interacts 
with Slx2, is associated with meiotic processes during spermatogenesis. 
Cell Cycle. 2016;15:2576–84.

	 69.	 Bouilly J, Sonigo C, Auffret J, Gibori G, Binart N. Prolactin signaling 
mechanisms in ovary. Mol Cell Endocrinol. 2012;356:80–7.

	 70.	 Markholt S, Grøndahl ML, Ernst EH, Andersen CY, Ernst E, Lykke-Hart‑
mann K. Global gene analysis of oocytes from early stages in human 
folliculogenesis shows high expression of novel genes in reproduction. 
Mol Hum Reprod. 2012;18:96–110.

	 71.	 Azcona F, Sole M, Dorado J, Ross P, Terán E, Demyda-Peyrás S. Whole 
genome association analysis suggests an influence of inbreeding on 
bull sperm morphometry. Reprod Fertil Dev. 2019;31:202–3.

	 72.	 Jin Z, Liu H, Xu C. Estrogen degrades Scribble in endometrial epithelial 
cells through E3 ubiquitin ligase HECW1 in the development of diffuse 
adenomyosis. Biol Reprod. 2020;102:376–87.

	 73.	 Chau KM, Cornwall GA. Reduced fertility in vitro in mice lacking the 
cystatin CRES (cystatin-related epididymal spermatogenic): rescue by 
exposure of spermatozoa to dibutyryl cAMP and isobutylmethylxan‑
thine. Biol Reprod. 2011;84:140–52.

	 74.	 Whitfield M, Thomas L, Bequignon E, Schmitt A, Stouvenel L, Montantin 
G, et al. Mutations in DNAH17, encoding a sperm-specific axonemal 
outer dynein arm heavy chain, cause isolated male infertility due to 
asthenozoospermia. Am J Hum Genet. 2019;105:198–212.

	 75.	 Zhang B, Khan I, Liu C, Ma A, Khan A, Zhang Y, et al. Novel loss-of-func‑
tion variants in DNAH17 cause multiple morphological abnormalities of 
the sperm flagella in humans and mice. Clin Genet. 2021;99:176–86.

	 76.	 Tokuhiro K, Ikawa M, Benham AM, Okabe M. Protein disulfide 
isomerase homolog PDILT is required for quality control of sperm 
membrane protein ADAM3 and male fertility. Proc Natl Acad Sci U S A. 
2012;109:3850–5.

	 77.	 Lamas-Toranzo I, Balvís NF, Querejeta-Fernandez A, Izquierdo-Rico MJ, 
González-Brusi L, Lorenzo PL, et al. ZP4 confers structural proper‑
ties to the zona pellucida essential for embryo development. Elife. 
2019;8:e48904.

	 78.	 Moore SG, Pryce JE, Hayes BJ, Chamberlain AJ, Kemper KE, Berry DP, 
et al. Differentially expressed genes in endometrium and corpus 
luteum of Holstein cows selected for high and low fertility are enriched 
for sequence variants associated with fertility. Biol Reprod. 2016;94:19.

	 79.	 Kiser JN, Keuter EM, Seabury CM, Neupane M, Moraes JG, Dalton J, et al. 
Validation of 46 loci associated with female fertility traits in cattle. BMC 
Genomics. 2019;20:576.

	 80.	 Mattos R, Staples CR, Thatcher WW. Effects of dietary fatty acids on 
reproduction in ruminants. Rev Reprod. 2000;5:38–45.

	 81.	 Herrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and 
its implications for fetal growth. Curr Pharm Biotechnol. 2014;15:24–31.

	 82.	 Ribeiro ES. Symposium review: Lipids as regulators of conceptus devel‑
opment: Implications for metabolic regulation of reproduction in dairy 
cattle. J Dairy Sci. 2018;101:3630–41.

	 83.	 Zeron Y, Ocheretny A, Kedar O, Borochov A, Sklan D, Arav A. Seasonal 
changes in bovine fertility: relation to developmental competence of 
oocytes, membrane properties and fatty acid composition of follicles. 
Reproduction. 2001;121:447–54.

	 84.	 Garnsworthy PC, Lock A, Mann GE, Sinclair KD, Webb R. Nutrition, 
metabolism, and fertility in dairy cows: 2. dietary fatty acids and ovarian 
function. J Dairy Sci. 2008;91:3824–33.

	 85.	 Mohammadi A, Alijani S, Rafat SA, Abdollahi-Arpanahi R. Genome-wide 
association study and pathway analysis for female fertility traits in 
Iranian Holstein cattle. Ann Anim Sci. 2020;20:825–51.

	 86.	 Palomba S, Daolio J, La Sala GB. Oocyte competence in women with 
polycystic ovary syndrome. Trends Endocrinol Metab. 2017;28:186–98.

	 87.	 Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of 
kinesin superfamily proteins in female meiosis. Hum Reprod Update. 
2017;23:409–20.

	 88.	 Hebeda CB, Machado ID, Reif-Silva I, Moreli JB, Oliani SM, Nadkarni S, 
et al. Endogenous annexin A1 (AnxA1) modulates early-phase gestation 
and offspring sex-ratio skewing. J Cell Physiol. 2018;233:6591–603.

	 89.	 Puglisi R, Cambuli C, Capoferri R, Giannino L, Lukaj A, Duchi R, et al. 
Differential gene expression in cumulus oocyte complexes collected by 
ovum pick up from repeat breeder and normally fertile Holstein Friesian 
heifers. Anim Reprod Sci. 2013;141:26–33.

	 90.	 Bae JA, Park HJ, Seo YM, Roh J, Hsueh AJ, Chun SY. Hormonal regulation 
of proprotein convertase subtilisin/kexin type 5 expression during ovar‑
ian follicle development in the rat. Mol Cell Endocrinol. 2008;289:29–37.

	 91.	 Nguyen LT, Reverter A, Cánovas A, Venus B, Anderson ST, Islas-Trejo A, 
et al. STAT6, PBX2, and PBRM1 emerge as predicted regulators of 452 dif‑
ferentially expressed genes associated with puberty in Brahman heifers. 
Front Genet. 2018;9:87.

	 92.	 Ding CF, Chen WQ, Zhu YT, Bo YL, Hu HM, Zheng RH. Circulating micro‑
RNAs in patients with polycystic ovary syndrome. Hum Fertil (Camb). 
2015;18:22–9.



Page 21 of 22Chen et al. BMC Genomics          (2022) 23:331 	

	 93.	 Fujihara Y, Murakami M, Inoue N, Satouh Y, Kaseda K, Ikawa M, et al. 
Sperm equatorial segment protein 1, SPESP1, is required for fully fertile 
sperm in mouse. J Cell Sci. 2010;123:1531–6.

	 94.	 Balogh EE, Gábor G, Bodó S, Rózsa L, Rátky J, Zsolnai A, et al. Effect of 
single-nucleotide polymorphisms on specific reproduction parameters 
in Hungarian Large White sows. Acta Vet Hung. 2019;67:256–73.

	 95.	 Mesbah-Uddin MB. Genome-wide association study with imputed 
whole-genome sequence variants including large deletions for 
female fertility in three Nordic dairy breeds. PhD Thesis. Aarhus: 
Aarhus Univ; 2019.

	 96.	 Posbergh CJ, Thonney ML, Huson HJ. Genomic approaches identify 
novel gene associations with out of season lambing in sheep. J Hered. 
2019;110:577–86.

	 97.	 Moran B, Butler ST, Moore SG, MacHugh DE, Creevey CJ. Differential 
gene expression in the endometrium reveals cytoskeletal and immu‑
nological genes in lactating dairy cows genetically divergent for fertility 
traits. Reprod Fertil Dev. 2017;29:274–82.

	 98.	 Gross N, Peñagaricano F, Khatib H. Integration of whole-genome DNA 
methylation data with RNA sequencing data to identify markers for bull 
fertility. Anim Genet. 2020;51:502–10.

	 99.	 Minge CE, Robker RL, Norman RJ. PPAR gamma: coordinating 
metabolic and immune contributions to female fertility. PPAR Res. 
2008;2008:243791.

	100.	 Kuroki S, Akiyoshi M, Tokura M, Miyachi H, Nakai Y, Kimura H, et al. 
JMJD1C, a JmjC domain-containing protein, is required for long-term 
maintenance of male germ cells in mice. Biol Reprod. 2013;89:93.

	101.	 Taylor JF, Schnabel RD, Sutovsky P. Review: Genomics of bull fertility. 
Animal. 2018;12:s172–83.

	102.	 Nani JP, Rezende FM, Peñagaricano F. Predicting male fertility in dairy 
cattle using markers with large effect and functional annotation data. 
BMC Genomics. 2019;20:258.

	103.	 Peñagaricano F, Weigel KA, Khatib H. Genome-wide association study 
identifies candidate markers for bull fertility in Holstein dairy cattle. 
Anim Genet. 2012;43:65–71.

	104.	 Han Y, Peñagaricano F. Unravelling the genomic architecture of bull 
fertility in Holstein cattle. BMC Genet. 2016;17:143.

	105.	 McDaneld TG, Kuehn LA, Thomas MG, Snelling WM, Smith TPL, Pollak 
EJ, et al. Genomewide association study of reproductive efficiency in 
female cattle. J Anim Sci. 2014;92:1945–57.

	106.	 Akanno EC, Plastow G, Fitzsimmons C, Miller SP, Baron V, Ominski K, 
et al. Genome-wide association for heifer reproduction and calf perfor‑
mance traits in beef cattle. Genome. 2015;58:549–57.

	107.	 Elliott MR, Zheng S, Park D, Woodson RI, Reardon MA, Juncadella IJ, et al. 
Unexpected requirement for ELMO1 in clearance of apoptotic germ 
cells in vivo. Nature. 2010;467:333–7.

	108.	 Beurois J, Martinez G, Cazin C, Kherraf ZE, Amiri-Yekta A, Thierry-Mieg N, 
et al. CFAP70 mutations lead to male infertility due to severe astheno-
teratozoospermia. A case report Hum Reprod. 2019;34:2071–9.

	109.	 Dai L, Zhao Z, Zhao R, Xiao S, Jiang H, Yue X, et al. Effects of novel single 
nucleotide polymorphisms of the FSH beta-subunit gene on semen 
quality and fertility in bulls. Anim Reprod Sci. 2009;114:14–22.

	110.	 Wang Y, Ding X, Tan Z, Xing K, Yang T, Pan Y, et al. Genome-wide associa‑
tion study for reproductive traits in a Large White pig population. Anim 
Genet. 2018;49:127–31.

	111.	 Georges H, Bishop J, Van Campen H, Barfield J, Hansen T. A delay in 
maternal zygotic transition may lead to early embryonic loss in poor-
quality bovine blastocysts. Reprod Fertil Dev. 2020;32:177-.

	112.	 Feng CWA, Spiller C, Merriner DJ, O’Bryan MK, Bowles J, Koopman P. 
SOX30 is required for male fertility in mice. Sci Rep. 2017;7:17619.

	113.	 Han F, Jiang X, Li ZM, Zhuang X, Zhang X, Ouyang WM, et al. Epigenetic 
inactivation of SOX30 is associated with male infertility and offers a 
therapy target for non-obstructive azoospermia. Mol Ther Nucleic 
Acids. 2020;19:72–83.

	114.	 Gardela J, Jauregi-Miguel A, Martinez CA, Rodriguez-Martinez H, Lopez-
Bejar M, Alvarez-Rodriguez M. Semen modulates the expression of NGF, 
ABHD2, VCAN, and CTEN in the reproductive tract of female rabbits. 
Genes (Basel). 2020;11:758.

	115.	 Brym P, Wasilewska-Sakowska K, Mogielnicka-Brzozowska M, 
Mańkowska A, Paukszto Ł, Pareek CS, et al. Gene promoter polymor‑
phisms in boar spermatozoa differing in freezability. Theriogenol. 
2021;166:112–23.

	116.	 Aslam MM, Kumaresan A, Sharma VK, Tajmul M, Chhillar S, Chakravarty 
AK, et al. Identification of putative fertility markers in seminal plasma 
of crossbred bulls through differential proteomics. Theriogenol. 
2014;82:1254–62.

	117.	 Babakhanzadeh E, Khodadadian A, Nazari M, Tezerjani MD, Aghaei SM, 
Ghasemifar S, et al. Deficient expression of DGCR8 in human testis is 
related to spermatogenesis dysfunction, especially in meiosis I. Int J 
Gen Med. 2020;13:185–92.

	118.	 Fan HY, Liu Z, Shimada M, Sterneck E, Johnson PF, Hedrick SM, et al. 
MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female 
fertility. Sci. 2009;324:938–41.

	119.	 Barzi NV, Kakavand K, Sodeifi N, Ghezelayagh Z, Sabbaghian M. Expres‑
sion and localization of Septin 14 gene and protein in infertile men 
testis. Reprod Biol. 2020;20:164–8.

	120.	 Kashiwabara SI, Tsuruta S, Okada K, Yamaoka Y, Baba T. Adenylation by 
testis-specific cytoplasmic poly (A) polymerase, PAPOLB/TPAP, is essen‑
tial for spermatogenesis. J Reprod Dev. 2016;62:607–14.

	121.	 Leahy T, Rickard JP, Pini T, Gadella BM, de Graaf SP. Quantitative pro‑
teomic analysis of seminal plasma, sperm membrane proteins, and 
seminal extracellular vesicles suggests vesicular mechanisms aid in 
the removal and addition of proteins to the ram sperm membrane. 
Proteomics. 2020;20:e1900289.

	122.	 Kang JH, Lee EA, Lee SH, Kim SH, Lee DH, Hong KC, et al. Genome-
wide association study for sow lifetime productivity related traits in a 
Landrace purebred population. Livest Sci. 2017;202:21–4.

	123.	 Zhang JJ, Liu X, Chen L, Zhang S, Zhang X, Hao C, et al. Advanced 
maternal age alters expression of maternal effect genes that 
are essential for human oocyte quality. Aging (Albany NY). 
2020;12:3950–61.

	124.	 Santos JEP, Bisinotto RS, Ribeiro ES. Mechanisms underlying reduced 
fertility in anovular dairy cows. Theriogenol. 2016;86:254–62.

	125.	 Metodiev S, Thekkoot DM, Young JM, Onteru S, Rothschild MF, Dekkers 
JCM. A whole-genome association study for litter size and litter weight 
traits in pigs. Livest Sci. 2018;211:87–97.

	126.	 Dirandeh E, haffari J. Effects of feeding a source of omega-3 fatty acid 
during the early postpartum period on the endocannabinoid system in 
the bovine endometrium. Theriogenol. 2018;121:141–6.

	127.	 de Araujo Neto FR, Takada L, Dos Santos DJA, Aspilcueta-Borquis 
RR, Cardoso DF, do Nascimento AV. Identification of genomic 
regions related to age at first calving and first calving interval in 
water buffalo using single-step GBLUP. Reprod Domest Anim. 
2020;55:1565–72.

	128.	 Boumela I, Assou S, Aouacheria A, Haouzi D, Dechaud H, De Vos J, et al. 
Involvement of BCL2 family members in the regulation of human 
oocyte and early embryo survival and death: gene expression and 
beyond. Reproduction. 2011;141:549–61.

	129.	 Li S, Qiao Y, Di Q, Le X, Zhang L, Zhang X, et al. Interaction of SH3P13 and 
DYDC1 protein: a germ cell component that regulates acrosome biogen‑
esis during spermiogenesis. Eur J Cell Biol. 2009;88:509–20.

	130.	 Fonseca DJ, Ojeda D, Lakhal B, Braham R, Eggers S, Turbitt E, et al. 
CITED2 mutations potentially cause idiopathic premature ovarian 
failure. Transl Res. 2012;160:384–8.

	131.	 Piprek RP, Kolasa M, Podkowa D, Kloc M, Kubiak JZ. Tissue-specific 
knockout of E-cadherin (Cdh1) in developing mouse gonads causes 
germ cells loss. Reproduction. 2019;158:147–57.

	132.	 Yin H, Ma H, Hussain S, Zhang H, Xie X, Jiang L, et al. A homozygous 
FANCM frameshift pathogenic variant causes male infertility. Genet 
Med. 2019;21:62–70.

	133.	 Kiyozumi D, Noda T, Yamaguchi R, Tobita T, Matsumura T, Shimada K, 
et al. NELL2-mediated lumicrine signaling through OVCH2 is required 
for male fertility. Science. 2020;368:1132–5.

	134.	 VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel 
RD, Taylor JF, et al. Invited review: Reliability of genomic predictions for 
North American Holstein bulls. J Dairy Sci. 2009;92:16–24.

	135.	 Sargolzaei M, Chesnais JP, Schenkel FS. A new approach for efficient 
genotype imputation using information from relatives. BMC Genomics. 
2014;15:478.

	136.	 Chen SY, Oliveira HR, Schenkel FS, Pedrosa VB, Melka MG, Brito LF. Using 
imputed whole-genome sequence variants to uncover candidate 
mutations and genes affecting milking speed and temperament in 
Holstein cattle. J Dairy Sci. 2020;103:10383–98.



Page 22 of 22Chen et al. BMC Genomics          (2022) 23:331 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	137.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. 
PLINK: a tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81:559–75.

	138.	 Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-
wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

	139.	 Privé F, Aschard H, Ziyatdinov A, Blum MG. Efficient analysis of large-
scale genome-wide data with two R packages: bigstatsr and bigsnpr. 
Bioinformatics. 2018;34:2781–7.

	140.	 van den Berg S, Vandenplas J, van Eeuwijk FA, Lopes MS, Veerkamp RF. 
Significance testing and genomic inflation factor using high-density 
genotypes or whole-genome sequence data. J Anim Breed Genet. 
2019;136:418–29.

	141.	 Li X, Buitenhuis AJ, Lund MS, Li C, Sun D, Zhang Q, et al. Joint genome-
wide association study for milk fatty acid traits in Chinese and Danish 
Holstein populations. J Dairy Sci. 2015;98:8152–63.

	142.	 Goddard ME, Hayes BJ, Meuwissen TH. Using the genomic relationship 
matrix to predict the accuracy of genomic selection. J Anim Breed 
Genet. 2011;128:409–21.

	143.	 Makanjuola BO, Miglior F, Abdalla EA, Maltecca C, Schenkel FS, Baes CF. 
Effect of genomic selection on rate of inbreeding and coancestry and 
effective population size of Holstein and Jersey cattle populations. J 
Dairy Sci. 2020;103:5183–99.

	144.	 Bohmanova J, Sargolzaei M, Schenkel FS. Characteristics of linkage dis‑
equilibrium in North American Holsteins. BMC Genomics. 2010;11:421.

	145.	 Hu ZL, Park CA, Reecy JM. Building a livestock genetic and genomic 
information knowledgebase through integrative developments of 
Animal QTLdb and CorrDB. Nucleic Acids Res. 2019;47:D701–10.

	146.	 Smedley D, Haider S, Durinck S, Pandini L, Provero P, Allen J, et al. The 
BioMart community portal: an innovative alternative to large, central‑
ized data repositories. Nucleic Acids Res. 2015;43:W589–98.

	147.	 Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. 
g:Profiler: a web server for functional enrichment analysis and conver‑
sions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8.

	148.	 The Gene Ontology Consortium. The gene ontology resource: 20 years 
and still GOing strong. Nucleic Acids Res. 2019;47:D330–8.

	149.	 Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New 
approach for understanding genome variations in KEGG. Nucleic Acids 
Res. 2019;47:D590–5.

	150.	 Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. 
STRING v11: protein-protein association networks with increased cover‑
age, supporting functional discovery in genome-wide experimental 
datasets. Nucleic Acids Res. 2019;47:D607–13.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.


	Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Results
	Deregressed breeding values and imputed SNP variants
	Summaries of single-trait and multiple-trait GWAS analyses
	Multiple-trait analysis for heifer traits
	Multiple-trait analysis for cow traits
	Multiple-trait analysis for sire traits
	Multiple-trait analysis for the combined trait categories

	Discussion
	Refined studies on fertility and reproduction traits in dairy cattle
	Polygenic nature of fertility and reproduction traits
	Differences between heifer and cow traits
	QTL and candidate genes found for heifer traits
	QTL and candidate genes found for cow traits
	QTL and candidate genes found for sire traits
	Combining multiple trait categories
	Implications of the study

	Conclusions
	Methods
	Animals, phenotypes and genotypes
	Single-trait association analyses
	Multiple-trait chi-square statistics
	Adjustment for multiple-hypotheses testing
	QTL, positional candidate genes, and functional analyses

	Acknowledgements
	References


