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Alzheimer’s disease (AD) is the most common cause of dementia and a progressive neurodegenerative condition, characterized by
a decline in cognitive function. Symptoms usually appear gradually and worsen over time, becoming severe enough to interfere
with individual daily tasks. .us, the accurate diagnosis of both AD and the prodromal stage (i.e., mild cognitive impairment
(MCI)) is crucial for timely treatment. As AD is inherently dynamic, the relationship between AD indicators is unclear and varies
over time. To address this issue, we first aimed at investigating differences in atrophic patterns between individuals with AD and
MCI and healthy controls (HCs)..en we utilized multiple biomarkers, along with filter- and wrapper-based feature selection and
an extreme learning machine- (ELM-) based approach, with 10-fold cross-validation for classification. Increasing efforts are
focusing on the use of multiple biomarkers, which can be useful for the diagnosis of AD and MCI. However, optimum
combinations have yet to be identified and most multimodal analyses use only volumetric measures obtained from magnetic
resonance imaging (MRI). Anatomical structural MRI (sMRI) measures have also so far mostly been used separately. .e full
possibilities of using anatomical MRI for AD detection have thus yet to be explored. In this study, three measures (cortical
thickness, surface area, and gray matter volume), obtained from sMRI through preprocessing for brain atrophy measurements;
cerebrospinal fluid (CSF), for quantification of specific proteins; cognitive score, as a measure of cognitive performance; and
APOE ε4 allele status were utilized. Our results show that a combination of specific biomarkers performs well, with accuracies of
97.31% for classifying AD vs. HC, 91.72% for MCI vs. HC, 87.91% for MCI vs. AD, and 83.38% for MCIs vs. MCIc, respectively,
when evaluated using the proposed algorithm. Meanwhile, the areas under the curve (AUC) from the receiver operating
characteristic (ROC) curves combining multiple biomarkers provided better classification performance. .e proposed features
combination and selection algorithm effectively classified AD and MCI, and MCIs vs. MCIc, the most challenging classification
task, and therefore could increase the accuracy of AD classification in clinical practice. Furthermore, we compared the per-
formance of the proposed method with SVM classifiers, using a cross-validation method with Alzheimer’s Disease Neuroimaging
Initiative (ADNI) datasets.

1. Introduction

Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disorder of the central nervous system,
characterized by abnormal accumulation of neurofibrillary
tangles and amyloid plaques in the brain, affecting the be-
havior, thinking, and memory of an individual [1].

Alzheimer’s disease occurs in late life and is the most
common form of dementia, for which there is no cure. An
estimated 5.7 million Americans are living with AD in 2018.
By 2050, this figure is projected to rise to nearly 14 million
[2]. Although some currently available treatments may
temporarily decelerate the progression, none have demon-
strable effectiveness in treating patients with AD. A

Hindawi
Computational Intelligence and Neuroscience
Volume 2020, Article ID 8015156, 18 pages
https://doi.org/10.1155/2020/8015156

mailto:grkwon@chosun.ac.kr
https://orcid.org/0000-0002-0876-3980
https://orcid.org/0000-0003-3486-8812
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8015156


promising amount of ongoing research [3–6] is focused on
different biomarker-based techniques, in an effort to detect
early AD-related changes and characterize prominent at-
rophy patterns during the prodromal stages, when mild
symptoms are the only evidence of the disease. .us, it is
important to develop strategies to enable timely treatment
and delay progression during the early stages of AD, before
the onset of clinical symptoms. As a result, the concept of
mild cognitive impairment (MCI) was introduced. MCI, a
transitional stage between healthy (normal) controls (HC)
and AD patients, is defined to describe people who havemild
symptoms of brain dysfunction but can still perform ev-
eryday tasks. Identifying potentially highly sensitive diag-
nostic biomarkers that change with disease progression may
support the physician in making a correct diagnosis. If AD is
detected during the early stage of MCI, the number of
patients could be reduced by nearly one-third, through
rehabilitation exercises and appropriate medication [7].
Patients in the MCI stage have a high risk of progressing to
dementia [8–10] and can be categorized as stable MCI
(MCIs) or convertible MCI (MCIc) which is also known as
progressive MCI (pMCI). Some MCI patients progress to
AD within a specific time frame, while others remain stable.
Reports have shown that 10–15% of MCI patients progress
to AD each year, and 80% of these will have converted to AD
after approximately 5-6 years of follow-up [9, 11]. It is
crucial to find biomarkers that distinguish patients who have
MCI and later converted to AD (MCIc), from those who do
not convert to AD, andHC..us, early identification ofMCI
individuals is increasingly clinically important in potentially
delaying or preventing the conversion from MCI to AD. To
identify biomarkers for MCI and AD, various machine
learning methods have been applied, which have improved
the prediction and performance and more importantly, the
discrimination of patients with MCIs from those MCI pa-
tients who will progress to develop AD (MCIc) [12]. Various
biomarkers have been identified for the diagnosis of MCI
and AD, including functional and structural neuroimaging
measures, as well as cognitive score, APOE ε4 allele status,
and cerebrospinal fluid (CSF) markers. .e most recent
criteria for AD diagnosis [13] suggest that neuroimaging and
biological measures may play a vital role in the early de-
tection of AD and the monitoring of the prodromal stage.

Imaging biomarkers are considered important indicators
in the diagnosis of AD and MCI. With the development of
neuroimaging technology, structural magnetic resonance
imaging (sMRI) techniques have become widely popular and
can be used to locate more subtle morphological changes in
brain disorders [14, 15]. For dementia patients, MRI is used
in the standard clinical assessment. .ere have been a large
number of studies aiming to identify imaging biomarkers for
the diagnosis of AD and the prediction of MCI progression.
A majority of the well-established structural MRI bio-
markers are mainly based on cerebral atrophy measure-
ments or ventricular expansion. Imaging biomarkers, such
as cortical thickness [16–19], voxel-wise tissue probability
[20–22], and volume [23–25], can show AD-associated at-
rophy patterns and serve as effective biomarkers to classify
AD and MCI. So far to our knowledge, gradual cerebral

atrophy is one of the obvious and major changes in AD, and
the pattern of atrophy can be analyzed via high-resolution
MRI technology. Morphology-related cortical volume,
cortical thickness, and cortical area measurements have been
utilized to better understand the fundamental pathophysi-
ology of AD diagnosis. However, the majority of these
studies [26–28] are mainly focused on differences in cortical
and gray matter volumes. Reference to surface area and
other biomarkers are still lacking in this regard. .e com-
bination of different cortical metrics (i.e., volume, area, and
thickness) across multiple brain regions may better distin-
guish between AD patients and HC. .erefore, advanced
machine learning with multivariate approaches, which can
establish the subtle relationship between multiple regions
and metrics [29, 30], is potentially useful in assisting with
prediction and diagnosis of AD. Besides structural changes
identified by MRI, other interesting biomarkers for AD
detection include CSF components, cognitive score, and the
presence of the APOE ε4 allele. Numerous CSF, cognitive,
and APOE ε4 allele studies [12, 31, 32] have been carried out
for the classification of AD and MCI. CSF biomarkers that
have been utilized in several studies include hyper-
phosphorylated tau (P-tau), total tau (T-tau), and the Aβ42
amino acid. .ese three CSF components provide valuable
information for the identification of AD, as patients have
abnormally low levels of Aβ42 and high levels of P-tau and
T-tau [33]. It has been shown that a combination of T-tau
and CSF component measures provides outstanding clas-
sification accuracy for separating HC fromAD patients, with
high sensitivity and specificity [34]. Furthermore, genetic
risk factors also impact the imaging and biological markers
of AD classification. Several previous studies [35] have
shown that the presence of a specific variant of the apoli-
poprotein E gene (APOE) is a crucial risk factor associated
with late-onset AD. APOE has three majors’ alleles: ε2, ε3,
and ε4. In comparison with noncarriers, AD patient carriers
of the ε4 allele typically have low CSF Aβ42 and elevated CSF
levels of P-tau and T-tau, along with accelerated atrophy
patterns on MRI. Various aspects of pathological patterns
associated with AD can be revealed by diverse biomarkers;
thus, complementary biomarkers might assist diagnosis.
It has been shown that a combination of different modal-
ities of biomarkers can enhance diagnostic performance
[25, 36–40]. Some recent papers of note [41–43] have
demonstrated the feasibility of machine learning ap-
proaches. One of the frequently usedmethods for solving the
classification problem is the support vector machine (SVM).
A number of studies have applied the SVM for AD pre-
diction and classification [24, 39, 44, 45]. In the field of
machine learning, deep learning has gained popularity and
become a promising technology. Deep learning relates to
multilevel representation learning and abstraction and has
resulted in a significant improvement in performance in the
field of data analysis and image classification. In recent years,
use of deep learning techniques for multimodal data analysis
and classification has greatly increased. For example,
seamless information is obtained using stacked autoen-
coders from various types of media [46]. To obtain joint
representation of text and images, a multimodal deep belief
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network was developed [47]. Another study [48] proposed a
multisource deep learning method to analyze human pose
estimation. A further study [49] developed a modal of
combining MRI, positron emission tomography (PET), and
CSF modalities using stacked autoencoders to obtain au-
tomatic classification of AD. Backpropagation algorithms
are used to learn by most deep learning architectures, which
iteratively adjust the parameters. For this reason, to reach
good generalization performance, conventional neural
networks use many iterations [50]. To overcome this situ-
ation, Huang et al. [51] proposed an extreme learning
machine (ELM), in contrast to traditional methods, with
good computational efficiency by randomly assigning weight
in the input layer and analytically calculating hidden layer
weights. In another study [52], the authors used the dual-tree
complex wavelet transform (DTCWT), combined with ELM
classifiers, and achieved good accuracy in AD classification.
Similarly, in a further study [53], the authors used ELM
classifiers with multivariate pattern analysis to classify AD
using functional MRI (fMRI) data and achieved outstanding
performance. .e majority of the current literature regards
ELM to be a good machine learning tool [54, 55]. ELM’s
major strength is that the hidden layer’s learning parameters,
including the input weights and biases, do not have to be
iteratively tuned as in single hidden layer feedforward neural
(SLFN) networks. Because of this, ELM costs less and is
capable of achieving faster speeds [54]. Furthermore, it is the
most favored of in machine learning methods compared to
its predecessors. Some of the other commendable attributes
of ELM include good generalization accuracy and perfor-
mance, a simple learning algorithm, improved efficiency,
nonlinear transformation during the training phase, pos-
session of a unified solution to different practical applica-
tions, lack of local minimal and overfitting, and the need for
fewer optimizations, as compared to SVM [55]..erefore, in
this study, we were motivated to use an extreme learning
machine to achieve optimum classification accuracy in the
identification of AD.

Our results, using the Alzheimer’s Disease Neuro-
imaging Initiative (ADNI) dataset (including both MCI
patients who did not convert to AD and MCI patients who
converted to AD within 36 months), demonstrate the utility
of the suggested method. Structural MRI data were firstly
preprocessed by FreeSurfer (version 6.0.0) to obtain three
types of measures and statistical analysis was performed
using query design estimate contrast (QDEC). As well as
cortical thickness, and gray matter volume and surface area,
we also utilized CSF markers, APOE ε4 allele status, and
cognitive score. To validate the effectiveness of our method,
we compared the classification performance with linear-
SVM and RBF-SVM. .e general block diagram in Figure 1
shows the workflow of the proposed method.

2. Material and Methods

2.1. Data. All data used in this analysis were obtained from
the ADNI database. .e ADNI was initiated in 2003 as
public-private partnership, under the Principal Investigator
Michael W. Weiner, MD. .e primary objective of ADNI is

to investigate whether imaging modalities, such as MRI,
PET, other neuropsychological assessments, and clinical and
biological markers, can be combined to for the early de-
tection of AD and progression of the prodromal state (i.e.,
MCI). Demographic information, raw neuroimaging data,
CSF components, APOE genotype, diagnostic information,
and neuropsychological test scores are publically available at
the ADNI data repository (http://adni.loni.usc.edu). In-
formed consent was obtained from all participants and the
study was approved by the Institutional Review Board of
each data site (for more information, see http://adni.loni.usc.
edu/wp-content/themes/freshnews-dev-v2/documents/policy/
ADNI_Acknowledgement_List%205-29-18.pdf).

For this study, we utilized MRI, CSF, and APOE ge-
notype data. .e resulting study cohort included patients
affected by AD, patients with MCI, and healthy controls.
Sociodemographical and clinical information of the par-
ticipants is shown in Table 1.

2.2. Data Acquisition. Structural MRI data were acquired
using either Siemens, GE, or Philips scanners at ADNI
participating sites. Since the image acquisition protocols
varied for each scanner, the image normalization steps were
provided by ADNI. Corrections included calibration, ge-
ometry distortion, and intensity nonuniformity reduction.
Detailed information is available at the ADNI website
(http://adni.loni.usc.edu/). .ese corrections were applied
on each MPRAGE image following the image preprocessing
steps. In this study, we utilized T1-weighted images, which
were collected and reviewed for quality and correction, in
terms of data format and alignment. Finally, images with
256× 256×176 resolution and 1× 1× 1mm voxel size were
collected.

CSF data were collected in the morning after overnight
fasting with the use of a 20- or 24-G spinal needle. Within 1
hour of acquisition, CSF was frozen and transported to the
ADNI core laboratory at the Medical Center of Pennsylvania
University.

.e ADNI biomarker core laboratory also provided
genotype and gene expression data for each participant in
this study, which were obtained from peripheral blood
samples. .e genetic feature was a single categorical variable
for each participant, taking one of five possible values: (ε2,
ε3), (ε2, ε4), (ε3, ε3), (ε3, ε4), or (ε4, ε4). In this study, we
specifically analyzed APOE ε4 allele status (carrier vs.
noncarrier).

Cognitive score, obtained from the Mini-Mental State
Examination (MMSE) at baseline, was used as the measure
of the patient’s cognitive performance.

2.3. FreeSurfer Analysis of MRI. We applied the recon-all
FreeSurfer pipeline (version 6.0.0), which is freely accessible
at http://surfer.nmr.mgh.harvard.edu, to sMRI images, for
cortical reconstruction and volumetric segmentation [56].
.is pipeline automatically generated reliable volume and
thickness segmentation of white matter, gray matter, and
subcortical volume. Cortical reconstruction and subcortical
volumetric segmentation include removal of nonbrain
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tissues, Talairach transformations, segmentation of sub-
cortical gray and white matter regions, intensity standard-
ization, and Atlas registration. After these steps, a cortical
surface mesh model was generated, and finally, the 34
cortical regions were obtained from cortical surface par-
cellation, based on sulcal and gyral landmarks for both
hemispheres corresponding to Desikan et al. [57]. For sta-
tistical analysis purposes, smoothing was carried out using
recon-all with the qcache option in FreeSurfer. .e QDEC
tool within FreeSurfer was utilized to analyze differences in

cortical thickness, surface area, and gray matter volume
between HC, MCI, and AD individuals. Statistical signifi-
cance levels were corrected for both hemispheres, using the
false discovery rate (FDR) p< 0.05 to control for multiple
comparisons [58].

2.4. Machine Learning-Based Prediction and Analysis. An
overview of the prediction framework developed for this
study is shown in Figure 1. .e framework consists of four

FreeSurfer-based
preprocessing of structural 

MRI images

-Parcellation into ROIs
-Cortical segmentation

-Subcortical segmentaion
-White matter segmentaion 

Features combination

Features normalization

Statistical analysis 
Qdec: surface group analysis
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surface area, and gray 

matter volume

CSF

91, 230, 109,
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......................
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Cognition
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Figure 1: Block diagram of the proposed framework.
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major steps: feature extraction, feature combination, nor-
malization, and feature selection and classification. We used
two machine learning classification algorithms, SVM and
ELM.

2.5. Feature Selection. .e feature selection algorithm is an
essential part of a machine learning approach, facilitating
data understanding, reducing storage requirements and
training-testing times, and improving the accuracy of
classification. Importantly, feature selection was performed
using only the training dataset and then applied on the test
set. Before feature selection, we performed feature nor-
malization, and all feature sets were normalized to unit
variance and zero mean to reduce redundancy and improve
data integrity between the feature sets. For a given data
matrix X, columns represent features and rows represent the
participants’ normalized matrix Xnorm with an element (i, j),
which was calculated as shown in equation (1). After feature
normalization, we used a combination of filter and wrapper
algorithms for feature selection. We used a filter method and
sorted features based on their minimum redundancy
maximum relevance (MRMR) scores. MRMR has been
previously described [59]. .e MRMR score for a feature set
S is defined in equation (2):

Xnorm �
x(i,j) − mean Xj􏼐 􏼑

std Xj􏼐 􏼑
, (1)

MRMR � MAXs

1
|s|

􏽘
fi∈S

I fi; c( 􏼁 −
1

|S|2
􏽘 I fi; fj􏼐 􏼑

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(2)

where the relevance of a feature set S for k classes C �

c1, c2, . . . ck􏼈 􏼉 is defined by the average value of mutual
information between the individual feature fi andC, and the
redundancy of all features in the feature set S is the average
value of mutual information between features fi and fj. .e
top 60 features identified by the MRMR algorithm were used
in a wrapper algorithm to find an optimal subset of features.
We developed and validated a sequential feature selection
(SFS) algorithm as a wrapper feature selection method for
this study. .e SFS algorithm has been previously described

in detail [60]. Briefly, different subsets of features were
selected from the top 60 features identified by the MRMR
algorithm, and then the accuracy of the ELM classifiers based
on these subsets of features was calculated.

2.6. SVM Classifier. Generally, the SVM [61] is a binary
classifier, which is applicable to both separable and non-
separable datasets. It has been successfully utilized in the
neuroimaging field and has become the most popular ma-
chine learning algorithm in the field of neuroscience during
the past decade..e SVM is a supervised classifier that uses a
training dataset to find an optimal separating hyperplane in
an n-dimensional space. .e optimal hyperplane is one that
best separates the two target participant groups. In our
study, we utilized both linear SVM and nonlinear SVM
based on radial basis function (RBF) kernels. An RBF kernel
performs better than a linear kernel for a small number of
feature sets. A regularization constant C and a set of kernel
hyperparameters c (gamma) need to be tuned in SVMs.
.ese parameters were optimized using a cross-validation
(CV) method. .is procedure was repeated 1000 times, each
time randomly selecting a new set of 10 held-out participants
to obtain optimum hyperparameters optimization. In this
method, the search scales for regularization constant and
gamma values were set to C� (0.001, 0.01, 0.1, 1, 10, 100,
1000) and c � (0.001, 0.01, 0.1, 1, 10, 100, 1000), respectively.
.emaximum validation accuracy was obtained at C� 1 and
c � 0.1. .e tuned parameters were used to predict the ac-
curacy value on the test dataset.

2.7. ELM Classifier. .e extreme learning machine is
composed of a hidden layer in between the input and output
layers [51]. Whereas weights and biases are required to for
adjustment by gradient-based learning algorithms on tra-
ditional feedforward neural networks for all layers, in the
ELM hidden layer biases and input weights are arbitrarily
assigned without iterative processes, and output weights are
computed by solving a single hidden layer system [50]..us,
compared to traditional neural networks, the ELM learns
much faster and it is widely used in various regression and
classification tasks, being an efficient and reliable learning
algorithm [62–65]. Particularly, for N training samples
{(X(j), I(j))|X(j) ∈Rp and I(j) ∈Rq, and j � 1, 2, . . . , N},
the output in ELM, oj with nh hidden neurons can be
represented as shown in the following equationfd3:

oj � 􏽘

nh

i�1
βT

i a w
T
i X

(j)
+ bi􏼐 􏼑 � 􏽘

nh

i�1
βT

i hi X
(j)

􏼐 􏼑 � h X
(j)

􏼐 􏼑
T
β,

(3)

where X(j) and I(j) are the jth input and target vectors,
respectively. .e parameters p and q are the input and target
vector dimensions, respectively. Additionally, oj ∈R

q sig-
nifies the output of the ELM for the jth training sample,
wi ∈R

p indicates the input weight that links the input
nodes to the ith hidden node, bi represents the bias of the ith

hidden node, and a(·) signifies the activation function for
the given hidden layer. β � [β1, . . . , βnh

]T are the values of

Table 1: Baseline clinical and sociodemographical information of
the participants of this study.

Group AD MCI HC MCIs MCIc
No. of
participants 53 77 57 35 42

Female/
male 20/33 34/43 32/25 13/22 21/21

Age 74.4± 7.8 74.1± 7.2 75.6± 5.2 73.9± 7.2 74.3± 7.2
Education 15.1± 3.2 15.9± 2.9 15.7± 2.8 16.1± 2.9 15.8± 2.9
MMSE 23.5± 1.8 26.9± 1.8 29.1± 0.9 27.2± 1.7 26.6± 1.8
CDR 0.7± 0.2 0.5 0 0.5 0.5
.e entries for age, gender, education, and MMSE denote mean and
standard deviation for each group. MMSE, Mini-Mental State Exam; CDR,
clinical dementia ratio.

Computational Intelligence and Neuroscience 5



the output weights between the output neurons, and the
hidden layer h(X(j)) � [h1(X(j), . . . , hnh

(X(j)))]T is the
output vector of the hidden layer with respect to the jth

training sample X(j) · hi(X(j)) is the output of the ith hidden
layer for the jth training sample. To obtain the optimal
hidden layer weights, 􏽢β with respect to N training samples
can be considered to solve the following optimization
problem:

min
β

λ ‖Hβ − L‖
2

+‖β‖
2
, (4)

where H � [h(X(1), . . . , h(X(N)))]T and L � [I(1), . . . ,

I(N)]T.
Equation (4) represents the optimization problem, and

its optimal solution 􏽢β can be analytically obtained as follows:

􏽢β � H
T 1

λ
I + HH

T
􏼒 􏼓

−1
L, (5)

where λ is a regularization parameter and I represents the
identity matrix. After finding the optimal solution 􏽢β, the
output of the ELM on test data Xtest is determined as
follows:

otest � h Xtest( 􏼁
T
H

T 1
λ

I + HH
T

􏼒 􏼓
−1

L. (6)

In this proposed method, the hidden node number was
set between 1 and 500, and we selected a sigmoid as an
activation function. Further, we used a grid searchmethod to
tune the ELM parameter on the training dataset in order to
achieve optimum cross-validated validation accuracy.
Similarly, to minimize the random effects during the weight
initializations, each parameter of the number of hidden
nodes was used 100 times and the average performance was
calculated.

2.8. Cross-Validation and Performance Evaluation. We used
the k-fold cross-validation (KCV; k� 10) method for cross-
validation. All participants were randomly divided into 10
equally sized subsets using the KCV (k� 10) cross-validation
approach. In each fold of the KCV, 90% of the data were used
to train the model based on a subset of features, and then
10% of the data (cross-validation set) were used to calculate
the accuracy of the ELM classifier. Accuracies of the ELM
classifiers corresponding to all subsets of features were
calculated and classified with maximum accuracy, and the
corresponding optimal subset of features was identified.
Similarly, classification performance was evaluated on ac-
curacy (ACC), specificity (SPE), and sensitivity (SEN). TP,
FP, FN, and TN represent the number of true positives, false
positives, false negatives, and true negatives, respectively. In
terms of numerical values, ACC, SPE, and SEN can be
calculated as follows:

accuracy(ACC) �
(TN + TN)

(TP + TN + FP + FN)
, (7)

sensitivity(SEN) �
(TP)

(TP + FN)
, (8)

specificity(SPE) �
(TN)

(TN + FP)
. (9)

.e other effective way to evaluate results for a classifier
is the receiver operating characteristic (ROC) curve. .e
ROC curve is the plot of true-positive rate against false-
positive rate by changing the discrimination threshold and
therefore summarizing the classifier’s performance. .e
ROC curve is usually represented by the area under the curve
(AUC), which is denoted by a number between 0 and 100.

3. Results and Analysis

3.1. Statistical Analysis. Cortical thickness, gray matter
(GM) volume, and surface area were analyzed using a
surface-based group analysis in FreeSurfer’s QDEC (version
1.5). First, the spatial cortical thickness, GM volume, and
surface area of both hemispheres were smoothed with a
circularly symmetric Gaussian kernel of 10mm full-width
half-maximum, to normally distribute the results. .en we
employed a general linear model (GLM) analysis with age,
sex, and education as the nuisance factors in the design
matrix to directly compare the three parameters in both
hemispheres of the AD vs. HC, HC vs. MCI, AD vs. MCI,
and MCIs vs. MCIc groups. Statistical analysis results re-
garding cortical thickness, surface area, and gray matter
volume are shown in Figure 2. .e Desikan–Killiany Atlas
divides the human cerebral cortex into 34 cortical regions in
each hemisphere. As there were a high number of atrophic
regions, we present only the top-ranked regions with sig-
nificant differences. .e atrophic regions for three param-
eters are listed below.

Table 2 presents the atrophy position and range of
clusters for the differences in gray matter volume, cortical
thickness, and surface area at each vertex between HC, MCI,
and AD groups by QDEC analysis. In this table, only the top
features which have significant cluster differences for each
kind of parameter are provided. From the statistically sig-
nificant brain regions shown in Figure 2 and Table 2, we
observe the following:

(1) .e cortical thicknesses of the left insula, left cuneus,
paracentral, right rostral middle frontal, and right
pars opercularis areas were thinner in the AD group
compared with the HC group. For HC vs. MCI, the
cortical thicknesses of the left precuneus, left lingual,
left and right insula, right pars triangularis, and right
inferior parietal areas were thinner. Similarly, for AD
vs. MCI, the cortical thicknesses of the left inferior
parietal, right lateral occipital, right inferior parietal,
and left and right superior temporal areas showed
the most atrophy. For MCIs vs. MCIc, the cortical
thicknesses of the left inferior parietal, left para-
hippocampal, right temporal pole, and right superior
temporal areas showed the greatest differences.

(2) Regarding surface area, the AD group had smaller
values than the HC group in the left and right
paracentral, left lateral orbitofrontal, right inferior
parietal, right posterior cingulate, and right inferior
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parietal areas. For HC vs. MCI, the left superior
frontal, left postcentral, left superior parietal, right
supramarginal, right fusiform, right precuneus, and
right precentral areas showed the lowest values.
Similarly, for AD vs. MCI, the left superior parietal,
left and right precentral, left paracentral, right in-
ferior parietal, and right superior frontal areas

showed the largest decreases in surface area. For
MCIs vs. MCIc, the left fusiform, left lateral occipital,
left parahippocampal, right superior parietal, and
right postcentral areas showed the most differences.

(3) In comparison with the HC group, the volume of
gray matter of the left caudal anterior cingulate, left
orbitalis, left lateral orbitofrontal, right lateral
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Figure 2: Differences in cortical thickness, area, and volume in patients at different stages of Alzheimer’s disease..e colored bar represents
the significance level of clusters. .e significance threshold was set at p< 0.05.
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Table 2: Cluster differences in cortical thickness, area, and volume in AD, MCI, and MCIc patients.

Feature Region
Coordinates

Vertex Value Size (mm2)
x y z

AD vs. HC

.ickness

Left insula −29.5 17.9 11.9 3165 −2.3512 3619.47
Left parahippocampal −31.3 −41.7 −8.7 557 −2.2303 10736.27

Left cuneus −47.9 −20.9 42.8 1039 −2.3188 2824.28
Right rostral middle frontal 38.5 43 7 1224 −2.1737 14.8
Right superior temporal 53.3 −5.2 −5.2 468 −2.8676 256.28
Right pars opercularis 50.3 10.2 8.8 1242 −3.6071 58155.25

Area

Left paracentral −15.8 −35.5 49.4 1197 −2.2767 7018.72
Left lateral orbitofrontal −53.3 −2 7.5 489 −2.1962 3218.23

Right paracentral 12.5 −37.1 55.4 1233 −2.2555 42.55
Right inferior parietal 34 −51.9 37.4 1133 −2.1026 7213.05

Right posterior cingulate 14 −30.4 36.6 1201 −2.0979 1416.67
Right inferior parietal 39.5 −44.7 34.6 7 −2.0263 50.76

Volume

Left caudal anterior cingulate −5 18.4 26.4 2073 −3.2264 834.61
Left orbitalis −28.7 −60.2 41.7 1103 2.3437 1202.55

Left lateral orbitofrontal −59.4 −6.9 9.4 412 −2.0146 635.67
Right lateral orbitofrontal 30.4 22.9 −20.3 631 −2.7411 2025.6
Right rostral middle frontal 34.8 51 4.7 198 −2.717 1098.82

Right pars opercularis 46.8 15.2 8.7 136 −2.717 8077.1
AD vs. MCI

.ickness

Left inferior parietal −43.6 −61.5 33 939 2.7022 439.37
Left fusiform −40 −53.7 −20.3 254 2.459 149.84

Left superior temporal −47.7 −25 −9.1 210 −2.5577 328.03
Right lateral occipital 26.1 −93.9 3.7 363 3.4944 363
Right inferior parietal 37.7 −71.7 42.8 1129 3.3654 646.24
Right superior temporal 50.7 −14.3 −2.4 722 −2.9715 342.28

Area

Left superior parietal 28.4 −51 42.7 1702 −2.5085 642.76
Left precentral 32.2 −21.8 60.8 109 1.8969 51.54
Left paracentral 14.1 −36.7 52.4 238 −1.8959 79.68

Right inferior parietal −35.2 −87.2 13.7 50 −1.8099 34.53
Right precentral −54.2 −1.1 7.1 51 −1.7244 21.34

Right superior frontal −7.4 4 66.5 34 1.6541 17.86

Volume

Left superior parietal −28.5 −58.8 40 540 3.5868 216.1
Left superior frontal −8.5 41.2 30.3 48 −2.6334 33.98

Left caudal anterior cingulate −4.9 11.3 32.1 314 −2.549 150.07
Right entorhinal 21.5 −8.9 −29.5 207 −3.1433 55.69

Right lateral orbitofrontal 42.8 27.8 −13.7 198 −3.1034 125.01
Right superior parietal 32.1 −44.2 41.2 115 −2.5309 40.29

HC vs. MCI

.ickness

Left insula −36.4 −9.4 −11.7 811 −3.5988 309.94
Left precuneus −6 −68.9 41.7 628 2.3682 322.02
Left lingual −29.3 −44.5 −6.6 612 −2.7175 279.16
Right insula 35.8 −10.6 −7.4 1154 −3.1385 436.62

Right pars triangularis 38.9 31.7 1 372 −2.1264 204.87
Right inferior parietal 35.1 −72 40.9 285 −2.7121 152.2

Area

Left superior frontal −17.8 31.5 49.6 237 1.7293 156.88
Left postcentral −52.1 −22.7 50.7 264 1.7286 122.75

Left superior parietal −32 −49.3 47.3 141 −1.7572 66.04
Right supramarginal 53.4 −47.4 35 1336 2.7163 676.85

Right fusiform 34.7 −12 −34.1 551 2.0892 322.84
Right precuneus 18.2 −77.3 27.7 482 1.7491 313.36
Right precentral 20.7 −30.6 53.9 328 −1.9165 115.45

Volume

Left supramarginal 52.1 −46.3 22.6 441 2.7521 210.23
Left cuneus 17.1 −69.5 16.8 628 2.611 481.74

Left precentral 21.2 −30.7 53.8 376 −2.1546 127.02
Right parahippocampal −23.8 −36.1 −15.6 278 −1.8212 127.68
Right superior parietal −9.1 −74.3 46.5 598 2.5199 303.67
Right superior frontal −18.1 33.3 39.6 210 2.6035 114.72
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orbitofrontal, right rostral middle frontal, and right
pars opercularis areas was lower in the AD group.
For AD vs. MCI, the left superior parietal, left su-
perior frontal, left caudal anterior cingulate, right
entorhinal, and right superior parietal areas showed
the largest decreases in volume. For HC vs. MCI, the
left supramarginal, left cuneus, left precentral, right
parahippocampal, and right superior parietal areas
showed the most volume atrophy. Similarly, for
MCIs vs. MCIc, the left bankssts, left precentral, left
rostral middle frontal, right precentral, and right
fusiform areas had the largest decreases in volume.

Moreover, from this analysis, we observe that area
thickness and volume in the AD group were significantly
decreased in comparison with the HC group. Similarly, there
was significant atrophy in the MCIc group in comparison
with the MCIs group, and there was little difference in the
atrophy pattern among AD and MCI patients.

3.2. Feature Selection and Classification. .e individual
feature set was selected using an MRMR (filter) and a se-
quential feature selection (wrapper) method to identify the
optimal feature set for different groups and improve the
classifier accuracy. Similarly, we combined all the feature sets
from different measures and applied the MRMR and SFS
method to select the optimal features. Multiple measures
feature sets were created by combining cortical thickness,
area, and volume from sMRI, three component measure-
ments from CSF, APOE ε4 status, andMMSE score. First, we
selected the top 60 features from theMRMR algorithm based
on the features score, and then we applied a sequential
feature selection algorithm on these top 60 ranked features,
which gave the optimal feature set to achieve the maximum
classification accuracy on ELM classifiers. Figure 3 shows the

number of optimal features sequence after sequential feature
selection on the top 60 ranked features obtained from the
MRMR algorithm using ELM classifier. Figure 3 shows only
the selected features for the combined feature set. From this,
we can assume that the proposed feature selection with
cross-validation provides the optimal feature vector for
input to the classifiers. In this proposed method, classifi-
cation performance was quantified by the number of features
selected versus accuracy and area under the ROC curve.

To further analyze the effectiveness of the purpose
classification method combining different measures, we
calculated the AUCs for the concatenation of all features.
Figure 4shows the receiver operating curves for individual
features and all feature (imaging and nonimaging bio-
markers, i.e., multiple features) combinations for each
classification group, using the ELM classifier.

4. Discussion

4.1. Performance Analysis. In this study, we first performed
statistical analysis and pattern classification to differentiate
and identify atrophy patterns for the four groups (AD, HC,
MCIs, and MCIc). Individual sMRI was preprocessed using
the FreeSurfer tool. After preprocessing the statistical
analysis results of sMRI, QDEC was applied and finally we
performed the classification task by the proposed feature
selection and classification method, respectively. For brain
atrophy analysis, we used three types of sMRI cortical
metrics (cortical thickness, gray matter volume, and surface
area). In comparing the AD group with the HC group, the
insula, pars opercularis, parahippocampal, and superior
temporal areas were severely affected in terms of cortical
thickness, gray matter volume, and surface area. .e cortical
thickness of the left hemisphere was thinner than that of the
left hemisphere. Similarly, for AD vs. MCI, the most atrophy

Table 2: Continued.

Feature Region
Coordinates

Vertex Value Size (mm2)
x y z

MCIs vs. MCIc

.ickness

Left inferior parietal −46.3 −60 11.1 2770 −3.7613 1427.48
Left superior temporal −45.5 −0.4 −20.8 1067 −2.6742 466.24
Left parahippocampal −31.7 −40.3 −10.1 550 −2.3925 239.85
Right temporal pole 29.2 9 −38 1449 −5.5983 822.82

Right superior temporal 62.3 −34.7 15.2 1292 −3.1646 549.97
Right inferior temporal 51.6 −56.6 −3.7 882 −3.0694 507.91

Right precentral 48.8 −6.5 40.5 858 −2.8315 351.93

Area

Left fusiform −36.4 −29.5 −22 659 −3.0958 312.21
Left lateral occipital −19.4 −99 −15.1 326 2.6022 250.61
Left parahippocampal −18.8 −33.5 −14 224 −2.0347 97.59
Right superior temporal 48.1 −32.9 2.2 1515 −2.5815 579.8
Right superior parietal 10.6 −52.7 65.1 1697 −2.2367 641.52

Right postcentral 33.8 −29 51.9 799 −2.0859 367.23

Volume

Left bankssts −57.9 −46.9 −1 2196 −2.6263 1162.58
Left precentral −36.1 −22 51.7 2736 −2.5339 1073.1

Left rostral middle frontal −22.4 27.9 32.8 582 −2.3081 326.86
Right superior temporal 62.3 −34.7 15.2 3392 −4.4677 1449.96

Right precentral 49.5 −6.2 41.1 4103 −3.2472 1813.94
Right fusiform 33.9 −37.8 −22.8 782 −3.1822 425.05
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was seen in the left inferior parietal and right lateral occipital
areas. For HC vs. MCI, the supramarginal and cuneus areas
showed the most atrophy. For MCIs vs. MCIc, the superior
temporal, and precentral areas showed the largest decreases
in thickness, volume, and area. Based on these differences,
the majority of the decrease in cortical thickness, gray matter
volume, and surface area appears mostly in the frontal lobe,
temporal lobe, occipital lobe, cingulate gyrus, and parietal
lobe. .is phenomenon strongly agrees with findings related
to atrophy patterns seen in previous studies [14, 66]. .ese
regions are mainly involved in the expression of personality,
motor execution, complex cognitive behavior, and decision
making [50]. In addition, we present the less common
analysis of MCIs vs. MCIc. For MCIc, the most atrophy was
seen in the superior temporal, bankssts, precentral, inferior

parietal, and insula areas, which show potential for the early
recognition of progression to Alzheimer’s disease.

To test the effectiveness of our purposed features
combination method (i.e., imaging and nonimaging fea-
tures), we adapted the individual feature from sMRI and CSF
separately to conduct the study, although, regarding genetic
and cognitive features, we combined them to test the per-
formance and then compared the accuracy with the accuracy
of the combination of all features. For the proposed feature
selection, we used a combination of filter and wrapper al-
gorithms and compared the performance of the classifiers on
the selected feature set. In this text, SVM-linear, SVM-RBF,
and ELM were used for classification. .e classification
results for the compared methods are presented in
Tables 3–6 and also in graphical form in Figure 5. As shown
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Figure 3: Number of feature sets selected from the sequential feature selection algorithm on the top 60 ranked features obtained using the
MRMR algorithm. Only the number of features versus accuracy for the combination of all feature sets using ELM classifiers is shown. (a) AD
vs. HC feature subset. (b) AD vs. MCI feature subset. (c) HC vs. MCI feature subset. (d) MCIs vs. MCIc feature subset.
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Figure 4: ROC curves for discriminating AD, MCIs, MCIc, and HC (healthy controls). ROC curves are plotted for the five biomarkers
separately and for the concatenation of all features (i.e., all five biomarkers measures). (a) ROC curves for AD vs. HC classification, (b) for
AD vs. MCI classification, (c) for HC vs. MCI classification, and (d) for MCIs vs. MCIc classification, using two-stage feature selection with
ELM classifiers.
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in the tables, the performance accuracy of feature fusion is
noticeably improved when compared with that of the in-
dividual feature set, and there are distinct degrees of ele-
vation in other indexes; the specificity index is particularly
more noticeable. In contrast, performance accuracy based
on the nonimaging features is almost the same as the im-
aging features for AD diagnosis, but far superior for MCI
diagnosis. For AD vs. HC, the accuracy obtained by CSF
measures, genetics, and cognitive score showed a lower
increase, although for MCI vs. HC, AD vs. MCI, and MCIs
vs. MCIc, the accuracy was higher. .e result showed that
the ELM classifier achieves better classification scores
compared to the SVM classifier (linear and RBF-SVM), for

both single modality feature sets, as well as all features
combined (shown in Figure 6). .e ELM is good machine
learning tool, and the major strength is that the hidden
layer’s learning parameters, including input weight and
biases, do not tune iteratively, as in SLFN. .e ELM offers
many advantages over other learning algorithms [54]. From
the results shown in Tables 3–6, for AD vs. HC, the clas-
sification result increased by 5–7% as compared to SVM
classifiers, with 98.04% sensitivity and 96.28% specificity.
For AD vs. MCI, classification accuracy increased by 5–9%
with 92% sensitivity and 97.33% accuracy. For HC vs. MCI,
classification accuracy increased by 6–10% with 91.23%
sensitivity and 99.13% specificity. Similarly for MCIs vs.

Table 3: 10-fold cross-validated classification performance for AD vs. HC.

Features measure
ELM SVM-RBF SVM-linear

ACC% SEN% SPE% AUC ACC% SEN% SPE% ACC% SEN% SPE%
Cortical thickness 85.13 92.07 85.44 0.86 80.68 85.68 83.81 77.17 83.17 73.81
Surface area 82.30 89.30 91.54 0.85 76.16 86.16 75.14 78.67 87.67 72.62
Volume 87.90 93.87 84.75 0.88 79.29 74.29 78.33 80.00 77.10 63.24
CSF 89.73 96.33 87.38 0.89 79.05 89.05 74.17 75.33 83.33 68.57
APOE+MMSE 86.45 95.13 87.00 0.93 82.03 87.03 84.67 84.16 83.05 78.79
Concatenation (all_features_set) 97.31 98.04 96.28 0.97 91.33 93.33 87.57 93.50 95.5 90.58

Table 4: 10-fold cross-validated classification performance for AD vs. MCI.

Features measure
ELM SVM-RBF SVM-linear

ACC% SEN% SPE% AUC ACC% SEN% SPE% ACC% SEN% SPE%
Cortical thickness 70.10 81.30 66.10 0.71 64.01 83.83 62.33 65.03 78.80 73.30
Surface area 61.60 66.70 84.30 0.63 63.45 68.10 80.11 60.67 71.23 62.85
Volume 67.80 82.10 67.10 0.69 58.20 77.92 68.56 60.05 73.37 63.73
CSF 64.70 66.00 81.40 0.73 56.07 62.75 75.73 61.23 68.71 79.37
APOE+MMSE 81.45 84.40 87.70 0.82 76.81 67.81 85.48 76.20 66.94 87.48
Concatenation (all_features_set) 87.91 92.00 97.33 0.89 83.50 88.64 76.72 78.31 74.45 82.62

Table 5: 10-fold cross-validated classification performance for HC vs. MCI.

Features measure
ELM SVM-RBF SVM-linear

ACC% SEN% SPE% AUC ACC% SEN% SPE% ACC% SEN% SPE%
Cortical thickness 75.40 84.07 67.90 0.83 74.17 80.81 71.23 67.34 73.17 77.93
Surface area 74.15 65.20 83.85 0.84 63.54 67.67 66.47 68.72 74.43 67.35
Volume 77.84 88.41 72.80 0.84 65.47 74.73 68.75 72.83 78.27 65.70
CSF 83.30 73.93 84.02 0.85 73.39 75.25 66.83 75.80 73.38 78.14
APOE+MMSE 79.37 93.25 72.97 0.89 68.29 81.73 76.68 70.23 81.24 78.05
Concatenation (all_features_set) 91.72 91.23 99.13 0.93 81.70 83.68 87.49 85.65 78.54 89.26

Table 6: 10-fold cross-validated classification performance for MCIs vs. MCIc.

Features measure
ELM SVM-RBF SVM-linear

ACC% SEN% SPE% AUC ACC% SEN% SPE% ACC% SEN% SPE%
Cortical thickness 63.71 71.10 38.37 0.64 57.18 65.53 60.38 50.05 71.18 68.13
Surface area 61.43 72.28 74.80 0.69 54.25 63.22 76.17 58.27 72.23 64.85
Volume 67.85 84.40 87.73 0.74 59.17 78.28 67.55 62.14 74.45 57.73
CSF 71.37 78.84 68.57 0.72 64.73 60.09 72.78 67.33 78.82 68.78
APOE+MMSE 76.09 87.13 72.09 0.79 65.53 68.81 67.43 68.08 72.21 66.33
Concatenation (all_features_set) 83.38 93.01 75.77 0.85 71.37 81.16 76.75 75.71 78.38 84.67
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MCIc, classification accuracy increased by 7–12% with
93.01% sensitivity and 75.77% specificity, but 84.67% and
76.67% specificity was obtained for linear and RBF-SVM
classifiers, respectively, which is more than obtained by the
ELM classifier. From our analyses, we believe that the ELM

gives better performance as compared to SVM from a
learning efficiency standpoint because the ELM’s original
design has high learning accuracy, fast learning speed,
scalability, and the least human intervention [54, 55]. From
the results shown in Table 7, we can see that our suggested
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Figure 5: Classification results for different Alzheimer’s groups using ELM classifiers. (a) Classification results for AD vs. HC groups, (b) for
AD vs. MCI groups, (c) for HC vs. MCI groups, and (d) for MCIs vs. MCIc groups.
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method achieved better accuracy than other existingmethods.
For classifying AD and HC, our method achieved a classi-
fication accuracy of 97.31%, with a sensitivity of 98.04%, a
specificity of 96.28%, and an AUC value of 0.97%. For
classifying MCI and HC, our method achieves a classification
accuracy of 91.72%, with a sensitivity of 91.23%, a specificity of
99.13%, and an AUC value of 0.93%. For distinguishing AD
from MCI, our proposed method obtained a classification
accuracy of 87.91%, with a sensitivity of 92.00%, a specificity
of 97.33%, and an AUC value of 0.89%. Similarly for MCIs vs.
MCIc, we achieved outstanding performance as compared to
previous methods by combining multiple features, with an
accuracy of 83.38%, a sensitivity of 93.01%, a specificity of
75.77%, and an AUC value of 0.85%.

4.2.ComparisonwithOtherMethods. In the previous section,
we discussed in detail the findings of the proposed feature
selection and classification method. In this section, we

compare and discuss the findings of our method in com-
parison with existing state-of-the-art methods. Tables 7 and 8
show a comparison of the classification performance of the
proposed method with recently published studies which used
multimodality data to distinguish individuals with AD and
MCI from HC. Westman et al. [67] used MRI and CSF
biomarkers and obtained 91.8% accuracy for AD vs. HC,
77.6% for HC vs. MCI, and 68.5% for pMCI vs. MCIs
classification using the orthogonal partial least squares to
latent structures (OPLS) method. Zhang and Shen [39] used a
multimodal (MRI, PET, and CSF) classification method with
multitask feature selection and an SVM classifier for AD and
MCI classification. By combining MRI, PET, and CSF data,
they achieved a higher accuracy of 93.3% for AD vs. HC and
83.2% accuracy for HC vs. MCI classification. Similarly, the
authors achieved an accuracy of 73.9% on pMCI vs. MCIs
samples. Hinrichs et al. [69] obtained an accuracy of 92.4% for
AD vs. HC classification using MRI, PET, CSF, APOE, and
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Figure 6: Performance comparison of different classifiers.

Table 7: Comparison of classification of AD vs. HC and HC vs. MCI between the proposed method and existing state-of-the-art methods.

Author Data Classifier Feature selection AD vs.
HC (%)

HC vs.
MCI

Westman et al.
[67] MRI +CSF OPLS — 91.8 77.6%

Johnson et al. [68] MRI + PET+CSF+ cognitive scores Stacked
autoencoder

Sparse representation
learning 95.9 85%

Hinrichs et al. [69] MRI + PET+CSF+APOE+ cognitive scores MKL — 92.4 n/a
Zhang and Shen
et al. [39] MRI + PET+CSF SVM Multitask feature selection 93.3 83.2%

Beheshti et al. [70] sMRI SVM Feature ranking + genetic
algorithm 93.01 —

Spasov et al. [71] sMRI + cognitive
measures +APOE+demographic CNN — 99.5 —

Maqsood et al.
[72] sMRI CNN — 92.85 —

Proposed method MRI +CSF+APOE+MMSE ELM Filter (MRMR) +wrapper
(SFS) 97.31 91.72%
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cognitive score in multiple kernel learning. Similarly, Johnson
et al. [68] proposed a sparse representation learning feature
selection and stacked autoencoder for classifying AD using
MRI, PET, CSF, and cognitive scores as features and obtained
95.9% accuracy for AD vs. HC classification and 85% accuracy
for HC vs. MCI classification. Maqsood et al. [72] proposed
the transfer learning classification model of AD for both
binary and multiclass problems. .e algorithm utilizes a
pretrained AlexNet network and fine-tuned the convolutional
neural network (CNN) for classification..is model was fine-
tuned over both segmented and unsegmented 3D views of the
human brain. .e MRI scans were segmented into the
characteristic components of GM, white matter, and CSF..e
retrained CNNwas then validated using the test data to obtain
accuracies of 89.6% and 92.8% for binary and multiclass
problems, respectively, using the OASIS dataset. Beheshti
et al. [70] developed a computer-aided diagnosis (CAD)
system composed of four systematic stages for analyzing
global and local differences in the GM of AD patients,
compared with HC using the voxel-based morphometry
(VBM) method..ey used feature ranking based on the t-test
and a genetic algorithm, with Fisher’s criteria as part of the
objective function in the genetic algorithm. .e authors
utilized the SVM classifier with 10-fold cross-validation to
obtain accuracies of 93.01% and 75% for AD vs. HC andMCIs
vs. pMCI classification, respectively. Spasov et al. [71] de-
veloped a deep learning architecture, based on dual learning
and an ad hoc layer for 3D separable convolution to identify
MCI patients. .eir deep learning procedure combined MRI,
neuropsychological, demographic, and APOE ε4 data to
achieve an accuracy of 86%. .ey achieved an accuracy of
99.5% for AD vs. HC classification. In another study, Moradi
et al. used VBM analysis of GM as a feature combined with
age and cognitive measures. .ey achieved an accuracy of
82% for pMCI vs. MCIs classification. From this comparison,
we can infer that the proposed feature combination (MRI,
CSF, APOE, and MMSE data) is robust or comparable to the
other multimodal biomarker methods reported in the liter-
ature, for both AD vs. HC and MCIs vs. MCIc classification.

5. Conclusion

In conclusion, we demonstrated that a combination of three
sMRImeasures, cortical thickness, cortical area, cortical volume,
and three nonimaging measures, CSF components, APOE ε4
status, and MMSE score, improves AD diagnosis. Furthermore,

this combination shows great potential for the early identifi-
cation of mild cognitive impairment (the prodromal stage of
Alzheimer’s disease). In this method, we proposed filter and
wrapper feature selection with an ELM classifier for multiple
biomarker-based AD diagnosis, which significantly improved
the classifier’s performance. Moreover, the results were better
than, or comparable with, those previously reported, particularly
for the most challenging classification, such as HC vs. MCI and
MCIs vs. MCIc. .e added value of combining different ana-
tomical MRI measures should be considered in AD scanning
protocols. Only using specific aspects, or a single measure of
whole brain atrophy, for AD diagnosis is still common practice.
Our results show that clinical AD diagnosis could benefit from
the combination of multiple measures from an anatomical MRI
scan, and other nonimaging biomarkers, incorporated into an
automated machine learning system. Our suggested method
effectively enhances the diagnostic accuracy ofADandMCI, but
still has some drawbacks. Future work will include various
improvements. First, we will optimize the parameter obtaining
process. Second, in order to enhance the effectiveness of the
suggested method, the dataset will be increased in terms of the
following: extension of the longitudinal dataset for better un-
derstanding of the progression from MCI and inclusion of
multimodal data, such as PET and fMRI data, which provides
different insights into the characteristics of AD.
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dataset (http://adni.loni.usc.edu) was used in this study.
Complete information regarding ADNI investigators can be
found at http://adni.loni.usc.edu/wp_content/uploads/
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“A parameter-efficient deep learning approach to predict
conversion from mild cognitive impairment to Alzheimer’s
disease,” NeuroImage, vol. 189, pp. 276–287, 2019.

[72] M. Maqsood, F. Nazir, U. Khan et al., “Transfer learning
assisted classification and detection of Alzheimer’s disease

stages using 3D MRI scans,” Sensors, vol. 19, no. 11, p. 2645,
2019.

[73] E. Moradi, A. Pepe, C. Gaser, H. Huttunen, and J. Tohka,
“Machine learning framework for early MRI-based Alz-
heimer’s conversion prediction in MCI subjects,” Neuro-
Image, vol. 104, pp. 398–412, 2015.

18 Computational Intelligence and Neuroscience


