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Keloids are disfiguring, fibroproliferative growths and their pathogenesis remains unclear,
inhibiting therapeutic development. Available treatment options have limited efficacy and
harbor safety concerns. Thus, there is a great need to clarify keloid pathomechanisms that
may lead to novel treatments. In this study, we aimed to elucidate the profile of lesional and
non-lesional keloid skin compared to normal skin. We performed gene (RNAseq, qRT-
PCR) and protein (immunohistochemistry) expression analyses on biopsy specimens
obtained from lesional and non-lesional skin of African American (AA) keloid patients
compared to healthy skin from AA controls. Fold-change≥2 and false-discovery rate (FDR)
<0.05 was used to define significance. We found that lesional versus normal skin showed
significant up-regulation of markers of T-cell activation/migration (ICOS, CCR7), Th2- (IL-
4R, CCL11, TNFSF4/OX40L), Th1- (CXCL9/CXCL10/CXCL11), Th17/Th22- (CCL20,
S100As) pathways, and JAK/STAT-signaling (JAK3) (false-discovery rate [FDR]<0.05).
Non-lesional skin also exhibited similar trends. We observed increased cellular infiltrates in
keloid tissues, including T-cells, dendritic cells, mast cells, as well as greater IL-4ra+,
CCR9+, and periostin+ immunostaining. In sum, comprehensive molecular profiling
demonstrated that both lesional and non-lesional skin show significant immune
alternations, and particularly Th2 and JAK3 expression. This advocates for the
investigation of novel treatments targeting the Th2 axis and/or JAK/STAT-signaling in
keloid patients.
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INTRODUCTION

Keloids are common, benign fibroproliferative overgrowths that
manifest as exophytic, hyperpigmented lesions, extending
beyond the original wound and result from dysregulated
wound-healing secondary to skin injury. Keloids may recur,
are associated with pain and pruritus, and are disfiguring (1).
Numerous pathophysiologic processes have been investigated
(1–3), including hypoxic (4, 5), mechanical tension (6, 7), and
inflammatory etiologies (8–12). In addition, genetic studies have
identified certain susceptibility loci, including inflammation-
related genes, to be significantly associated with keloids (13–
18). Yet, the pathogenesis still remains unclear, inhibiting
therapeutic development. Moreover, current treatment options
have limited efficacy and safety profiles and are associated with
high recurrence rates of up to 100% (2, 19). Thus, there is a large
unmet need to understand the pathomechanisms of keloids and
identify novel therapeutics.

Recently, our group suggested a T-helper (Th)2-skewed
pathogenesis of keloids by way of targeting Interleukin(IL)-
4Ra with dupilumab, an FDA-approved biologic for moderate-
to-severe atopic dermatitis (AD) (20). In this report, treatment of
severe AD in an African American patient resulted in both AD
improvement and shrinkage of his concomitant keloids (20).
Furthermore, a limited analysis demonstrated increased mRNA
expression of three Th2-related products (20), suggesting a
possible Th2 involvement in mechanisms underlying
pathologic fibrosis (21, 22). Clinical associations between
keloids and other Th2-skewed diseases (e.g. AD (23) and
asthma (24)) have also been reported. However, to our
knowledge, a transcriptomic profiling of keloid skin lesions,
that attempts to elucidate their immune alterations is lacking.

While a few gene expression studies have been performed, the
majority focused on specific genes or limited microarray studies
(25–32). Furthermore, these studies did not entirely characterize
the inflammatory profile of keloids. Earlier cDNA microarray
analyses primarily associated keloids with alterations of the
extracellular matrix, growth factors, apoptosis-related
molecules, and/or chondrogenic or osteogenic tissue
differentiation (25–28). A more recent microarray profiling
study analyzed differences in lesional versus non-lesional skin
and reported bone and/or cartilage abnormalities but did not
evaluate inflammatory pathways (29). Jumper et al. (30) used a
laser capture micro-dissection approach, describing
dysregulation of a few immune markers in keloid tissues (e.g.
IL-13Ra1, IL-1b). Onoufriadis et al. (31) undertook an
integrative mRNA and miRNA expression approach, focusing
on pathway enrichment analysis and highlighting expression of
mitogen-activated protein-kinase signaling pathway in keloid-
prone individuals.

Due to a greater prevalence of keloids in individuals of
African descent (19), we present a global RNA-seq profiling of
skin biopsies obtained from both lesional and non-lesional skin
Abbreviations: AD, atopic dermatitis; DC, dendritic cell; FCH, fold-changes; FDR,
false discovery rate; IL, interleukin; qRT-PCR, quantitative real time polymerase chain
reaction; RNA-seq, RNA-sequencing; Th, T-helper; Treg, T-regulatory cell.
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of African American patients compared to healthy controls,
complemented with additional validation using quantitative
real-time PCR and immunohistochemistry. Our data show
immune dysregulation, particularly Th2 and JAK3-skewing,
along with Th1 and Th17/Th22 expression, in keloid lesions,
extending to uninvolved skin, suggesting the potential for
systemic therapies targeting these pathways in keloid patients.
MATERIALS AND METHODS

Patient Characteristics and
Sample Collection
Three African American patients (three females, mean age 47.3
years), with history of severe chronic keloids and no concomitant
atopy or other comorbidities (29), and five healthy African
American controls (two females, three males, mean age 39.8
years) were recruited under institutional review board-approved
protocols. Biopsy specimens (6 mm) were collected from keloid
lesions on the upper trunk. Non-lesional skin biopsies were
obtained from a similar anatomic region, but at least 10
centimeters away from the keloid lesion. In one of the patients,
a biopsy of an emerging keloid lesion was also obtained. Normal
skin biopsy samples were collected from the trunk of
healthy controls.

RNA-Sequencing
RNA was extracted as previously described (33, 34). Libraries
were generated using TruSeq Stranded mRNA Library Prep kit
(Illumina). Next generation sequencing was performed on
Illumina NovaSeq6000 (Illumina Inc., 100 cycles, single-read
sequencing). Sample quality was assessed using FastQC. RNA-
sequencing data was profiled by Illumina NovaSeq6000 to allow
for more global analyses of genomic abnormalities. Data were
pre-processed using standard pipeline incorporating quality
control metrics, such as FastQC and MultiQC, sequence
alignment based on STAR RNA-sequencing aligner, and
sequencing reads assignment to genomic features by
featureCounts and voom-transformed. A total of 4 keloid
lesions obtained from 3 different patients and 6 healthy
controls were included in the RNA-sequencing analysis.

Quantitative Real-Time Polymerase
Chain Reaction
RNA was extracted for real-time polymerase chain reaction (RT-
PCR) using the miRNAeasy Mini Kit (Qiagen, Hilden, Germany).
Reverse transcription to complementary DNA (cDNA) from RNA
was carried out using the High Capacity cDNA reverse transcription
(Thermo Fisher). Pre-amplification was performed on all samples.
Primers are listed in Table S1. Ten nanogram total RNA was used
for PreAMP pool. Rplp0 was used as endogenous control.
Expression values were normalized to Rplp0.

Immunohistochemistry
Immunohistochemistry was performed on frozen lesional and
non-lesional skin sections from keloid patients and healthy skin
November 2020 | Volume 11 | Article 597741
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from controls, using monoclonal antibodies as previously
described (Table S2) (35, 36). Cell counts were quantified from
representative sections in both the epidermis and dermis using
ImageJ V1.42 software (National Institutes of Health,
Bethesda, Maryland).

Statistical Analysis
Analyses were performed using R-language (R-project.org) and
Bioconductor Project packages (www.bioconductor.org). Gene
expression profiles were modeled by linear models using R’s lme
function. limma framework was used for RNA-sequencing data, and
p-values were adjusted formultiple hypotheses using the Benjamini-
Hochberg procedure. Fold changes (FCHs)>2.0 and false discovery
rates (FDR)<0.05 were considered differentially expressed. We also
evaluated a curated immune gene-subset (33, 34, 37) using P-values,
due to the small sample size. Mean expressions are displayed in a
heatmap, where unsupervised clustering was performed using
Euclidean distance and average agglomeration criteria. PCR and
immunohistochemistry data were log2 transformed and analyses
were performed using Student’s t-test.
RESULTS

We performed RNA-seq global profiling (GSE158395), followed
by qRT-PCR and immunohistochemistry, on lesional and non-
lesional keloid skin samples obtained from three African
American patients (mean age 47.3 years) with history of
chronic (present for >10 years), large keloids, and no atopy or
other comorbidities (29), and healthy skin samples obtained
from five African American controls (mean age 39.8 years). In
one of the patients, a biopsy of an emerging keloid lesion was also
obtained. Patients did not have any treatments on their biopsied
keloids. No significant differences in age or gender were detected
between patients and controls.

RNA-Seq Molecular Profiling Shows
Immune Dysregulation With Significant
Th2, Th1, Th17/Th22, and JAK3-Skewing
in Keloid Lesions
Using criteria of fold-change (FCH)>2 and false discovery rate
(FDR)<0.05 to define differentially expressed genes (DEGs), we
detected 3,044 DEGs (1,437 up-regulated and 1,607 down-
regulated) in lesional keloid versus normal skin, 2,929 DEGs
between lesional and non-lesional skin, and few DEGs between
non-lesional andnormal skin, asdepicted in aheatmap inFigureS1
(Table S3).

The top 50 DEGs in lesional versus normal skin comparison
included products related to fibrosis and cartilage/bone-
differentiation (ADAM12, ASPN, COL10A1, COL11A1, FBN2),
previously reported to be dysregulated in keloids (Table S3) (20,
29). Periostin, implicated both in fibrosis as well as in Th2
inflammation (38–40), was among the top DEGs in lesional
versus normal skin (FDR<0.05 for all; Figure 1, Table S3).

Among the significantly modulated genes in keloid lesions
compared to normal skin also included markers related to
Frontiers in Immunology | www.frontiersin.org 3
various immune components, as depicted in a heatmap of a
curated immune gene-subset (Figure 1) (33, 34, 37). In
keloid lesions, we observed significant increases in measures of
T-cells (CD2, CD3, CD28), T-cells/NK-cells/T-cell activation
and migration (ICOS, LCK, GZMA/B, CCR7, TNFRSF9), and
cellular infiltrates, such as dendritic cell markers CD80 and
CD86 (FDR<0.05; Figure 1, Table S3). Measures of innate
immunity (IL-6), and multiple immune pathways, including
the Th2- (IL-4R, CCR5, CCL11, TNFSF4/OX40L), Th1-
(CXCL9/CXCL10/CXCL11, OASL), and Th17/Th22- (CCL20,
PI3, S100A7/8/9) pathways were also significantly up-regulated
(FDR<0.05; Figure 1, Table S3).

Furthermore, keloid lesions displayed significant up-
regulation of JAK/STAT signaling molecule, JAK3, as
compared to normal skin (FDR<0.05; Figure 1, Table S3).
Markers related not only to fibrosis but also Tregs (TGFb1 and
TGFb3) (41, 42), were highly increased as well (FDR<0.05). Both
CCR9, the homing receptor for the small intestine and lung (43,
44), and its ligand CCL25, displayed increased expression in
keloid tissues (FDR ≤ 0.1). The CCR9/CCL25 axis has been
shown to induce cellular recruitment in early allergic asthma
(44). Negative immune regulators, IL-34 (45) and IL-37 (34),
were significantly reduced in lesional keloid versus normal skin
(FDR<0.05; Figure 1, Table S3).

Similar dysregulation of these immune axes was observed
between non-lesional and normal skin comparisons, albeit these
did not attain significance by FDR, however some achieved
significance using criteria of P<0.05 (e.g. CCL11, CCR5,
CXCL10/11, CCL20) (Figure 1, Table S3).

qRT-PCR Validates and Expands
RNA-Seq Data
qRT-PCR was performed to validate as well as evaluate key
immune molecules that are often below detection limits on
RNA-seq (34, 46) (Figure 2). Th2 (CCL11, TSLP, TNFSF4/
OX40L, TNFRSF4/OX40) markers showed significant up-
regulation in lesional or non-lesional versus normal skin
(P<0.05; Figure 2). Expression of CCR9 and its ligand CCL25
showed significant, or trending toward significant, up-regulation
in lesional versus normal skin (P<0.05 for CCL25; Figure 2).
JAK3 was also highly expressed in keloid lesions compared to
normal skin (P<0.01; Figure 2).

While the main Th1 cytokine, IFNg, showed significant
increases in keloid lesions (P<0.01), IL-17A, the Th17 cytokine,
only showed a trend for increased expression in both lesional and
non-lesional versus normal skin (Figure 2). Treg markers,
FOXP3 and TGFb1, and T-cell activation measure ICOS, were
up-regulated in lesional keloid versus normal skin (P<0.05 for
TGFb1; Figure 2). We also evaluated an emerging keloid lesion
and obtained similar gene expression results (Figure S2).

Immunohistochemistry Shows Marked
Cellular Infiltrates in Keloids
Gradual increases were observed for multiple cellular infiltrate
measures, such as T-cells (CD3+, CD8+) and dendritic cells
(CD11c+), including dendritic cell infiltrates that are
November 2020 | Volume 11 | Article 597741
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characteristic to AD, such as markers typifying “atopic” dendritic
cells (OX40L+, FCeR1+) (33, 47, 48) (P<0.05 for CD3+, FCeR1+,
OX40L+ in lesional versus normal skin comparisons; Figures
3A–T). OX40L+ immunostaining was also significantly increased
in non-lesional keloid versus normal skin (P<0.05; Figures
3Q–T).

Supporting our mRNA expression data, we noted increased
IL-4Ra+ immunostaining in both lesional and non-lesional
keloid skin as compared to normal skin (P<0.05 for lesional
versus non-lesional skin comparison; Figures 4A–D). Mast cells
Frontiers in Immunology | www.frontiersin.org 4
(tryptase+), associated with atopy (49, 50), were increased in
keloid lesions (P<0.1 for lesional versus non-lesional
comparison; Figures 4E–H). Trending toward significantly
greater CCR9+ immunostaining was noted in lesional
compared to normal skin (P<0.1 Figures 4I–L). Finally, we
observed significantly greater periostin immunostaining,
concentrating in the lower dermis of keloid lesions, as
compared to non-lesional and normal skin (P<0.05; Figures
4M–P). We also evaluated an emerging keloid lesion and
obtained similar cellular infiltrates (Figure S3).
FIGURE 1 | Summary heatmap of immune gene expression of multiple pathways in biopsied lesional and non-lesional keloid skin and normal skin from controls
using RNA-seq. Table shows fold-changes in non-lesional versus normal (NL vs N), lesional versus normal (LS vs N), and lesional vs non-lesional (LS vs NL) skin.
***P < 0.001, **P < 0.01, *P < 0.05, +P < 0.1. Red color denotes higher mean expression levels and blue color denotes lower mean expression levels. LS, lesional;
NL, non-lesional; N, normal.
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DISCUSSION

Our study combines gene and protein expression analyses,
broadly characterizing the molecular and cellular phenotype of
lesional and non-lesional keloid skin, highlighting the possible
contribution of immune abnormalities to its pathogenesis. While
various etiologies for keloid formation have been investigated,
the pathogenesis remains to be clearly elucidated, hindering the
development of novel therapeutics. Global RNA-seq profiling, as
successfully performed in other inflammatory skin diseases, such
as AD and psoriasis (34, 51), may uncover further insights into
Frontiers in Immunology | www.frontiersin.org 5
disease mechanisms, and possibly lead to the development of
newer, immune-based treatments.

In light of the role of inflammation in normal wound healing,
a dysregulated immune component can contribute to an
abnormal wound repair process (8, 9, 52). However, to our
knowledge, the role of inflammation in the pathogenesis of
keloids has not been adequately investigated. Published studies
investigating an immune component have largely focused on
specific keloidal cell cultures or specific genes. One report
identified up-regulation of the proinflammatory cytokines, IL-
1a, IL-1b, IL-6, and TNFa, in keloid fibroblasts (10). Our group
FIGURE 2 | Fold-changes of immune mediators in lesional and non-lesional skin of keloid patients, as well as normal skin, as measured by quantitative real-time
PCR. Red bar represents mean. Black symbols: significance of comparison to normal skin; red symbols: significance of comparison between lesional and non-
lesional skin. **P < 0.01, *P <0.05, +P < 0.1. PCR, polymerase chain reaction; LS, lesional; NL, non-lesional; N, normal.
November 2020 | Volume 11 | Article 597741
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FIGURE 3 | Representative immunohistochemistry images and corresponding cell count quantification of CD3+ T-cells (A–D), CD8+ T-Cells (E–H), CD11c+ dendritic
cells (I–L), FCeR1+ dendritic cells (M–P) and OX40L+ dendritic cells (Q–T) in normal skin from controls, and lesional and non-lesional skin of keloid patients, viewed
at 10x magnification. Red bar represents mean. Black symbols: significance of comparison to normal; red symbols: significance of comparison between lesional and
non-lesional skin. **P < 0.01, *P < 0.05, +P < 0.1. LS, lesional; NL, non-lesional; N, normal.
Frontiers in Immunology | www.frontiersin.org November 2020 | Volume 11 | Article 5977416
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recently examined a few Th2 markers in keloids (20), while
another study found increases for the IL-17/IL-22-induced
products, S100A7 and hBD2 (53). Additionally, dysregulation
of the IL-17/IL-6 axis (11) and/or JAK/STAT-signaling (54, 55)
have also been investigated. The present study expands on prior
investigations and provides a comprehensive molecular profiling
of keloids, identifying a significant immune component in both
Frontiers in Immunology | www.frontiersin.org 7
lesional and non-lesional skin, as well as linking keloids with
fibrosis and cartilage/bone-differentiation.

Our results associate keloid tissues with an inflammatorymilieu
representing multiple T-helper pathways, including the Th2 (e.g.
IL-4R,CCL11, TSLP, TNFSF4/OX40L, TNFRSF4/OX40), Th1 (e.g.
IFNg, CXCL10/11), Th17/Th22 (e.g. PI3, CCL20, S100As) axes, as
well as the JAK/STAT signaling molecule JAK3. The up-regulation
FIGURE 4 | Representative immunohistochemistry images and corresponding cell count quantification of IL-4Ra+ cells (A–D), tryptase+ mast cells (E–H), CCR9+

cells (I–L) and periostin+ cells (M–P) in normal skin from controls, and lesional and non-lesional skin of keloid patients, viewed at 10x magnification. Red bar
represents mean. Black symbols: significance of comparison to normal; red symbols: significance of comparison between lesional and non-lesional skin. **P < 0.01,
*P < 0.05, +P < 0.1. LS, lesional; NL, non-lesional; N, normal.
November 2020 | Volume 11 | Article 597741

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Wu et al. RNA-Sequencing Keloids Show Immune Dysregulation
of Th17 markers expands upon prior reports demonstrating a role
of Th17 mediators in keloids (11, 55). Additionally, our results
suggest that, similar to other fibrotic diseases (56), the Th1 axis is
also involved to keloid pathogenesis. Of note, IL-6 which is
associated with innate immunity (57), is highly up-regulated in
our study and has also been shown to drive a chronic pro-fibrotic
state via a Th1-mediated response (58).

In the present study, we observed a significant Th2 signature in
keloids as well as increased cellular infiltrates associated with the
Th2 microenvironment, such as tryptase+ mast cells (12, 49, 50),
markers of dendritic cells characteristic to atopic dermatitis (AD)
(OX40L+ and FCeR1+) (33, 47, 48), IL-4Ra+ cells, and periostin+

cells. In human fibroblasts, it has been found that IL-4 and IL-13
increasedTGF-b signaling and enhanced fibrosis via periostin (59).
Periostin is amatricellular protein that plays important physiologic
and pathogenic roles in skin fibrosis (60, 61) and serves as a
biomarker for several known Th2-associated diseases (e.g. AD,
asthma, nasal polyps, systemic sclerosis) (38, 39, 62, 63). Its
significantly increased upregulation in keloids may represent an
important link between immune responses and fibrosis. In fact, one
study found periostin to be expressed by a novel subpopulation of
Th2-associated fibroblasts inAD (64). These data implicate a cross-
talk between Th2 immune mechanisms and fibrosis that is also
likely relevant in keloid pathogenesis.

Further reinforcing the concept of immune dysregulation in
driving fibrotic processes in keloids is the increased T-cell
expression, including Th2-related markers, in several fibrotic
conditions, such as frontal fibrosing alopecia and scleroderma (65,
66). In vitro studies have also demonstrated the profibrotic effects of
the type 2 cytokines IL-4 and IL-13 (22), including increased collagen
production in keloid fibroblasts after IL-13 stimulation (67). These
studies strengthen our hypothesis that immune dysregulation,
possibly Th2 driven, plays a significant role in keloid formation.
Additionally,we found increasedexpressionofCCR9and its receptor
CCL25, which are involved in inflammatory cell recruitment in early
allergic asthma (44). Taken together, our results highlight
commonalities between keloids and other atopic disorders such as
AD and asthma (68), as well as those that exhibit exophytic growth
(e.g. nasal polyps) (69, 70). Keloids also display commonalities with
connective tissue diseases associated with excessive extracellular
matrix deposition, such as scleroderma (65).

The up-regulation of T-cell related genes in non-lesional skin
compared to normal skin (e.g. CCL11, CCR5) highlight that the
seemingly normal skin of keloid patients is in fact abnormal and
predisposed to formation of keloids. These data are also
supported by the clinical observation that individuals who
develop keloids are prone to future keloid formation after skin
wounding (19). These incipient findings in non-lesional skin are
important as it might mean that patients with significant keloids
may necessitate systemic treatment to target not only lesional but
also non-lesional skin to prevent future recurrence of keloids.

While studies in blood can clarify the presence of systemic
activation in keloid patients, our results, which demonstrate
immune dysregulation extending beyond skin lesions to
uninvolved skin, advocate for the investigation of systemic
treatments for keloids, such as those targeting the Th2 axis. The
Frontiers in Immunology | www.frontiersin.org 8
potential clinical utility of anti-IL-4Ra antagonism (20) is
encouraged by the significant overlap observed between
dupilumab-regulated markers in AD and those that are
dysregulated in keloids, including markers of the Th2 axis, as well
as cellular infiltrates (CD3+, CD11c+, FCeR1+), T-cell activation/
migration (GZMB, ICOS, CCR7), and the Th17/Th22 (PI3,
S100As) pathway (37, 71). Antagonism of the OX40-TSLP axis,
which is known to perpetuate Th2 activation in both AD and
asthma (72–74), could also be explored for keloids. GBR830 and
KHK4083 are anti-OX40 monoclonal antibodies in clinical trials
(75, 76). In one analysis (75), GBR830 significantly decreased
measures that are also upregulated in keloid tissues in the present
study, including OX40+ T-cells, OX40L+ dendritic cells, and Th2-
(CCL11), Th1- (IFNg, CXCL10), and Th17/Th22- (S100A9/12)
related markers. Given the significantly increased expression of
TSLP in non-lesional keloid skin, exploration of tezepelumab, an
anti-TSLP monoclonal antibody (77), may also be warranted.

Furthermore, biologics targeting IL-6 signaling, such as
tocilizumab, sarilumab, and siltuximab, could be explored (78).
Indeed, our data showing significant IL-6 up-regulation in keloids
expands on previous studies that demonstrated elevated IL-6
expression in keloidal fibroblasts (79, 80). Ghazizadeh et al. (80)
further showed that inhibition of IL-6 or IL-6Ra in keloid fibroblasts
resulted in a reduction of collagen synthesis, underscoring the
potential utility of IL-6 antagonism for this disease.

In contrast to the aforementioned biologics, Janus kinase (JAK)
inhibitors comprise a class of broad-acting small molecules. The
JAK/STATsignalingand spleen tyrosinekinase (SYK)pathwaysare
implicated in numerous autoimmune and inflammatory diseases
(e.g. AD, psoriasis, alopecia areata) (81), modulating a range of
immune responses, including the Th2 (IL-4, IL-13, CCL18), Th1
(IFNg), and Th17/Th22 (CCL20, S100As) pathways (82).
Preliminary studies evaluating inhibition of JAK/STAT signaling
in human keloid fibroblasts (54, 55), and in a humanized keloid
animalmodel (83), have demonstrated promising results. There are
several JAK inhibitors in clinical development showing efficacy for
various dermatologic disorders (81, 82, 84) and could be a
therapeutic strategy worth investigating in keloids.

This is apreliminary studywith a few limitations, includinga small
sample size. While future studies need to evaluate larger cohorts, we
were still able to obtain large differences in lesional and non-lesional
skin versus normal skin, as well as a significant signal after adjusting
formultiple hypothesis testingby false-discovery rateusing a stringent
cut-off for significance. Our study group only included African
American patients, representing a greater prevalence of keloids in
this ethnicity (1, 19). Additional studies should evaluate keloids in
other races and ethnicities, such as in Hispanics, Asians, and
Caucasians (1, 19). Finally, as our study raises the hypothesis of
possible immune-based treatments forkeloids, thisneeds tobeproven
in future proof of concept studies and clinical trials.

In sum, the current genomic and cellular profiling study of
keloids provides a comprehensive molecular fingerprint of the
immune alterations in lesional and non-lesional keloid skin
compared to normal skin. Our results reveal broad immune
dysregulation, including up-regulation of markers of the Th1 and
Th17/Th22 axes as well as significant Th2 and JAK3 expression
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in keloid lesions, extending to uninvolved skin, suggesting the
potential use of systemic therapeutics. Future clinical trials for
keloid patients may include those targeting the Th2 axis,
inhibitors of the TSLP-OX40 axis, antagonists of JAK/STAT-
signaling, or IL-6 inhibition.
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